Files
test/source/blender/blenlib/intern/generic_virtual_array.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

838 lines
22 KiB
C++
Raw Permalink Normal View History

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
/** \file
* \ingroup bli
*/
#include <iostream>
#include "BLI_generic_virtual_array.hh"
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
namespace blender {
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
2021-10-05 11:10:25 +11:00
/* -------------------------------------------------------------------- */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/** \name #GVArrayImpl
2021-10-05 11:10:25 +11:00
* \{ */
void GVArrayImpl::materialize(const IndexMask &mask,
void *dst,
const bool dst_is_uninitialized) const
{
if (dst_is_uninitialized) {
mask.foreach_index_optimized<int64_t>([&](const int64_t i) {
void *elem_dst = POINTER_OFFSET(dst, type_->size * i);
this->get_to_uninitialized(i, elem_dst);
});
}
else {
mask.foreach_index_optimized<int64_t>([&](const int64_t i) {
void *elem_dst = POINTER_OFFSET(dst, type_->size * i);
this->get(i, elem_dst);
});
}
}
void GVArrayImpl::materialize_compressed(const IndexMask &mask,
void *dst,
const bool dst_is_uninitialized) const
{
if (dst_is_uninitialized) {
mask.foreach_index_optimized<int64_t>([&](const int64_t i, const int64_t pos) {
void *elem_dst = POINTER_OFFSET(dst, type_->size * pos);
this->get_to_uninitialized(i, elem_dst);
});
}
else {
mask.foreach_index_optimized<int64_t>([&](const int64_t i, const int64_t pos) {
void *elem_dst = POINTER_OFFSET(dst, type_->size * pos);
this->get(i, elem_dst);
});
}
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
void GVArrayImpl::get(const int64_t index, void *r_value) const
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
{
type_->destruct(r_value);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
this->get_to_uninitialized(index, r_value);
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
}
CommonVArrayInfo GVArrayImpl::common_info() const
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
{
return {};
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
}
bool GVArrayImpl::try_assign_VArray(void * /*varray*/) const
{
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
return false;
}
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/** \name #GVMutableArrayImpl
2021-10-05 11:10:25 +11:00
* \{ */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
void GVMutableArrayImpl::set_by_copy(const int64_t index, const void *value)
{
BUFFER_FOR_CPP_TYPE_VALUE(*type_, buffer);
type_->copy_construct(value, buffer);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
this->set_by_move(index, buffer);
type_->destruct(buffer);
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
void GVMutableArrayImpl::set_by_relocate(const int64_t index, void *value)
{
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
this->set_by_move(index, value);
type_->destruct(value);
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
void GVMutableArrayImpl::set_all(const void *src)
{
const CommonVArrayInfo info = this->common_info();
if (info.type == CommonVArrayInfo::Type::Span) {
type_->copy_assign_n(src, const_cast<void *>(info.data), size_);
}
else {
for (int64_t i : IndexRange(size_)) {
this->set_by_copy(i, POINTER_OFFSET(src, type_->size * i));
}
}
}
void GVMutableArray::fill(const void *value)
{
const CommonVArrayInfo info = this->common_info();
if (info.type == CommonVArrayInfo::Type::Span) {
this->type().fill_assign_n(value, const_cast<void *>(info.data), this->size());
}
else {
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
for (int64_t i : IndexRange(this->size())) {
this->set_by_copy(i, value);
}
}
}
bool GVMutableArrayImpl::try_assign_VMutableArray(void * /*varray*/) const
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
return false;
}
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/** \name #GVArrayImpl_For_GSpan
2021-10-05 11:10:25 +11:00
* \{ */
void GVArrayImpl_For_GSpan::get(const int64_t index, void *r_value) const
{
type_->copy_assign(POINTER_OFFSET(data_, element_size_ * index), r_value);
}
void GVArrayImpl_For_GSpan::get_to_uninitialized(const int64_t index, void *r_value) const
{
type_->copy_construct(POINTER_OFFSET(data_, element_size_ * index), r_value);
}
void GVArrayImpl_For_GSpan::set_by_copy(const int64_t index, const void *value)
{
type_->copy_assign(value, POINTER_OFFSET(data_, element_size_ * index));
}
void GVArrayImpl_For_GSpan::set_by_move(const int64_t index, void *value)
{
type_->move_construct(value, POINTER_OFFSET(data_, element_size_ * index));
}
void GVArrayImpl_For_GSpan::set_by_relocate(const int64_t index, void *value)
