Externals: update fast_float to latest version (5.0.0) to fix some compile warnings

The library is used by OBJ/STL/PLY importers
This commit is contained in:
Aras Pranckevicius
2023-05-30 10:01:48 +03:00
parent 0272ab6cda
commit 1be9d9cb63
3 changed files with 417 additions and 476 deletions

View File

@@ -1,7 +1,7 @@
Project: fast_float
URL: https://github.com/fastfloat/fast_float
License: MIT
Upstream version: 4.0.0 (fbd5bd7, 2023 Mar 31)
Upstream version: 5.0.0 (f5a3e77, 2023 May 25)
Local modifications:
- Took only the fast_float.h header and the license/readme files

View File

@@ -1,4 +1,8 @@
## fast_float number parsing library: 4x faster than strtod
[![Fuzzing Status](https://oss-fuzz-build-logs.storage.googleapis.com/badges/fast_float.svg)](https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-opened&can=1&q=proj:fast_float)
[![VS17-CI](https://github.com/fastfloat/fast_float/actions/workflows/vs17-ci.yml/badge.svg)](https://github.com/fastfloat/fast_float/actions/workflows/vs17-ci.yml)
[![Ubuntu 22.04 CI (GCC 11)](https://github.com/fastfloat/fast_float/actions/workflows/ubuntu22.yml/badge.svg)](https://github.com/fastfloat/fast_float/actions/workflows/ubuntu22.yml)
The fast_float library provides fast header-only implementations for the C++ from_chars
functions for `float` and `double` types. These functions convert ASCII strings representing
@@ -93,6 +97,24 @@ constexpr double constexptest() {
}
```
## Non-ASCII Inputs
We also support UTF-16 and UTF-32 inputs, as well as ASCII/UTF-8, as in the following example:
``` C++
#include "fast_float/fast_float.h"
#include <iostream>
int main() {
const std::u16string input = u"3.1416 xyz ";
double result;
auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result);
if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
std::cout << "parsed the number " << result << std::endl;
return EXIT_SUCCESS;
}
```
## Using commas as decimal separator
@@ -257,7 +279,7 @@ under the Apache 2.0 license.
<sup>
Licensed under either of <a href="LICENSE-APACHE">Apache License, Version
2.0</a> or <a href="LICENSE-MIT">MIT license</a> at your option.
2.0</a> or <a href="LICENSE-MIT">MIT license</a> or <a href="LICENSE-BOOST">BOOST license</a> .
</sup>
<br>
@@ -265,5 +287,5 @@ Licensed under either of <a href="LICENSE-APACHE">Apache License, Version
<sub>
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in this repository by you, as defined in the Apache-2.0 license,
shall be dual licensed as above, without any additional terms or conditions.
shall be triple licensed as above, without any additional terms or conditions.
</sub>

View File

@@ -1,6 +1,7 @@
// fast_float by Daniel Lemire
// fast_float by João Paulo Magalhaes
//
//
// with contributions from Eugene Golushkov
// with contributions from Maksim Kita
// with contributions from Marcin Wojdyr
@@ -8,9 +9,10 @@
// with contributions from Tim Paine
// with contributions from Fabio Pellacini
// with contributions from Lénárd Szolnoki
// with contributions from Jan Pharago//
//
// Licensed under the Apache License, Version 2.0, or the
// MIT License at your option. This file may not be copied,
// MIT License or the Boost License. This file may not be copied,
// modified, or distributed except according to those terms.
//
// MIT License Notice
@@ -57,6 +59,32 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
//
// BOOST License Notice
//
// Boost Software License - Version 1.0 - August 17th, 2003
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
@@ -74,13 +102,13 @@
#define FASTFLOAT_CONSTEXPR14
#endif
#if __cpp_lib_bit_cast >= 201806L
#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
#define FASTFLOAT_HAS_BIT_CAST 1
#else
#define FASTFLOAT_HAS_BIT_CAST 0
#endif
#if __cpp_lib_is_constant_evaluated >= 201811L
#if defined(__cpp_lib_is_constant_evaluated) && __cpp_lib_is_constant_evaluated >= 201811L
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
#else
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
@@ -99,72 +127,6 @@
#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#ifndef FASTFLOAT_FAST_FLOAT_H
#define FASTFLOAT_FAST_FLOAT_H
#include <system_error>
namespace fast_float {
enum chars_format {
scientific = 1<<0,
fixed = 1<<2,
hex = 1<<3,
general = fixed | scientific
};
struct from_chars_result {
const char *ptr;
std::errc ec;
};
struct parse_options {
constexpr explicit parse_options(chars_format fmt = chars_format::general,
char dot = '.')
