Files
test/intern/cycles/blender/volume.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

378 lines
12 KiB
C++
Raw Normal View History

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include "scene/volume.h"
#include "scene/colorspace.h"
#include "scene/image.h"
#include "scene/image_vdb.h"
#include "scene/object.h"
#include "blender/sync.h"
#include "blender/util.h"
#ifdef WITH_OPENVDB
# include <openvdb/openvdb.h>
openvdb::GridBase::ConstPtr BKE_volume_grid_openvdb_for_read(const struct Volume *volume,
const struct VolumeGrid *grid);
#endif
CCL_NAMESPACE_BEGIN
/* TODO: verify this is not loading unnecessary attributes. */
class BlenderSmokeLoader : public ImageLoader {
public:
BlenderSmokeLoader(BL::Object &b_ob, AttributeStandard attribute)
: b_domain(object_fluid_gas_domain_find(b_ob)), attribute(attribute)
{
mesh_texture_space(
*static_cast<const ::Mesh *>(b_ob.data().ptr.data), texspace_loc, texspace_size);
}
bool load_metadata(const ImageDeviceFeatures &, ImageMetaData &metadata) override
{
if (!b_domain) {
return false;
}
if (attribute == ATTR_STD_VOLUME_DENSITY || attribute == ATTR_STD_VOLUME_FLAME ||
attribute == ATTR_STD_VOLUME_HEAT || attribute == ATTR_STD_VOLUME_TEMPERATURE)
{
metadata.type = IMAGE_DATA_TYPE_FLOAT;
metadata.channels = 1;
}
else if (attribute == ATTR_STD_VOLUME_COLOR) {
metadata.type = IMAGE_DATA_TYPE_FLOAT4;
metadata.channels = 4;
}
else if (attribute == ATTR_STD_VOLUME_VELOCITY) {
metadata.type = IMAGE_DATA_TYPE_FLOAT4;
metadata.channels = 3;
}
else {
return false;
}
int3 resolution = get_int3(b_domain.domain_resolution());
int amplify = (b_domain.use_noise()) ? b_domain.noise_scale() : 1;
/* Velocity and heat data is always low-resolution. */
if (attribute == ATTR_STD_VOLUME_VELOCITY || attribute == ATTR_STD_VOLUME_HEAT) {
amplify = 1;
}
metadata.width = resolution.x * amplify;
metadata.height = resolution.y * amplify;
metadata.depth = resolution.z * amplify;
/* Create a matrix to transform from object space to mesh texture space.
* This does not work with deformations but that can probably only be done
* well with a volume grid mapping of coordinates. */
metadata.transform_3d = transform_translate(-texspace_loc) * transform_scale(texspace_size);
metadata.use_transform_3d = true;
return true;
}
bool load_pixels(const ImageMetaData &, void *pixels, const size_t, const bool) override
{
if (!b_domain) {
return false;
}
#ifdef WITH_FLUID
int3 resolution = get_int3(b_domain.domain_resolution());
int length, amplify = (b_domain.use_noise()) ? b_domain.noise_scale() : 1;
/* Velocity and heat data is always low-resolution. */
if (attribute == ATTR_STD_VOLUME_VELOCITY || attribute == ATTR_STD_VOLUME_HEAT) {
amplify = 1;
}
const int width = resolution.x * amplify;
const int height = resolution.y * amplify;
const int depth = resolution.z * amplify;
const size_t num_pixels = ((size_t)width) * height * depth;
float *fpixels = (float *)pixels;
if (attribute == ATTR_STD_VOLUME_DENSITY) {
FluidDomainSettings_density_grid_get_length(&b_domain.ptr, &length);
if (length == num_pixels) {
FluidDomainSettings_density_grid_get(&b_domain.ptr, fpixels);
return true;
}
}
else if (attribute == ATTR_STD_VOLUME_FLAME) {
/* this is in range 0..1, and interpreted by the OpenGL smoke viewer
* as 1500..3000 K with the first part faded to zero density */
FluidDomainSettings_flame_grid_get_length(&b_domain.ptr, &length);
if (length == num_pixels) {
FluidDomainSettings_flame_grid_get(&b_domain.ptr, fpixels);
return true;
}
}
else if (attribute == ATTR_STD_VOLUME_COLOR) {
/* the RGB is "premultiplied" by density for better interpolation results */
FluidDomainSettings_color_grid_get_length(&b_domain.ptr, &length);
if (length == num_pixels * 4) {
FluidDomainSettings_color_grid_get(&b_domain.ptr, fpixels);
return true;
}
}
else if (attribute == ATTR_STD_VOLUME_VELOCITY) {
FluidDomainSettings_velocity_grid_get_length(&b_domain.ptr, &length);
if (length == num_pixels * 3) {
FluidDomainSettings_velocity_grid_get(&b_domain.ptr, fpixels);
return true;
}
}
else if (attribute == ATTR_STD_VOLUME_HEAT) {
FluidDomainSettings_heat_grid_get_length(&b_domain.ptr, &length);
if (length == num_pixels) {
FluidDomainSettings_heat_grid_get(&b_domain.ptr, fpixels);