{
type_->relocate_assign(value, POINTER_OFFSET(data_, element_size_ * index));
}
CommonVArrayInfo GVArrayImpl_For_GSpan::common_info() const
{
return CommonVArrayInfo{CommonVArrayInfo::Type::Span, true, data_};
}
void GVArrayImpl_For_GSpan::materialize(const IndexMask &mask,
void *dst,
const bool dst_is_uninitialized) const
{
if (dst_is_uninitialized) {
type_->copy_construct_indices(data_, dst, mask);
}
else {
type_->copy_assign_indices(data_, dst, mask);
}
}
void GVArrayImpl_For_GSpan::materialize_compressed(const IndexMask &mask,
void *dst,
const bool dst_is_uninitialized) const
{
if (dst_is_uninitialized) {
type_->copy_construct_compressed(data_, dst, mask);
}
else {
type_->copy_assign_compressed(data_, dst, mask);
}
}
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/** \name #GVArrayImpl_For_SingleValueRef
2021-10-05 11:10:25 +11:00
* \{ */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/* Generic virtual array where each element has the same value. The value is not owned. */
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
void GVArrayImpl_For_SingleValueRef::get(const int64_t /*index*/, void *r_value) const
{
type_->copy_assign(value_, r_value);
}
void GVArrayImpl_For_SingleValueRef::get_to_uninitialized(const int64_t /*index*/,
void *r_value) const
{
type_->copy_construct(value_, r_value);
}
CommonVArrayInfo GVArrayImpl_For_SingleValueRef::common_info() const
{
return CommonVArrayInfo{CommonVArrayInfo::Type::Single, true, value_};
}
void GVArrayImpl_For_SingleValueRef::materialize(const IndexMask &mask,
void *dst,
const bool dst_is_uninitialized) const
{
if (dst_is_uninitialized) {
type_->fill_construct_indices(value_, dst, mask);
}
else {
type_->fill_assign_indices(value_, dst, mask);
}
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
void GVArrayImpl_For_SingleValueRef::materialize_compressed(const IndexMask &mask,
void *dst,
const bool dst_is_uninitialized) const
{
if (dst_is_uninitialized) {
type_->fill_construct_n(value_, dst, mask.size());
}
else {
type_->fill_assign_n(value_, dst, mask.size());
}
}
Functions: refactor virtual array data structures When a function is executed for many elements (e.g. per point) it is often the case that some parameters are different for every element and other parameters are the same (there are some more less common cases). To simplify writing such functions one can use a "virtual array". This is a data structure that has a value for every index, but might not be stored as an actual array internally. Instead, it might be just a single value or is computed on the fly. There are various tradeoffs involved when using this data structure which are mentioned in `BLI_virtual_array.hh`. It is called "virtual", because it uses inheritance and virtual methods. Furthermore, there is a new virtual vector array data structure, which is an array of vectors. Both these types have corresponding generic variants, which can be used when the data type is not known at compile time. This is typically the case when building a somewhat generic execution system. The function system used these virtual data structures before, but now they are more versatile. I've done this refactor in preparation for the attribute processor and other features of geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used independent of the function system. One open question for me is whether all the generic data structures (and `CPPType`) should be moved to blenlib as well. They are well isolated and don't really contain any business logic. That can be done later if necessary.
2021-03-21 19:31:24 +01:00
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/** \name #GVArrayImpl_For_SingleValue
2021-10-05 11:10:25 +11:00
* \{ */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/* Same as GVArrayImpl_For_SingleValueRef, but the value is owned. */
class GVArrayImpl_For_SingleValue : public GVArrayImpl_For_SingleValueRef,
NonCopyable,
NonMovable {
public:
GVArrayImpl_For_SingleValue(const CPPType &type, const int64_t size, const void *value)
: GVArrayImpl_For_SingleValueRef(type, size)
{
value_ = MEM_mallocN_aligned(type.size, type.alignment, __func__);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
type.copy_construct(value, (void *)value_);
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
~GVArrayImpl_For_SingleValue() override
{
type_->destruct(const_cast<void *>(value_));
MEM_freeN(const_cast<void *>(value_));
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
};
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
/** \name #GVArrayImpl_For_SmallTrivialSingleValue
* \{ */
/**
* Contains an inline buffer that can store a single value of a trivial type.
