Files
test/source/blender/functions/tests/FN_multi_function_procedure_test.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

427 lines
12 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: Apache-2.0 */
#include "testing/testing.h"
#include "FN_multi_function_builder.hh"
#include "FN_multi_function_procedure_builder.hh"
#include "FN_multi_function_procedure_executor.hh"
#include "FN_multi_function_test_common.hh"
namespace blender::fn::multi_function::tests {
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
TEST(multi_function_procedure, ConstantOutput)
{
/**
* procedure(int *var2) {
* var1 = 5;
* var2 = var1 + var1;
* }
*/
CustomMF_Constant<int> constant_fn{5};
auto add_fn = build::SI2_SO<int, int, int>("Add", [](int a, int b) { return a + b; });
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
Procedure procedure;
ProcedureBuilder builder{procedure};
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
auto [var1] = builder.add_call<1>(constant_fn);
auto [var2] = builder.add_call<1>(add_fn, {var1, var1});
builder.add_destruct(*var1);
builder.add_return();
builder.add_output_parameter(*var2);
EXPECT_TRUE(procedure.validate());
ProcedureExecutor executor{procedure};
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
const IndexMask mask(2);
ParamsBuilder params{executor, &mask};
ContextBuilder context;
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
Array<int> output_array(2);
params.add_uninitialized_single_output(output_array.as_mutable_span());
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
executor.call(mask, params, context);
Geometry Nodes: refactor virtual array system Goals of this refactor: * Simplify creating virtual arrays. * Simplify passing virtual arrays around. * Simplify converting between typed and generic virtual arrays. * Reduce memory allocations. As a quick reminder, a virtual arrays is a data structure that behaves like an array (i.e. it can be accessed using an index). However, it may not actually be stored as array internally. The two most important implementations of virtual arrays are those that correspond to an actual plain array and those that have the same value for every index. However, many more implementations exist for various reasons (interfacing with legacy attributes, unified iterator over all points in multiple splines, ...). With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and `GVMutableArray`) can be used like "normal values". They typically live on the stack. Before, they were usually inside a `std::unique_ptr`. This makes passing them around much easier. Creation of new virtual arrays is also much simpler now due to some constructors. Memory allocations are reduced by making use of small object optimization inside the core types. Previously, `VArray` was a class with virtual methods that had to be overridden to change the behavior of a the virtual array. Now,`VArray` has a fixed size and has no virtual methods. Instead it contains a `VArrayImpl` that is similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly, unless a new virtual array implementation is added. To support the small object optimization for many `VArrayImpl` classes, a new `blender::Any` type is added. It is similar to `std::any` with two additional features. It has an adjustable inline buffer size and alignment. The inline buffer size of `std::any` can't be relied on and is usually too small for our use case here. Furthermore, `blender::Any` can store additional user-defined type information without increasing the stack size. Differential Revision: https://developer.blender.org/D12986
2021-11-16 10:15:51 +01:00
EXPECT_EQ(output_array[0], 10);
EXPECT_EQ(output_array[1], 10);
}
TEST(multi_function_procedure, SimpleTest)