return true;
}
}
else if (attribute == ATTR_STD_VOLUME_TEMPERATURE) {
FluidDomainSettings_temperature_grid_get_length(&b_domain.ptr, &length);
if (length == num_pixels) {
FluidDomainSettings_temperature_grid_get(&b_domain.ptr, fpixels);
return true;
}
}
else {
fprintf(stderr,
"Cycles error: unknown volume attribute %s, skipping\n",
Attribute::standard_name(attribute));
fpixels[0] = 0.0f;
return false;
}
#else
(void)pixels;
#endif
fprintf(stderr, "Cycles error: unexpected smoke volume resolution, skipping\n");
return false;
}
string name() const override
{
return Attribute::standard_name(attribute);
}
bool equals(const ImageLoader &other) const override
{
const BlenderSmokeLoader &other_loader = (const BlenderSmokeLoader &)other;
return b_domain == other_loader.b_domain && attribute == other_loader.attribute;
}
BL::FluidDomainSettings b_domain;
float3 texspace_loc, texspace_size;
AttributeStandard attribute;
};
static void sync_smoke_volume(
BL::Scene &b_scene, Scene *scene, BObjectInfo &b_ob_info, Volume *volume, float frame)
{
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
if (!b_ob_info.is_real_object_data()) {
return;
}
BL::FluidDomainSettings b_domain = object_fluid_gas_domain_find(b_ob_info.real_object);
if (!b_domain) {
return;
}
float velocity_scale = b_domain.velocity_scale();
/* Motion blur attribute is relative to seconds, we need it relative to frames. */
const bool need_motion = object_need_motion_attribute(b_ob_info, scene);
const float motion_scale = (need_motion) ?
scene->motion_shutter_time() /
(b_scene.render().fps() / b_scene.render().fps_base()) :
0.0f;
velocity_scale *= motion_scale;
volume->set_velocity_scale(velocity_scale);
AttributeStandard attributes[] = {ATTR_STD_VOLUME_DENSITY,
ATTR_STD_VOLUME_COLOR,
ATTR_STD_VOLUME_FLAME,
ATTR_STD_VOLUME_HEAT,
ATTR_STD_VOLUME_TEMPERATURE,
ATTR_STD_VOLUME_VELOCITY,
ATTR_STD_NONE};
for (int i = 0; attributes[i] != ATTR_STD_NONE; i++) {
AttributeStandard std = attributes[i];
if (!volume->need_attribute(scene, std)) {
continue;
}
volume->set_clipping(b_domain.clipping());
Attribute *attr = volume->attributes.add(std);
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
ImageLoader *loader = new BlenderSmokeLoader(b_ob_info.real_object, std);
ImageParams params;
params.frame = frame;
attr->data_voxel() = scene->image_manager->add_image(loader, params);
}
}
class BlenderVolumeLoader : public VDBImageLoader {
public:
BlenderVolumeLoader(BL::BlendData &b_data,
BL::Volume &b_volume,
const string &grid_name,
BL::VolumeRender::precision_enum precision_)
: VDBImageLoader(grid_name), b_volume(b_volume)
{
b_volume.grids.load(b_data.ptr.data);
#ifdef WITH_OPENVDB
for (BL::VolumeGrid &b_volume_grid : b_volume.grids) {
if (b_volume_grid.name() == grid_name) {
const bool unload = !b_volume_grid.is_loaded();
::Volume *volume = (::Volume *)b_volume.ptr.data;
const VolumeGrid *volume_grid = (VolumeGrid *)b_volume_grid.ptr.data;
grid = BKE_volume_grid_openvdb_for_read(volume, volume_grid);
if (unload) {
b_volume_grid.unload();
}
break;
}
}
#endif
#ifdef WITH_NANOVDB
switch (precision_) {
case BL::VolumeRender::precision_FULL:
precision = 32;
break;
case BL::VolumeRender::precision_HALF:
precision = 16;
break;
default:
case BL::VolumeRender::precision_VARIABLE:
precision = 0;
break;
}
#else
(void)precision_;
#endif
}
BL::Volume b_volume;
};
static void sync_volume_object(BL::BlendData &b_data,
BL::Scene &b_scene,
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
BObjectInfo &b_ob_info,
Scene *scene,
Volume *volume)
{
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
BL::Volume b_volume(b_ob_info.object_data);
b_volume.grids.load(b_data.ptr.data);
BL::VolumeRender b_render(b_volume.render());
volume->set_clipping(b_render.clipping());
volume->set_step_size(b_render.step_size());
volume->set_object_space((b_render.space() == BL::VolumeRender::space_OBJECT));
float velocity_scale = b_volume.velocity_scale();
if (b_volume.velocity_unit() == BL::Volume::velocity_unit_SECOND) {
/* Motion blur attribute is relative to seconds, we need it relative to frames. */
const bool need_motion = object_need_motion_attribute(b_ob_info, scene);
const float motion_scale = (need_motion) ?