* This avoids the allocation that would be done by #GVArrayImpl_For_SingleValue.
*/
template<int BufferSize> class GVArrayImpl_For_SmallTrivialSingleValue : public GVArrayImpl {
private:
AlignedBuffer<BufferSize, 8> buffer_;
public:
GVArrayImpl_For_SmallTrivialSingleValue(const CPPType &type,
const int64_t size,
const void *value)
: GVArrayImpl(type, size)
{
BLI_assert(type.is_trivial);
BLI_assert(type.alignment <= 8);
BLI_assert(type.size <= BufferSize);
type.copy_construct(value, &buffer_);
}
private:
void get(const int64_t index, void *r_value) const final
{
this->get_to_uninitialized(index, r_value);
}
void get_to_uninitialized(const int64_t /*index*/, void *r_value) const final
{
memcpy(r_value, &buffer_, type_->size);
}
void materialize(const IndexMask &mask,
void *dst,
const bool /*dst_is_uninitialized*/) const final
{
type_->fill_construct_indices(buffer_, dst, mask);
}
void materialize_compressed(const IndexMask &mask,
void *dst,
const bool /*dst_is_uninitialized*/) const final
{
type_->fill_construct_n(buffer_, dst, mask.size());
}
CommonVArrayInfo common_info() const final
{
return CommonVArrayInfo{CommonVArrayInfo::Type::Single, true, &buffer_};
}
};
/** \} */
2021-10-05 11:10:25 +11:00
/* -------------------------------------------------------------------- */
/** \name #GVArraySpan
2021-10-05 11:10:25 +11:00
* \{ */
GVArraySpan::GVArraySpan() = default;
GVArraySpan::GVArraySpan(GVArray varray)
: GSpan(varray ? &varray.type() : nullptr), varray_(std::move(varray))
{
if (!varray_) {
return;
}
size_ = varray_.size();
const CommonVArrayInfo info = varray_.common_info();
if (info.type == CommonVArrayInfo::Type::Span) {
data_ = info.data;
}
else {
owned_data_ = MEM_mallocN_aligned(type_->size * size_, type_->alignment, __func__);
varray_.materialize_to_uninitialized(IndexRange(size_), owned_data_);
data_ = owned_data_;
}
}
GVArraySpan::GVArraySpan(GVArraySpan &&other)
: GSpan(other.type_ptr()), varray_(std::move(other.varray_)), owned_data_(other.owned_data_)
{
if (!varray_) {
return;
}
size_ = varray_.size();
const CommonVArrayInfo info = varray_.common_info();
if (info.type == CommonVArrayInfo::Type::Span) {
data_ = info.data;
}
else {
data_ = owned_data_;
}
other.owned_data_ = nullptr;
other.data_ = nullptr;
other.size_ = 0;
}
GVArraySpan::~GVArraySpan()
{
if (owned_data_ != nullptr) {
type_->destruct_n(owned_data_, size_);
MEM_freeN(owned_data_);
}
}
GVArraySpan &GVArraySpan::operator=(GVArraySpan &&other)
{
if (this == &other) {
return *this;
}
std::destroy_at(this);
new (this) GVArraySpan(std::move(other));
return *this;
}
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
/** \name #GMutableVArraySpan
2021-10-05 11:10:25 +11:00
* \{ */
GMutableVArraySpan::GMutableVArraySpan() = default;
GMutableVArraySpan::GMutableVArraySpan(GVMutableArray varray, const bool copy_values_to_span)
: GMutableSpan(varray ? &varray.type() : nullptr), varray_(std::move(varray))
{
if (!varray_) {
return;
}
size_ = varray_.size();
const CommonVArrayInfo info = varray_.common_info();
if (info.type == CommonVArrayInfo::Type::Span) {
data_ = const_cast<void *>(info.data);
}
else {
owned_data_ = MEM_mallocN_aligned(type_->size * size_, type_->alignment, __func__);
if (copy_values_to_span) {
varray_.materialize_to_uninitialized(IndexRange(size_), owned_data_);
}
else {
type_->default_construct_n(owned_data_, size_);
}
data_ = owned_data_;
}
}
GMutableVArraySpan::GMutableVArraySpan(GMutableVArraySpan &&other)
: GMutableSpan(other.type_ptr()),
varray_(std::move(other.varray_)),
owned_data_(other.owned_data_),
show_not_saved_warning_(other.show_not_saved_warning_)
{
if (!varray_) {
return;
}
size_ = varray_.size();
const CommonVArrayInfo info = varray_.common_info();
if (info.type == CommonVArrayInfo::Type::Span) {
data_ = const_cast<void *>(info.data);
}
else {
data_ = owned_data_;
}
other.owned_data_ = nullptr;
other.data_ = nullptr;
other.size_ = 0;
}
GMutableVArraySpan::~GMutableVArraySpan()