: format(fmt), decimal_point(dot) {}
/** Which number formats are accepted */
chars_format format;
/** The character used as decimal point */
char decimal_point;
};
/**
* This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
* a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale.
* The resulting floating-point value is the closest floating-point values (using either float or double),
* using the "round to even" convention for values that would otherwise fall right in-between two values.
* That is, we provide exact parsing according to the IEEE standard.
*
* Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
* parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
* `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
*
* The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
*
* Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
* the type `fast_float::chars_format`. It is a bitset value: we check whether
* `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
* to determine whether we allow the fixed point and scientific notation respectively.
* The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
*/
template<typename T>
FASTFLOAT_CONSTEXPR20
from_chars_result from_chars(const char *first, const char *last,
T &value, chars_format fmt = chars_format::general) noexcept;
/**
* Like from_chars, but accepts an `options` argument to govern number parsing.
*/
template<typename T>
FASTFLOAT_CONSTEXPR20
from_chars_result from_chars_advanced(const char *first, const char *last,
T &value, parse_options options) noexcept;
} // namespace fast_float
#endif // FASTFLOAT_FAST_FLOAT_H
#ifndef FASTFLOAT_FLOAT_COMMON_H
#define FASTFLOAT_FLOAT_COMMON_H
@@ -173,6 +135,39 @@ from_chars_result from_chars_advanced(const char *first, const char *last,
#include <cassert>
#include <cstring>
#include <type_traits>
#include <system_error>
namespace fast_float {
enum chars_format {
scientific = 1 << 0,
fixed = 1 << 2,
hex = 1 << 3,
general = fixed | scientific
};
template <typename UC>
struct from_chars_result_t {
UC const* ptr;
std::errc ec;
};
using from_chars_result = from_chars_result_t<char>;
template <typename UC>
struct parse_options_t {
constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
UC dot = UC('.'))
: format(fmt), decimal_point(dot) {}
/** Which number formats are accepted */
chars_format format;
/** The character used as decimal point */
UC decimal_point;
};
using parse_options = parse_options_t<char>;
}
#if FASTFLOAT_HAS_BIT_CAST
#include <bit>
@@ -273,11 +268,12 @@ fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() {
}
// Compares two ASCII strings in a case insensitive manner.
template <typename UC>
inline FASTFLOAT_CONSTEXPR14 bool
fastfloat_strncasecmp(const char *input1, const char *input2, size_t length) {
fastfloat_strncasecmp(UC const * input1, UC const * input2, size_t length) {
char running_diff{0};
for (size_t i = 0; i < length; i++) {
running_diff |= (input1[i] ^ input2[i]);
for (size_t i = 0; i < length; ++i) {
running_diff |= (char(input1[i]) ^ char(input2[i]));
}
return (running_diff == 0) || (running_diff == 32);
}
@@ -418,16 +414,43 @@ struct adjusted_mantissa {
// Bias so we can get the real exponent with an invalid adjusted_mantissa.
constexpr static int32_t invalid_am_bias = -0x8000;
constexpr static double powers_of_ten_double[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
constexpr static float powers_of_ten_float[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
// used for max_mantissa_double and max_mantissa_float
// used for binary_format_lookup_tables<T>::max_mantissa
constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
// Largest integer value v so that (5**index * v) <= 1<<53.
// 0x10000000000000 == 1 << 53
constexpr static uint64_t max_mantissa_double[] = {
template <typename T, typename U = void>
struct binary_format_lookup_tables;
template <typename T> struct binary_format : binary_format_lookup_tables<T> {
using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
static inline constexpr int mantissa_explicit_bits();
static inline constexpr int minimum_exponent();
static inline constexpr int infinite_power();
static inline constexpr int sign_index();
static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int max_exponent_fast_path();
static inline constexpr int max_exponent_round_to_even();
static inline constexpr int min_exponent_round_to_even();
static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int largest_power_of_ten();
static inline constexpr int smallest_power_of_ten();
static inline constexpr T exact_power_of_ten(int64_t power);
static inline constexpr size_t max_digits();
static inline constexpr equiv_uint exponent_mask();
static inline constexpr equiv_uint mantissa_mask();
static inline constexpr equiv_uint hidden_bit_mask();
};
template <typename U>
struct binary_format_lookup_tables<double, U> {
static constexpr double powers_of_ten[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
// Largest integer value v so that (5**index * v) <= 1<<53.