scene->motion_shutter_time() /
(b_scene.render().fps() / b_scene.render().fps_base()) :
0.0f;
velocity_scale *= motion_scale;
}
volume->set_velocity_scale(velocity_scale);
/* Find grid with matching name. */
for (BL::VolumeGrid &b_grid : b_volume.grids) {
ustring name = ustring(b_grid.name());
AttributeStandard std = ATTR_STD_NONE;
if (name == Attribute::standard_name(ATTR_STD_VOLUME_DENSITY)) {
std = ATTR_STD_VOLUME_DENSITY;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_COLOR)) {
std = ATTR_STD_VOLUME_COLOR;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_FLAME)) {
std = ATTR_STD_VOLUME_FLAME;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_HEAT)) {
std = ATTR_STD_VOLUME_HEAT;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_TEMPERATURE)) {
std = ATTR_STD_VOLUME_TEMPERATURE;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_VELOCITY) ||
name == b_volume.velocity_grid())
{
std = ATTR_STD_VOLUME_VELOCITY;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_VELOCITY_X) ||
name == b_volume.velocity_x_grid())
{
std = ATTR_STD_VOLUME_VELOCITY_X;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_VELOCITY_Y) ||
name == b_volume.velocity_y_grid())
{
std = ATTR_STD_VOLUME_VELOCITY_Y;
}
else if (name == Attribute::standard_name(ATTR_STD_VOLUME_VELOCITY_Z) ||
name == b_volume.velocity_z_grid())
{
std = ATTR_STD_VOLUME_VELOCITY_Z;
}
if ((std != ATTR_STD_NONE && volume->need_attribute(scene, std)) ||
volume->need_attribute(scene, name))
{
Attribute *attr = (std != ATTR_STD_NONE) ?
volume->attributes.add(std) :
volume->attributes.add(name, TypeDesc::TypeFloat, ATTR_ELEMENT_VOXEL);
ImageLoader *loader = new BlenderVolumeLoader(
b_data, b_volume, name.string(), b_render.precision());
ImageParams params;
params.frame = b_volume.grids.frame();
attr->data_voxel() = scene->image_manager->add_image(loader, params, false);
}
}
}
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
void BlenderSync::sync_volume(BObjectInfo &b_ob_info, Volume *volume)
{
volume->clear(true);
if (view_layer.use_volumes) {
Geometry Nodes: support for geometry instancing Previously, the Point Instance node in geometry nodes could only instance existing objects or collections. The reason was that large parts of Blender worked under the assumption that objects are the main unit of instancing. Now we also want to instance geometry within an object, so a slightly larger refactor was necessary. This should not affect files that do not use the new kind of instances. The main change is a redefinition of what "instanced data" is. Now, an instances is a cow-object + object-data (the geometry). This can be nicely seen in `struct DupliObject`. This allows the same object to generate multiple geometries of different types which can be instanced individually. A nice side effect of this refactor is that having multiple geometry components is not a special case in the depsgraph object iterator anymore, because those components are integrated with the `DupliObject` system. Unfortunately, different systems that work with instances in Blender (e.g. render engines and exporters) often work under the assumption that objects are the main unit of instancing. So those have to be updated as well to be able to handle the new instances. This patch updates Cycles, EEVEE and other viewport engines. Exporters have not been updated yet. Some minimal (not master-ready) changes to update the obj and alembic exporters can be found in P2336 and P2335. Different file formats may want to handle these new instances in different ways. For users, the only thing that changed is that the Point Instance node now has a geometry mode. This also fixes T88454. Differential Revision: https://developer.blender.org/D11841
2021-09-06 18:22:24 +02:00
if (b_ob_info.object_data.is_a(&RNA_Volume)) {
/* Volume object. Create only attributes, bounding mesh will then
* be automatically generated later. */
sync_volume_object(b_data, b_scene, b_ob_info, scene, volume);
}
else {
/* Smoke domain. */
sync_smoke_volume(b_scene, scene, b_ob_info, volume, b_scene.frame_current());
}
}
/* Tag update. */
volume->tag_update(scene, true);
}
CCL_NAMESPACE_END