diff --git a/intern/cycles/kernel/light/triangle.h b/intern/cycles/kernel/light/triangle.h index 418497f3497..0e580b1653f 100644 --- a/intern/cycles/kernel/light/triangle.h +++ b/intern/cycles/kernel/light/triangle.h @@ -72,18 +72,13 @@ ccl_device_forceinline float triangle_light_pdf(KernelGlobals kg, /* sd contains the point on the light source * calculate Px, the point that we're shading */ const float3 Px = sd->P + sd->wi * t; - const float3 v0_p = V[0] - Px; - const float3 v1_p = V[1] - Px; - const float3 v2_p = V[2] - Px; - const float3 u01 = safe_normalize(cross(v0_p, v1_p)); - const float3 u02 = safe_normalize(cross(v0_p, v2_p)); - const float3 u12 = safe_normalize(cross(v1_p, v2_p)); + const float3 A = safe_normalize(V[0] - Px); + const float3 B = safe_normalize(V[1] - Px); + const float3 C = safe_normalize(V[2] - Px); - const float alpha = fast_acosf(dot(u02, u01)); - const float beta = fast_acosf(-dot(u01, u12)); - const float gamma = fast_acosf(dot(u02, u12)); - const float solid_angle = alpha + beta + gamma - M_PI_F; + const float solid_angle = 2.0f * fast_atanf(fabsf(dot(A, cross(B, C))) / + (1.0f + dot(B, C) + dot(A, C) + dot(A, B))); /* distribution_pdf_triangles is calculated over triangle area, but we're not sampling over * its area */ @@ -160,59 +155,42 @@ ccl_device_forceinline bool triangle_light_sample(KernelGlobals kg, float distance_to_plane = fabsf(dot(N0, V[0] - P) / dot(N0, N0)); if (!in_volume_segment && (longest_edge_squared > distance_to_plane * distance_to_plane)) { - /* see James Arvo, "Stratified Sampling of Spherical Triangles" + /* A modified version of James Arvo, "Stratified Sampling of Spherical Triangles" * http://www.graphics.cornell.edu/pubs/1995/Arv95c.pdf */ - /* project the triangle to the unit sphere - * and calculate its edges and angles */ - const float3 v0_p = V[0] - P; - const float3 v1_p = V[1] - P; - const float3 v2_p = V[2] - P; + /* Project the triangle to the unit sphere and calculate the three unit vector that spans the + * spherical triangle. */ + const float3 A = safe_normalize(V[0] - P); + const float3 B = safe_normalize(V[1] - P); + const float3 C = safe_normalize(V[2] - P); - const float3 u01 = safe_normalize(cross(v0_p, v1_p)); - const float3 u02 = safe_normalize(cross(v0_p, v2_p)); - const float3 u12 = safe_normalize(cross(v1_p, v2_p)); - - const float3 A = safe_normalize(v0_p); - const float3 B = safe_normalize(v1_p); - const float3 C = safe_normalize(v2_p); - - const float cos_alpha = dot(u02, u01); - const float cos_beta = -dot(u01, u12); - const float cos_gamma = dot(u02, u12); - - /* calculate dihedral angles */ - const float alpha = fast_acosf(cos_alpha); - const float beta = fast_acosf(cos_beta); - const float gamma = fast_acosf(cos_gamma); - /* the area of the unit spherical triangle = solid angle */ - const float solid_angle = alpha + beta + gamma - M_PI_F; - - /* precompute a few things - * these could be re-used to take several samples - * as they are independent of `rand` */ + const float cos_a = dot(B, C); + const float cos_b = dot(A, C); const float cos_c = dot(A, B); - const float sin_alpha = fast_sinf(alpha); - const float product = sin_alpha * cos_c; + const float sin_b_sin_c_2 = (1.0f - sqr(cos_b)) * (1.0f - sqr(cos_c)); - /* Select a random sub-area of the spherical triangle - * and calculate the third vertex C_ of that new triangle */ - const float phi = rand.x * solid_angle - alpha; - float s, t; - fast_sincosf(phi, &s, &t); - const float u = t - cos_alpha; - const float v = s + product; + const float mixed_product = fabsf(dot(A, cross(B, C))); - const float3 U = safe_normalize(C - dot(C, A) * A); + /* The area of the spherical triangle is equal to the subtended solid angle. */ + const float solid_angle = 2.0f * fast_atanf(mixed_product / (1.0f + cos_a + cos_b + cos_c)); - float q = 1.0f; - const float det = ((v * s + u * t) * sin_alpha); - if (det != 0.0f) { - q = ((v * t - u * s) * cos_alpha - v) / det; - } - const float temp = max(1.0f - q * q, 0.0f); + /* Select a random sub-area of the spherical triangle and calculate the third vertex C_ of that + * new triangle. */ + const float A_hat = rand.x * solid_angle; + float sin_A_hat, cos_A_hat; + fast_sincosf(A_hat, &sin_A_hat, &cos_A_hat); - const float3 C_ = safe_normalize(q * A + sqrtf(temp) * U); + /* These values lack a `sin_b * sin_c` factor, will divide when computing `temp`. */ + const float cos_alpha = cos_a - cos_b * cos_c; + const float sin_alpha = mixed_product; + const float t = cos_A_hat * cos_alpha + sin_A_hat * sin_alpha; + + const float temp = (cos_c - 1.0f) * t * cos_alpha / sin_b_sin_c_2; + + const float q = (cos_A_hat - cos_c + temp) / (1.0f - cos_A_hat * cos_c + temp); + + const float3 U = safe_normalize(C - cos_b * A); + const float3 C_ = safe_normalize(q * A + sin_from_cos(q) * U); /* Finally, select a random point along the edge of the new triangle * That point on the spherical triangle is the sampled ray direction */