// 0x10000000000000 == 1 << 53
static constexpr uint64_t max_mantissa[] = {
0x10000000000000,
0x10000000000000 / 5,
0x10000000000000 / (5 * 5),
@@ -452,44 +475,42 @@ constexpr static uint64_t max_mantissa_double[] = {
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5),
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5)};
};
template <typename U>
constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];
template <typename U>
constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];
template <typename U>
struct binary_format_lookup_tables<float, U> {
static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
// Largest integer value v so that (5**index * v) <= 1<<24.
// 0x1000000 == 1<<24
constexpr static uint64_t max_mantissa_float[] = {
0x1000000,
0x1000000 / 5,
0x1000000 / (5 * 5),
0x1000000 / (5 * 5 * 5),
0x1000000 / (5 * 5 * 5 * 5),
0x1000000 / (constant_55555),
0x1000000 / (constant_55555 * 5),
0x1000000 / (constant_55555 * 5 * 5),
0x1000000 / (constant_55555 * 5 * 5 * 5),
0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
0x1000000 / (constant_55555 * constant_55555),
0x1000000 / (constant_55555 * constant_55555 * 5)};
template <typename T> struct binary_format {
using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
static inline constexpr int mantissa_explicit_bits();
static inline constexpr int minimum_exponent();
static inline constexpr int infinite_power();
static inline constexpr int sign_index();
static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int max_exponent_fast_path();
static inline constexpr int max_exponent_round_to_even();
static inline constexpr int min_exponent_round_to_even();
static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
static inline constexpr int largest_power_of_ten();
static inline constexpr int smallest_power_of_ten();
static inline constexpr T exact_power_of_ten(int64_t power);
static inline constexpr size_t max_digits();
static inline constexpr equiv_uint exponent_mask();
static inline constexpr equiv_uint mantissa_mask();
static inline constexpr equiv_uint hidden_bit_mask();
static constexpr uint64_t max_mantissa[] = {
0x1000000,
0x1000000 / 5,
0x1000000 / (5 * 5),
0x1000000 / (5 * 5 * 5),
0x1000000 / (5 * 5 * 5 * 5),
0x1000000 / (constant_55555),
0x1000000 / (constant_55555 * 5),
0x1000000 / (constant_55555 * 5 * 5),
0x1000000 / (constant_55555 * 5 * 5 * 5),
0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
0x1000000 / (constant_55555 * constant_55555),
0x1000000 / (constant_55555 * constant_55555 * 5)};
};
template <typename U>
constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];
template <typename U>
constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];
template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return 0;
@@ -552,6 +573,7 @@ template <> inline constexpr int binary_format<double>::max_exponent_fast_path()
template <> inline constexpr int binary_format<float>::max_exponent_fast_path() {
return 10;
}
template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
@@ -559,7 +581,8 @@ template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_p
// caller is responsible to ensure that
// power >= 0 && power <= 22
//
return max_mantissa_double[power];
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)max_mantissa[0], max_mantissa[power];
}
template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
@@ -568,17 +591,19 @@ template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_pa
// caller is responsible to ensure that
// power >= 0 && power <= 10
//
return max_mantissa_float[power];
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)max_mantissa[0], max_mantissa[power];
}
template <>
inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
return powers_of_ten_double[power];
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)powers_of_ten[0], powers_of_ten[power];
}
template <>
inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
return powers_of_ten_float[power];
// Work around clang bug https://godbolt.org/z/zedh7rrhc
return (void)powers_of_ten[0], powers_of_ten[power];
}
@@ -648,7 +673,7 @@ void to_float(bool negative, adjusted_mantissa am, T &value) {
#endif
}
#if FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
template <typename = void>
struct space_lut {
static constexpr bool value[] = {
@@ -670,10 +695,113 @@ constexpr bool space_lut<T>::value[];
inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
#endif
template<typename UC>
static constexpr uint64_t int_cmp_zeros()
{
static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), "Unsupported character size");