{
/**
* procedure(int var1, int var2, int *var4) {
* int var3 = var1 + var2;
* var4 = var2 + var3;
* var4 += 10;
* }
*/
auto add_fn = mf::build::SI2_SO<int, int, int>("add", [](int a, int b) { return a + b; });
auto add_10_fn = mf::build::SM<int>("add_10", [](int &a) { a += 10; });
Procedure procedure;
ProcedureBuilder builder{procedure};
Variable *var1 = &builder.add_single_input_parameter<int>();
Variable *var2 = &builder.add_single_input_parameter<int>();
auto [var3] = builder.add_call<1>(add_fn, {var1, var2});
auto [var4] = builder.add_call<1>(add_fn, {var2, var3});
builder.add_call(add_10_fn, {var4});
builder.add_destruct({var1, var2, var3});
builder.add_return();
builder.add_output_parameter(*var4);
EXPECT_TRUE(procedure.validate());
ProcedureExecutor executor{procedure};
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
const IndexMask mask(3);
ParamsBuilder params{executor, &mask};
ContextBuilder context;
Array<int> input_array = {1, 2, 3};
params.add_readonly_single_input(input_array.as_span());
params.add_readonly_single_input_value(3);
Array<int> output_array(3);
params.add_uninitialized_single_output(output_array.as_mutable_span());
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
executor.call(mask, params, context);
EXPECT_EQ(output_array[0], 17);
EXPECT_EQ(output_array[1], 18);
EXPECT_EQ(output_array[2], 19);
}
TEST(multi_function_procedure, BranchTest)
{
/**
* procedure(int &var1, bool var2) {
* if (var2) {
* var1 += 100;
* }
* else {
* var1 += 10;
* }
* var1 += 10;
* }
*/
auto add_10_fn = build::SM<int>("add_10", [](int &a) { a += 10; });
auto add_100_fn = build::SM<int>("add_100", [](int &a) { a += 100; });
Procedure procedure;
ProcedureBuilder builder{procedure};
Variable *var1 = &builder.add_single_mutable_parameter<int>();
Variable *var2 = &builder.add_single_input_parameter<bool>();
ProcedureBuilder::Branch branch = builder.add_branch(*var2);
branch.branch_false.add_call(add_10_fn, {var1});
branch.branch_true.add_call(add_100_fn, {var1});
builder.set_cursor_after_branch(branch);
builder.add_call(add_10_fn, {var1});
builder.add_destruct({var2});
builder.add_return();
EXPECT_TRUE(procedure.validate());
ProcedureExecutor procedure_fn{procedure};
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
const IndexMask mask(IndexRange(1, 4));
ParamsBuilder params(procedure_fn, &mask);
Array<int> values_a = {1, 5, 3, 6, 2};
Array<bool> values_cond = {true, false, true, true, false};
params.add_single_mutable(values_a.as_mutable_span());
params.add_readonly_single_input(values_cond.as_span());
ContextBuilder context;
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
procedure_fn.call(mask, params, context);
EXPECT_EQ(values_a[0], 1);
EXPECT_EQ(values_a[1], 25);
EXPECT_EQ(values_a[2], 113);
EXPECT_EQ(values_a[3], 116);
EXPECT_EQ(values_a[4], 22);
}
TEST(multi_function_procedure, EvaluateOne)
{
/**
* procedure(int var1, int *var2) {
* var2 = var1 + 10;
* }
*/
int tot_evaluations = 0;
const auto add_10_fn = mf::build::SI1_SO<int, int>("add_10", [&](int a) {
tot_evaluations++;
return a + 10;
});
Procedure procedure;
ProcedureBuilder builder{procedure};
Variable *var1 = &builder.add_single_input_parameter<int>();
auto [var2] = builder.add_call<1>(add_10_fn, {var1});
builder.add_destruct(*var1);
builder.add_return();
builder.add_output_parameter(*var2);
ProcedureExecutor procedure_fn{procedure};
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
IndexMaskMemory memory;
const IndexMask mask = IndexMask::from_indices<int>({0, 1, 3, 4}, memory);
ParamsBuilder params{procedure_fn, &mask};
Array<int> values_out = {1, 2, 3, 4, 5};
params.add_readonly_single_input_value(1);
params.add_uninitialized_single_output(values_out.as_mutable_span());
ContextBuilder context;