{
if (varray_) {
if (show_not_saved_warning_) {
if (!save_has_been_called_) {
std::cout << "Warning: Call `save()` to make sure that changes persist in all cases.\n";
}
}
}
if (owned_data_ != nullptr) {
type_->destruct_n(owned_data_, size_);
MEM_freeN(owned_data_);
}
}
GMutableVArraySpan &GMutableVArraySpan::operator=(GMutableVArraySpan &&other)
{
if (this == &other) {
return *this;
}
std::destroy_at(this);
new (this) GMutableVArraySpan(std::move(other));
return *this;
}
void GMutableVArraySpan::save()
{
save_has_been_called_ = true;
if (data_ != owned_data_) {
return;
}
varray_.set_all(owned_data_);
}
void GMutableVArraySpan::disable_not_applied_warning()
{
show_not_saved_warning_ = false;
}
const GVMutableArray &GMutableVArraySpan::varray() const
{
return varray_;
}
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/** \name #GVArrayImpl_For_SlicedGVArray
2021-10-05 11:10:25 +11:00
* \{ */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
class GVArrayImpl_For_SlicedGVArray : public GVArrayImpl {
protected:
GVArray varray_;
int64_t offset_;
IndexRange slice_;
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
public:
GVArrayImpl_For_SlicedGVArray(GVArray varray, const IndexRange slice)
: GVArrayImpl(varray.type(), slice.size()),
varray_(std::move(varray)),
offset_(slice.start()),
slice_(slice)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
BLI_assert(slice.one_after_last() <= varray_.size());
}
void get(const int64_t index, void *r_value) const override
{
varray_.get(index + offset_, r_value);
}
void get_to_uninitialized(const int64_t index, void *r_value) const override
{
varray_.get_to_uninitialized(index + offset_, r_value);
}
2022-06-25 18:10:22 +02:00
CommonVArrayInfo common_info() const override
{
const CommonVArrayInfo internal_info = varray_.common_info();
switch (internal_info.type) {
case CommonVArrayInfo::Type::Any: {
return {};
}
case CommonVArrayInfo::Type::Span: {
return CommonVArrayInfo(CommonVArrayInfo::Type::Span,
internal_info.may_have_ownership,
POINTER_OFFSET(internal_info.data, type_->size * offset_));
}
case CommonVArrayInfo::Type::Single: {
return internal_info;
}
}
BLI_assert_unreachable();
return {};
}
void materialize(const IndexMask &mask, void *dst, const bool dst_is_uninitialized) const final
{
IndexMaskMemory memory;
const IndexMask shifted_mask = mask.shift(offset_, memory);
void *shifted_dst = POINTER_OFFSET(dst, -offset_ * type_->size);
varray_.get_implementation()->materialize(shifted_mask, shifted_dst, dst_is_uninitialized);
}
void materialize_compressed(const IndexMask &mask,
void *dst,
const bool dst_is_uninitialized) const final
{
IndexMaskMemory memory;
const IndexMask shifted_mask = mask.shift(offset_, memory);
varray_.get_implementation()->materialize_compressed(shifted_mask, dst, dst_is_uninitialized);
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name #GVArrayCommon
* \{ */
GVArrayCommon::GVArrayCommon(const GVArrayCommon &other) : storage_(other.storage_)
{
impl_ = this->impl_from_storage();
}
GVArrayCommon::GVArrayCommon(GVArrayCommon &&other) noexcept : storage_(std::move(other.storage_))
{
impl_ = this->impl_from_storage();
other.storage_.reset();
other.impl_ = nullptr;
}
GVArrayCommon::GVArrayCommon(const GVArrayImpl *impl) : impl_(impl)
{
storage_ = impl_;
}
GVArrayCommon::GVArrayCommon(std::shared_ptr<const GVArrayImpl> impl) : impl_(impl.get())
{
if (impl) {
storage_ = std::move(impl);
}
}
GVArrayCommon::~GVArrayCommon() = default;
void GVArrayCommon::materialize(void *dst) const
{
this->materialize(IndexMask(impl_->size()), dst);
}
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
void GVArrayCommon::materialize(const IndexMask &mask, void *dst) const
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
impl_->materialize(mask, dst, false);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
void GVArrayCommon::materialize_to_uninitialized(void *dst) const
{
this->materialize_to_uninitialized(IndexMask(impl_->size()), dst);