return (sizeof(UC) == 1) ? 0x3030303030303030 : (sizeof(UC) == 2) ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | uint64_t(UC('0')) << 16 | UC('0')) : (uint64_t(UC('0')) << 32 | UC('0'));
}
template<typename UC>
static constexpr int int_cmp_len()
{
return sizeof(uint64_t) / sizeof(UC);
}
template<typename UC>
static constexpr UC const * str_const_nan()
{
return nullptr;
}
template<>
constexpr char const * str_const_nan<char>()
{
return "nan";
}
template<>
constexpr wchar_t const * str_const_nan<wchar_t>()
{
return L"nan";
}
template<>
constexpr char16_t const * str_const_nan<char16_t>()
{
return u"nan";
}
template<>
constexpr char32_t const * str_const_nan<char32_t>()
{
return U"nan";
}
template<typename UC>
static constexpr UC const * str_const_inf()
{
return nullptr;
}
template<>
constexpr char const * str_const_inf<char>()
{
return "infinity";
}
template<>
constexpr wchar_t const * str_const_inf<wchar_t>()
{
return L"infinity";
}
template<>
constexpr char16_t const * str_const_inf<char16_t>()
{
return u"infinity";
}
template<>
constexpr char32_t const * str_const_inf<char32_t>()
{
return U"infinity";
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_FAST_FLOAT_H
#define FASTFLOAT_FAST_FLOAT_H
namespace fast_float {
/**
* This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
* a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale.
* The resulting floating-point value is the closest floating-point values (using either float or double),
* using the "round to even" convention for values that would otherwise fall right in-between two values.
* That is, we provide exact parsing according to the IEEE standard.
*
* Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
* parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
* `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
*
* The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
*
* Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
* the type `fast_float::chars_format`. It is a bitset value: we check whether
* `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
* to determine whether we allow the fixed point and scientific notation respectively.
* The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
*/
template<typename T, typename UC = char>
FASTFLOAT_CONSTEXPR20
from_chars_result_t<UC> from_chars(UC const * first, UC const * last,
T &value, chars_format fmt = chars_format::general) noexcept;
/**
* Like from_chars, but accepts an `options` argument to govern number parsing.
*/
template<typename T, typename UC = char>
FASTFLOAT_CONSTEXPR20
from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
T &value, parse_options_t<UC> options) noexcept;
} // namespace fast_float
#endif // FASTFLOAT_FAST_FLOAT_H
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H
@@ -687,8 +815,9 @@ namespace fast_float {
// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
fastfloat_really_inline constexpr bool is_integer(char c) noexcept {
return c >= '0' && c <= '9';
template <typename UC>
fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
return !(c > UC('9') || c < UC('0'));
}
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
@@ -750,6 +879,16 @@ uint32_t parse_eight_digits_unrolled(uint64_t val) {
return uint32_t(val);
}
fastfloat_really_inline constexpr
uint32_t parse_eight_digits_unrolled(const char16_t *) noexcept {
return 0;
}
fastfloat_really_inline constexpr
uint32_t parse_eight_digits_unrolled(const char32_t *) noexcept {
return 0;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint32_t parse_eight_digits_unrolled(const char *chars) noexcept {
return parse_eight_digits_unrolled(read_u64(chars));
@@ -761,40 +900,51 @@ fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val
0x8080808080808080));
}
fastfloat_really_inline constexpr
bool is_made_of_eight_digits_fast(const char16_t *) noexcept {
return false;
}
fastfloat_really_inline constexpr
bool is_made_of_eight_digits_fast(const char32_t *) noexcept {
return false;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool is_made_of_eight_digits_fast(const char *chars) noexcept {
return is_made_of_eight_digits_fast(read_u64(chars));
}
typedef span<const char> byte_span;
struct parsed_number_string {
template <typename UC>
struct parsed_number_string_t {
int64_t exponent{0};
uint64_t mantissa{0};
const char *lastmatch{nullptr};
UC const * lastmatch{nullptr};
bool negative{false};
bool valid{false};
bool too_many_digits{false};
// contains the range of the significant digits