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
procedure_fn.call(mask, params, context);
EXPECT_EQ(values_out[0], 11);
EXPECT_EQ(values_out[1], 11);
EXPECT_EQ(values_out[2], 3);
EXPECT_EQ(values_out[3], 11);
EXPECT_EQ(values_out[4], 11);
/* We expect only one evaluation, because the input is constant. */
EXPECT_EQ(tot_evaluations, 1);
}
TEST(multi_function_procedure, SimpleLoop)
{
/**
* procedure(int count, int *out) {
* out = 1;
* int index = 0'
* loop {
* if (index >= count) {
* break;
* }
* out *= 2;
* index += 1;
* }
* out += 1000;
* }
*/
CustomMF_Constant<int> const_1_fn{1};
CustomMF_Constant<int> const_0_fn{0};
auto greater_or_equal_fn = mf::build::SI2_SO<int, int, bool>(
"greater or equal", [](int a, int b) { return a >= b; });
auto double_fn = build::SM<int>("double", [](int &a) { a *= 2; });
auto add_1000_fn = build::SM<int>("add 1000", [](int &a) { a += 1000; });
auto add_1_fn = build::SM<int>("add 1", [](int &a) { a += 1; });
Procedure procedure;
ProcedureBuilder builder{procedure};
Variable *var_count = &builder.add_single_input_parameter<int>("count");
auto [var_out] = builder.add_call<1>(const_1_fn);
var_out->set_name("out");
auto [var_index] = builder.add_call<1>(const_0_fn);
var_index->set_name("index");
ProcedureBuilder::Loop loop = builder.add_loop();
auto [var_condition] = builder.add_call<1>(greater_or_equal_fn, {var_index, var_count});
var_condition->set_name("condition");
ProcedureBuilder::Branch branch = builder.add_branch(*var_condition);
branch.branch_true.add_destruct(*var_condition);
branch.branch_true.add_loop_break(loop);
branch.branch_false.add_destruct(*var_condition);
builder.set_cursor_after_branch(branch);
builder.add_call(double_fn, {var_out});
builder.add_call(add_1_fn, {var_index});
builder.add_loop_continue(loop);
builder.set_cursor_after_loop(loop);
builder.add_call(add_1000_fn, {var_out});
builder.add_destruct({var_count, var_index});
builder.add_return();
builder.add_output_parameter(*var_out);
EXPECT_TRUE(procedure.validate());
ProcedureExecutor procedure_fn{procedure};
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
IndexMaskMemory memory;
const IndexMask mask = IndexMask::from_indices<int>({0, 1, 3, 4}, memory);
ParamsBuilder params{procedure_fn, &mask};
Array<int> counts = {4, 3, 7, 6, 4};
Array<int> results(5, -1);
params.add_readonly_single_input(counts.as_span());
params.add_uninitialized_single_output(results.as_mutable_span());
ContextBuilder context;
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
procedure_fn.call(mask, params, context);
EXPECT_EQ(results[0], 1016);
EXPECT_EQ(results[1], 1008);
EXPECT_EQ(results[2], -1);
EXPECT_EQ(results[3], 1064);
EXPECT_EQ(results[4], 1016);
}
TEST(multi_function_procedure, Vectors)
{
/**
* procedure(vector<int> v1, vector<int> &v2, vector<int> *v3) {
* v1.extend(v2);
* int constant = 5;
* v2.append(constant);
* v2.extend(v1);
* int len = sum(v2);
* v3 = range(len);
* }
*/
CreateRangeFunction create_range_fn;
ConcatVectorsFunction extend_fn;
GenericAppendFunction append_fn{CPPType::get<int>()};
SumVectorFunction sum_elements_fn;
CustomMF_Constant<int> constant_5_fn{5};
Procedure procedure;
ProcedureBuilder builder{procedure};
Variable *var_v1 = &builder.add_input_parameter(DataType::ForVector<int>());
Variable *var_v2 = &builder.add_parameter(ParamType::ForMutableVector(CPPType::get<int>()));
builder.add_call(extend_fn, {var_v1, var_v2});
auto [var_constant] = builder.add_call<1>(constant_5_fn);
builder.add_call(append_fn, {var_v2, var_constant});
builder.add_destruct(*var_constant);
builder.add_call(extend_fn, {var_v2, var_v1});
auto [var_len] = builder.add_call<1>(sum_elements_fn, {var_v2});
auto [var_v3] = builder.add_call<1>(create_range_fn, {var_len});