}
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
void GVArrayCommon::materialize_to_uninitialized(const IndexMask &mask, void *dst) const
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
BLI_assert(mask.min_array_size() <= impl_->size());
impl_->materialize(mask, dst, true);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
void GVArrayCommon::materialize_compressed(const IndexMask &mask, void *dst) const
{
impl_->materialize_compressed(mask, dst, false);
}
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
void GVArrayCommon::materialize_compressed_to_uninitialized(const IndexMask &mask, void *dst) const
{
impl_->materialize_compressed(mask, dst, true);
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
void GVArrayCommon::copy_from(const GVArrayCommon &other)
{
if (this == &other) {
return;
}
storage_ = other.storage_;
impl_ = this->impl_from_storage();
}
void GVArrayCommon::move_from(GVArrayCommon &&other) noexcept
{
if (this == &other) {
return;
}
storage_ = std::move(other.storage_);
impl_ = this->impl_from_storage();
other.storage_.reset();
other.impl_ = nullptr;
}
bool GVArrayCommon::is_span() const
{
const CommonVArrayInfo info = impl_->common_info();
return info.type == CommonVArrayInfo::Type::Span;
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GSpan GVArrayCommon::get_internal_span() const
{
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
BLI_assert(this->is_span());
const CommonVArrayInfo info = impl_->common_info();
return GSpan(this->type(), info.data, this->size());
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
bool GVArrayCommon::is_single() const
{
const CommonVArrayInfo info = impl_->common_info();
return info.type == CommonVArrayInfo::Type::Single;
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
void GVArrayCommon::get_internal_single(void *r_value) const
{
BLI_assert(this->is_single());
const CommonVArrayInfo info = impl_->common_info();
this->type().copy_assign(info.data, r_value);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
void GVArrayCommon::get_internal_single_to_uninitialized(void *r_value) const
{
impl_->type().default_construct(r_value);
this->get_internal_single(r_value);
}
const GVArrayImpl *GVArrayCommon::impl_from_storage() const
{
if (!storage_.has_value()) {
return nullptr;
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
return storage_.extra_info().get_varray(storage_.get());
}
IndexRange GVArrayCommon::index_range() const
{
return IndexRange(this->size());
}
2021-10-05 11:10:25 +11:00
/** \} */
/* -------------------------------------------------------------------- */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
/** \name #GVArray
2021-10-05 11:10:25 +11:00
* \{ */
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
GVArray::GVArray(const GVArray &other) = default;
GVArray::GVArray(GVArray &&other) noexcept = default;
GVArray::GVArray(const GVArrayImpl *impl) : GVArrayCommon(impl) {}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
GVArray::GVArray(std::shared_ptr<const GVArrayImpl> impl) : GVArrayCommon(std::move(impl)) {}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
GVArray::GVArray(varray_tag::single /*tag*/, const CPPType &type, int64_t size, const void *value)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
if (type.is_trivial && type.size <= 16 && type.alignment <= 8) {
this->emplace<GVArrayImpl_For_SmallTrivialSingleValue<16>>(type, size, value);
}
else {
this->emplace<GVArrayImpl_For_SingleValue>(type, size, value);
}
}
GVArray GVArray::from_single(const CPPType &type, const int64_t size, const void *value)
{
return GVArray(varray_tag::single{}, type, size, value);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GVArray GVArray::from_single_ref(const CPPType &type, const int64_t size, const void *value)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