byte_span integer{}; // non-nullable
byte_span fraction{}; // nullable
span<const UC> integer{}; // non-nullable
span<const UC> fraction{}; // nullable
};
using byte_span = span<char>;
using parsed_number_string = parsed_number_string_t<char>;
// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
const chars_format fmt = options.format;
const char decimal_point = options.decimal_point;
parsed_number_string_t<UC> parse_number_string(UC const *p, UC const * pend, parse_options_t<UC> options) noexcept {
chars_format const fmt = options.format;
UC const decimal_point = options.decimal_point;
parsed_number_string answer;
parsed_number_string_t<UC> answer;
answer.valid = false;
answer.too_many_digits = false;
answer.negative = (*p == '-');
#if FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if ((*p == '-') || (*p == '+')) {
answer.negative = (*p == UC('-'));
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if ((*p == UC('-')) || (*p == UC('+'))) {
#else
if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
#endif
++p;
if (p == pend) {
@@ -804,7 +954,7 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_
return answer;
}
}
const char *const start_digits = p;
UC const * const start_digits = p;
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
@@ -812,29 +962,31 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i +
uint64_t(*p - '0'); // might overflow, we will handle the overflow later
uint64_t(*p - UC('0')); // might overflow, we will handle the overflow later
++p;
}
const char *const end_of_integer_part = p;
UC const * const end_of_integer_part = p;
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
answer.integer = byte_span(start_digits, size_t(digit_count));
answer.integer = span<const UC>(start_digits, size_t(digit_count));
int64_t exponent = 0;
if ((p != pend) && (*p == decimal_point)) {
++p;
const char* before = p;
UC const * before = p;
// can occur at most twice without overflowing, but let it occur more, since
// for integers with many digits, digit parsing is the primary bottleneck.
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
if (std::is_same<UC,char>::value) {
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
}
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
uint8_t digit = uint8_t(*p - UC('0'));
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
}
exponent = before - p;
answer.fraction = byte_span(before, size_t(p - before));
answer.fraction = span<const UC>(before, size_t(p - before));
digit_count -= exponent;
}
// we must have encountered at least one integer!
@@ -842,14 +994,14 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_
return answer;
}
int64_t exp_number = 0; // explicit exponential part
if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) {
const char * location_of_e = p;
if ((fmt & chars_format::scientific) && (p != pend) && ((UC('e') == *p) || (UC('E') == *p))) {
UC const * location_of_e = p;
++p;
bool neg_exp = false;
if ((p != pend) && ('-' == *p)) {
if ((p != pend) && (UC('-') == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
} else if ((p != pend) && (UC('+') == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
++p;
}
if ((p == pend) || !is_integer(*p)) {
@@ -861,7 +1013,7 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_
p = location_of_e;
} else {
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
uint8_t digit = uint8_t(*p - UC('0'));
if (exp_number < 0x10000000) {
exp_number = 10 * exp_number + digit;
}
@@ -887,9 +1039,9 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_
// We have to handle the case where we have 0.0000somenumber.
// We need to be mindful of the case where we only have zeroes...
// E.g., 0.000000000...000.
const char *start = start_digits;
while ((start != pend) && (*start == '0' || *start == decimal_point)) {
if(*start == '0') { digit_count --; }
UC const * start = start_digits;
while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
if(*start == UC('0')) { digit_count --; }
start++;
}
if (digit_count > 19) {
@@ -899,19 +1051,19 @@ parsed_number_string parse_number_string(const char *p, const char *pend, parse_
// pre-tokenized spans from above.
i = 0;
p = answer.integer.ptr;
const char* int_end = p + answer.integer.len();
UC const * int_end = p + answer.integer.len();
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
i = i * 10 + uint64_t(*p - '0');
i = i * 10 + uint64_t(*p - UC('0'));
++p;
}
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
exponent = end_of_integer_part - p + exp_number;
} else { // We have a value with a fractional component.