builder.add_destruct({var_v1, var_len});
builder.add_return();
builder.add_output_parameter(*var_v3);
EXPECT_TRUE(procedure.validate());
ProcedureExecutor procedure_fn{procedure};
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
IndexMaskMemory memory;
const IndexMask mask = IndexMask::from_indices<int>({0, 1, 3, 4}, memory);
ParamsBuilder params{procedure_fn, &mask};
Array<int> v1 = {5, 2, 3};
GVectorArray v2{CPPType::get<int>(), 5};
GVectorArray v3{CPPType::get<int>(), 5};
int value_10 = 10;
v2.append(0, &value_10);
v2.append(4, &value_10);
params.add_readonly_vector_input(v1.as_span());
params.add_vector_mutable(v2);
params.add_vector_output(v3);
ContextBuilder context;
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
procedure_fn.call(mask, params, context);
EXPECT_EQ(v2[0].size(), 6);
EXPECT_EQ(v2[1].size(), 4);
EXPECT_EQ(v2[2].size(), 0);
EXPECT_EQ(v2[3].size(), 4);
EXPECT_EQ(v2[4].size(), 6);
EXPECT_EQ(v3[0].size(), 35);
EXPECT_EQ(v3[1].size(), 15);
EXPECT_EQ(v3[2].size(), 0);
EXPECT_EQ(v3[3].size(), 15);
EXPECT_EQ(v3[4].size(), 35);
}
TEST(multi_function_procedure, BufferReuse)
{
/**
* procedure(int a, int *out) {
* int b = a + 10;
* int c = c + 10;
* int d = d + 10;
* int e = d + 10;
* out = e + 10;
* }
*/
auto add_10_fn = build::SI1_SO<int, int>("add 10", [](int a) { return a + 10; });
Procedure procedure;
ProcedureBuilder builder{procedure};
Variable *var_a = &builder.add_single_input_parameter<int>();
auto [var_b] = builder.add_call<1>(add_10_fn, {var_a});
builder.add_destruct(*var_a);
auto [var_c] = builder.add_call<1>(add_10_fn, {var_b});
builder.add_destruct(*var_b);
auto [var_d] = builder.add_call<1>(add_10_fn, {var_c});
builder.add_destruct(*var_c);
auto [var_e] = builder.add_call<1>(add_10_fn, {var_d});
builder.add_destruct(*var_d);
auto [var_out] = builder.add_call<1>(add_10_fn, {var_e});
builder.add_destruct(*var_e);
builder.add_return();
builder.add_output_parameter(*var_out);
EXPECT_TRUE(procedure.validate());
ProcedureExecutor procedure_fn{procedure};
Array<int> inputs = {4, 1, 6, 2, 3};
Array<int> results(5, -1);
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
IndexMaskMemory memory;
const IndexMask mask = IndexMask::from_indices<int>({0, 2, 3, 4}, memory);
ParamsBuilder params{procedure_fn, &mask};
params.add_readonly_single_input(inputs.as_span());
params.add_uninitialized_single_output(results.as_mutable_span());
ContextBuilder context;
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
procedure_fn.call(mask, params, context);
EXPECT_EQ(results[0], 54);
EXPECT_EQ(results[1], -1);
EXPECT_EQ(results[2], 56);
EXPECT_EQ(results[3], 52);
EXPECT_EQ(results[4], 53);
}
TEST(multi_function_procedure, OutputBufferReplaced)
{
Procedure procedure;
ProcedureBuilder builder{procedure};
const int output_value = 42;
CustomMF_GenericConstant constant_fn(CPPType::get<int>(), &output_value, false);
Variable &var_o = procedure.new_variable(DataType::ForSingle<int>());
builder.add_output_parameter(var_o);
builder.add_call_with_all_variables(constant_fn, {&var_o});
builder.add_destruct(var_o);
builder.add_call_with_all_variables(constant_fn, {&var_o});
builder.add_return();
EXPECT_TRUE(procedure.validate());
ProcedureExecutor procedure_fn{procedure};
Array<int> output(3, 0);
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
IndexMask mask(output.size());
mf::ParamsBuilder params(procedure_fn, &mask);
params.add_uninitialized_single_output(output.as_mutable_span());
mf::ContextBuilder context;