return GVArray(varray_tag::single_ref{}, type, size, value);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GVArray GVArray::from_single_default(const CPPType &type, const int64_t size)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
return GVArray::from_single_ref(type, size, type.default_value());
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GVArray GVArray::from_span(GSpan span)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
return GVArray(varray_tag::span{}, span);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
class GVArrayImpl_For_GArray : public GVArrayImpl_For_GSpan {
protected:
GArray<> array_;
public:
GVArrayImpl_For_GArray(GArray<> array)
: GVArrayImpl_For_GSpan(array.as_mutable_span()), array_(std::move(array))
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
};
GVArray GVArray::from_garray(GArray<> array)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
return GVArray::from<GVArrayImpl_For_GArray>(array);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GVArray GVArray::from_empty(const CPPType &type)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
return GVArray::from_span(GSpan(type));
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GVArray GVArray::slice(IndexRange slice) const
{
const CommonVArrayInfo info = this->common_info();
if (info.type == CommonVArrayInfo::Type::Single) {
return GVArray::from_single(this->type(), slice.size(), info.data);
}
/* Need to check for ownership, because otherwise the referenced data can be destructed when
* #this is destructed. */
if (info.type == CommonVArrayInfo::Type::Span && !info.may_have_ownership) {
return GVArray::from_span(GSpan(this->type(), info.data, this->size()).slice(slice));
}
return GVArray::from<GVArrayImpl_For_SlicedGVArray>(*this, slice);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GVArray &GVArray::operator=(const GVArray &other)
{
this->copy_from(other);
return *this;
}
GVArray &GVArray::operator=(GVArray &&other) noexcept
{
this->move_from(std::move(other));
return *this;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name #GVMutableArray
* \{ */
GVMutableArray::GVMutableArray(const GVMutableArray &other) = default;
GVMutableArray::GVMutableArray(GVMutableArray &&other) noexcept = default;
GVMutableArray::GVMutableArray(GVMutableArrayImpl *impl) : GVArrayCommon(impl) {}
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
GVMutableArray::GVMutableArray(std::shared_ptr<GVMutableArrayImpl> impl)
: GVArrayCommon(std::move(impl))
{
}
GVMutableArray GVMutableArray::from_span(GMutableSpan span)
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
return GVMutableArray::from<GVArrayImpl_For_GSpan_final>(span);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
}
GVMutableArray::operator GVArray() const &
{
GVArray varray;
varray.copy_from(*this);
return varray;
}
GVMutableArray::operator GVArray() && noexcept
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
{
GVArray varray;
varray.move_from(std::move(*this));
return varray;
}
GVMutableArray &GVMutableArray::operator=(const GVMutableArray &other)
{
this->copy_from(other);
return *this;
}
GVMutableArray &GVMutableArray::operator=(GVMutableArray &&other) noexcept
{
this->move_from(std::move(other));
return *this;
}
GVMutableArrayImpl *GVMutableArray::get_implementation() const
{
return this->get_impl();
}
void GVMutableArray::set_all(const void *src)
{
this->get_impl()->set_all(src);
}
GMutableSpan GVMutableArray::get_internal_span() const
{
BLI_assert(this->is_span());
const CommonVArrayInfo info = impl_->common_info();
return GMutableSpan(this->type(), const_cast<void *>(info.data), this->size());
}
2021-10-05 11:10:25 +11:00
/** \} */
CommonVArrayInfo GVArrayImpl_For_GSpan_final::common_info() const
{
return CommonVArrayInfo(CommonVArrayInfo::Type::Span, false, data_);
}
CommonVArrayInfo GVArrayImpl_For_SingleValueRef_final::common_info() const
{
return CommonVArrayInfo(CommonVArrayInfo::Type::Single, false, value_);
}
} // namespace blender