p = answer.fraction.ptr;
const char* frac_end = p + answer.fraction.len();
UC const * frac_end = p + answer.fraction.len();
while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
i = i * 10 + uint64_t(*p - '0');
i = i * 10 + uint64_t(*p - UC('0'));
++p;
}
exponent = answer.fraction.ptr - p + exp_number;
@@ -2434,260 +2586,6 @@ struct bigint : pow5_tables<> {
#endif
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H
#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
namespace fast_float {
// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
fastfloat_really_inline constexpr bool is_integer(char c) noexcept {
return c >= '0' && c <= '9';
}
fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
return (val & 0xFF00000000000000) >> 56
| (val & 0x00FF000000000000) >> 40
| (val & 0x0000FF0000000000) >> 24
| (val & 0x000000FF00000000) >> 8
| (val & 0x00000000FF000000) << 8
| (val & 0x0000000000FF0000) << 24
| (val & 0x000000000000FF00) << 40
| (val & 0x00000000000000FF) << 56;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint64_t read_u64(const char *chars) {
if (cpp20_and_in_constexpr()) {
uint64_t val = 0;
for(int i = 0; i < 8; ++i) {
val |= uint64_t(*chars) << (i*8);
++chars;
}
return val;
}
uint64_t val;
::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
return val;
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
void write_u64(uint8_t *chars, uint64_t val) {
if (cpp20_and_in_constexpr()) {
for(int i = 0; i < 8; ++i) {
*chars = uint8_t(val);
val >>= 8;
++chars;
}
return;
}
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
::memcpy(chars, &val, sizeof(uint64_t));
}
// credit @aqrit
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
uint32_t parse_eight_digits_unrolled(uint64_t val) {
const uint64_t mask = 0x000000FF000000FF;
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
val -= 0x3030303030303030;
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
return uint32_t(val);
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
uint32_t parse_eight_digits_unrolled(const char *chars) noexcept {
return parse_eight_digits_unrolled(read_u64(chars));
}
// credit @aqrit
fastfloat_really_inline constexpr bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
0x8080808080808080));
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool is_made_of_eight_digits_fast(const char *chars) noexcept {
return is_made_of_eight_digits_fast(read_u64(chars));
}
typedef span<const char> byte_span;
struct parsed_number_string {
int64_t exponent{0};
uint64_t mantissa{0};
const char *lastmatch{nullptr};
bool negative{false};
bool valid{false};
bool too_many_digits{false};
// contains the range of the significant digits
byte_span integer{}; // non-nullable
byte_span fraction{}; // nullable
};
// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
const chars_format fmt = options.format;
const char decimal_point = options.decimal_point;
parsed_number_string answer;
answer.valid = false;
answer.too_many_digits = false;
answer.negative = (*p == '-');
#if FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if ((*p == '-') || (*p == '+')) {
#else
if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
#endif
++p;
if (p == pend) {
return answer;
}
if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
return answer;
}
}
const char *const start_digits = p;
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i +
uint64_t(*p - '0'); // might overflow, we will handle the overflow later
++p;
}
const char *const end_of_integer_part = p;
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
answer.integer = byte_span(start_digits, size_t(digit_count));
int64_t exponent = 0;
if ((p != pend) && (*p == decimal_point)) {
++p;
const char* before = p;
// can occur at most twice without overflowing, but let it occur more, since
// for integers with many digits, digit parsing is the primary bottleneck.
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
}
exponent = before - p;
answer.fraction = byte_span(before, size_t(p - before));
digit_count -= exponent;
}
// we must have encountered at least one integer!
if (digit_count == 0) {
return answer;
}
int64_t exp_number = 0; // explicit exponential part
if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) {
const char * location_of_e = p;
++p;
bool neg_exp = false;
if ((p != pend) && ('-' == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
++p;
}
if ((p == pend) || !is_integer(*p)) {
if(!(fmt & chars_format::fixed)) {
// We are in error.
return answer;
}
// Otherwise, we will be ignoring the 'e'.
p = location_of_e;
} else {
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
if (exp_number < 0x10000000) {
exp_number = 10 * exp_number + digit;
}
++p;
}
if(neg_exp) { exp_number = - exp_number; }
exponent += exp_number;
}
} else {
// If it scientific and not fixed, we have to bail out.
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
}
answer.lastmatch = p;
answer.valid = true;
// If we frequently had to deal with long strings of digits,
// we could extend our code by using a 128-bit integer instead
// of a 64-bit integer. However, this is uncommon.
//
// We can deal with up to 19 digits.
if (digit_count > 19) { // this is uncommon
// It is possible that the integer had an overflow.
// We have to handle the case where we have 0.0000somenumber.
// We need to be mindful of the case where we only have zeroes...
// E.g., 0.000000000...000.
const char *start = start_digits;
while ((start != pend) && (*start == '0' || *start == decimal_point)) {
if(*start == '0') { digit_count --; }
start++;
}
if (digit_count > 19) {
answer.too_many_digits = true;
// Let us start again, this time, avoiding overflows.