BLI: refactor IndexMask for better performance and memory usage Goals of this refactor: * Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an `int64_t` for each index which is more than necessary in pretty much all practical cases currently. Using `int32_t` might still become limiting in the future in case we use this to index e.g. byte buffers larger than a few gigabytes. We also don't want to template `IndexMask`, because that would cause a split in the "ecosystem", or everything would have to be implemented twice or templated. * Allow for more multi-threading. The old `IndexMask` contains a single array. This is generally good but has the problem that it is hard to fill from multiple-threads when the final size is not known from the beginning. This is commonly the case when e.g. converting an array of bool to an index mask. Currently, this kind of code only runs on a single thread. * Allow for efficient set operations like join, intersect and difference. It should be possible to multi-thread those operations. * It should be possible to iterate over an `IndexMask` very efficiently. The most important part of that is to avoid all memory access when iterating over continuous ranges. For some core nodes (e.g. math nodes), we generate optimized code for the cases of irregular index masks and simple index ranges. To achieve these goals, a few compromises had to made: * Slicing of the mask (at specific indices) and random element access is `O(log #indices)` now, but with a low constant factor. It should be possible to split a mask into n approximately equally sized parts in `O(n)` though, making the time per split `O(1)`. * Using range-based for loops does not work well when iterating over a nested data structure like the new `IndexMask`. Therefor, `foreach_*` functions with callbacks have to be used. To avoid extra code complexity at the call site, the `foreach_*` methods support multi-threading out of the box. The new data structure splits an `IndexMask` into an arbitrary number of ordered `IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The indices within a segment are stored as `int16_t`. Each segment has an additional `int64_t` offset which allows storing arbitrary `int64_t` indices. This approach has the main benefits that segments can be processed/constructed individually on multiple threads without a serial bottleneck. Also it reduces the memory requirements significantly. For more details see comments in `BLI_index_mask.hh`. I did a few tests to verify that the data structure generally improves performance and does not cause regressions: * Our field evaluation benchmarks take about as much as before. This is to be expected because we already made sure that e.g. add node evaluation is vectorized. The important thing here is to check that changes to the way we iterate over the indices still allows for auto-vectorization. * Memory usage by a mask is about 1/4 of what it was before in the average case. That's mainly caused by the switch from `int64_t` to `int16_t` for indices. In the worst case, the memory requirements can be larger when there are many indices that are very far away. However, when they are far away from each other, that indicates that there aren't many indices in total. In common cases, memory usage can be way lower than 1/4 of before, because sub-ranges use static memory. * For some more specific numbers I benchmarked `IndexMask::from_bools` in `index_mask_from_selection` on 10.000.000 elements at various probabilities for `true` at every index: ``` Probability Old New 0 4.6 ms 0.8 ms 0.001 5.1 ms 1.3 ms 0.2 8.4 ms 1.8 ms 0.5 15.3 ms 3.0 ms 0.8 20.1 ms 3.0 ms 0.999 25.1 ms 1.7 ms 1 13.5 ms 1.1 ms ``` Pull Request: https://projects.blender.org/blender/blender/pulls/104629
2023-05-24 18:11:41 +02:00
procedure_fn.call(mask, params, context);
EXPECT_EQ(output[0], output_value);
EXPECT_EQ(output[1], output_value);
EXPECT_EQ(output[2], output_value);
}
} // namespace blender::fn::multi_function::tests