// We don't need to check if is_integer, since we use the
// pre-tokenized spans from above.
i = 0;
p = answer.integer.ptr;
const char* int_end = p + answer.integer.len();
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
exponent = end_of_integer_part - p + exp_number;
} else { // We have a value with a fractional component.
p = answer.fraction.ptr;
const char* frac_end = p + answer.fraction.len();
while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
exponent = answer.fraction.ptr - p + exp_number;
}
// We have now corrected both exponent and i, to a truncated value
}
}
answer.exponent = exponent;
answer.mantissa = i;
return answer;
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H
@@ -2710,8 +2608,9 @@ constexpr static uint64_t powers_of_ten_uint64[] = {
// this algorithm is not even close to optimized, but it has no practical
// effect on performance: in order to have a faster algorithm, we'd need
// to slow down performance for faster algorithms, and this is still fast.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
int32_t scientific_exponent(parsed_number_string& num) noexcept {
int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept {
uint64_t mantissa = num.mantissa;
int32_t exponent = int32_t(num.exponent);
while (mantissa >= 10000) {
@@ -2840,19 +2739,19 @@ void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
}
am.power2 += shift;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
void skip_zeros(const char*& first, const char* last) noexcept {
void skip_zeros(UC const * & first, UC const * last) noexcept {
uint64_t val;
while (!cpp20_and_in_constexpr() && std::distance(first, last) >= 8) {
while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != 0x3030303030303030) {
if (val != int_cmp_zeros<UC>()) {
break;
}
first += 8;
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != '0') {
if (*first != UC('0')) {
break;
}
first++;
@@ -2861,29 +2760,40 @@ void skip_zeros(const char*& first, const char* last) noexcept {
// determine if any non-zero digits were truncated.
// all characters must be valid digits.
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool is_truncated(const char* first, const char* last) noexcept {
bool is_truncated(UC const * first, UC const * last) noexcept {
// do 8-bit optimizations, can just compare to 8 literal 0s.
uint64_t val;
while (!cpp20_and_in_constexpr() && std::distance(first, last) >= 8) {
while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != 0x3030303030303030) {
if (val != int_cmp_zeros<UC>()) {
return true;
}
first += 8;
first += int_cmp_len<UC>();
}
while (first != last) {
if (*first != '0') {
if (*first != UC('0')) {
return true;
}
first++;
++first;
}
return false;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool is_truncated(span<const UC> s) noexcept {
return is_truncated(s.ptr, s.ptr + s.len());
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
bool is_truncated(byte_span s) noexcept {
return is_truncated(s.ptr, s.ptr + s.len());
void parse_eight_digits(const char16_t*& , limb& , size_t& , size_t& ) noexcept {
// currently unused
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
void parse_eight_digits(const char32_t*& , limb& , size_t& , size_t& ) noexcept {
// currently unused
}
fastfloat_really_inline FASTFLOAT_CONSTEXPR20
@@ -2894,9 +2804,10 @@ void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& co
count += 8;
}
template <typename UC>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14
void parse_one_digit(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
value = value * 10 + limb(*p - '0');
void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept {
value = value * 10 + limb(*p - UC('0'));
p++;
counter++;
count++;
@@ -2917,8 +2828,9 @@ void round_up_bigint(bigint& big, size_t& count) noexcept {
}
// parse the significant digits into a big integer
template <typename UC>
inline FASTFLOAT_CONSTEXPR20
void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits, size_t& digits) noexcept {
void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_digits, size_t& digits) noexcept {
// try to minimize the number of big integer and scalar multiplication.
// therefore, try to parse 8 digits at a time, and multiply by the largest
// scalar value (9 or 19 digits) for each step.
@@ -2932,13 +2844,15 @@ void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits
#endif
// process all integer digits.
const char* p = num.integer.ptr;
const char* pend = p + num.integer.len();
UC const * p = num.integer.ptr;
UC const * pend = p + num.integer.len();
skip_zeros(p, pend);
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
if (std::is_same<UC,char>::value) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
@@ -2970,8 +2884,10 @@ void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits
}
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
if (std::is_same<UC,char>::value) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
@@ -3082,9 +2998,9 @@ adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int
// `b` as a big-integer type, scaled to the same binary exponent as
// the actual digits. we then compare the big integer representations
// of both, and use that to direct rounding.
template <typename T>
template <typename T, typename UC>
inline FASTFLOAT_CONSTEXPR20
adjusted_mantissa digit_comp(parsed_number_string& num, adjusted_mantissa am) noexcept {
adjusted_mantissa digit_comp(parsed_number_string_t<UC>& num, adjusted_mantissa am) noexcept {
// remove the invalid exponent bias
am.power2 -= invalid_am_bias;
@@ -3124,41 +3040,41 @@ namespace detail {
* The case comparisons could be made much faster given that we know that the
* strings a null-free and fixed.
**/
template <typename T>
from_chars_result FASTFLOAT_CONSTEXPR14
parse_infnan(const char *first, const char *last, T &value) noexcept {
from_chars_result answer{};
template <typename T, typename UC>
from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14
parse_infnan(UC const * first, UC const * last, T &value) noexcept {
from_chars_result_t<UC> answer{};
answer.ptr = first;
answer.ec = std::errc(); // be optimistic
bool minusSign = false;
if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
if (*first == UC('-')) { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
minusSign = true;
++first;
}
#if FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if (*first == '+') {
#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
if (*first == UC('+')) {
++first;
}
#endif
if (last - first >= 3) {
if (fastfloat_strncasecmp(first, "nan", 3)) {
if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
answer.ptr = (first += 3);
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
if(first != last && *first == '(') {
for(const char* ptr = first + 1; ptr != last; ++ptr) {
if (*ptr == ')') {
if(first != last && *first == UC('(')) {
for(UC const * ptr = first + 1; ptr != last; ++ptr) {
if (*ptr == UC(')')) {
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
break;
}
else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_'))
else if(!((UC('a') <= *ptr && *ptr <= UC('z')) || (UC('A') <= *ptr && *ptr <= UC('Z')) || (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
break; // forbidden char, not nan(n-char-seq-opt)
}
}
return answer;
}
if (fastfloat_strncasecmp(first, "inf", 3)) {
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) {
if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
answer.ptr = first + 8;
} else {
answer.ptr = first + 3;
@@ -3214,7 +3130,7 @@ fastfloat_really_inline bool rounds_to_nearest() noexcept {
//
// Note: This may fail to be accurate if fast-math has been
// enabled, as rounding conventions may not apply.
#if FASTFLOAT_VISUAL_STUDIO
#ifdef FASTFLOAT_VISUAL_STUDIO
# pragma warning(push)
// todo: is there a VS warning?
// see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
@@ -3226,7 +3142,7 @@ fastfloat_really_inline bool rounds_to_nearest() noexcept {
# pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
return (fmini + 1.0f == 1.0f - fmini);
#if FASTFLOAT_VISUAL_STUDIO
#ifdef FASTFLOAT_VISUAL_STUDIO
# pragma warning(pop)
#elif defined(__clang__)
# pragma clang diagnostic pop
@@ -3237,23 +3153,26 @@ fastfloat_really_inline bool rounds_to_nearest() noexcept {
} // namespace detail
template<typename T>
template<typename T, typename UC>
FASTFLOAT_CONSTEXPR20
from_chars_result from_chars(const char *first, const char *last,
from_chars_result_t<UC> from_chars(UC const * first, UC const * last,
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
return from_chars_advanced(first, last, value, parse_options{fmt});
return from_chars_advanced(first, last, value, parse_options_t<UC>{fmt});
}
template<typename T>
template<typename T, typename UC>
FASTFLOAT_CONSTEXPR20
from_chars_result from_chars_advanced(const char *first, const char *last,
T &value, parse_options options) noexcept {
from_chars_result_t<UC> from_chars_advanced(UC const * first, UC const * last,
T &value, parse_options_t<UC> options) noexcept {
static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");
static_assert (std::is_same<UC, char>::value ||
std::is_same<UC, wchar_t>::value ||
std::is_same<UC, char16_t>::value ||
std::is_same<UC, char32_t>::value , "only char, wchar_t, char16_t and char32_t are supported");
from_chars_result answer;
#if FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
from_chars_result_t<UC> answer;
#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
while ((first != last) && fast_float::is_space(uint8_t(*first))) {
first++;
}
@@ -3263,7 +3182,7 @@ from_chars_result from_chars_advanced(const char *first, const char *last,
answer.ptr = first;
return answer;
}
parsed_number_string pns = parse_number_string(first, last, options);
parsed_number_string_t<UC> pns = parse_number_string<UC>(first, last, options);
if (!pns.valid) {
return detail::parse_infnan(first, last, value);
}