Guide the probability to scatter in or transmit through the volume.
Only applied for primary rays.
Co-authored-by: Brecht Van Lommel <brecht@blender.org>
Unlike OpenGL and Metal, this handle is not shared, but rather Cycles
has to take ownership of it. This required a fair amount of refactoring
to ensure the handle is closed, ownership is properly transferred, and
the handle is recreated once when the pixel buffer is modified.
In detail:
- Direct accesses of state attributes are replaced with the INTEGRATOR_STATE and INTEGRATOR_STATE_WRITE macros.
- Unified the checks for the __PATH_GUIDING define to use # if defined (__PATH_GUIDING__).
- Even if __PATH_GUIDING__ is defined, we now check if the feature is enabled using if ((kernel_data.kernel_features & KERNEL_FEATURE_PATH_GUIDING)) {. This is important for later GPU ports.
- The kernel usage of the guiding field, surface, and volume sampling distributions is wrapped behind macros for each specific device (atm only CPU). This will make it easier for a GPU port later.
* Add GraphicsInteropDevice to check if interop is possible with device
* Rename GraphcisInterop to GraphicsInteropBuffer
* Include display device type and memory size in GraphicsInteropBuffer
* Unnest graphics interop class to make forward declarations possible
Pull Request: https://projects.blender.org/blender/blender/pulls/137363
Check was misc-const-correctness, combined with readability-isolate-declaration
as suggested by the docs.
Temporarily clang-format "QualifierAlignment: Left" was used to get consistency
with the prevailing order of keywords.
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
* Use .empty() and .data()
* Use nullptr instead of 0
* No else after return
* Simple class member initialization
* Add override for virtual methods
* Include C++ instead of C headers
* Remove some unused includes
* Use default constructors
* Always use braces
* Consistent names in definition and declaration
* Change typedef to using
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
Fix the unnecessary recreation of the denoiser that occurs if
Cycles had fallen back to an alternative denoiser in a previous
interation. (E.g. Fallback from OptiX to OIDN)
This issue occured because Cycles didn't understand that when it
previously setup the denoising device, that it had fallen back to
something else. So it thinks the denoising settings have been changes
and tries to recreate the denoiser.
The solution is to first compute the settings change due to
the fallback, then check to see if it's different from the current
denoiser, then recreate the denoiser device if neccesary.
Pull Request: https://projects.blender.org/blender/blender/pulls/125453
Since #118841 there are more cases where Cycles would check for the
graphics interop support. This could lead to a crash when graphics
interop functions are called without having active graphics context.
This change makes it so there is no graphics interop calls when doing
headless render. In order to achieve this the device creation is now
aware of the headless mode.
Pull Request: https://projects.blender.org/blender/blender/pulls/122844
Previously, GPU denoisers were ignoring settings about render
configuration and were using any available GPU. With these changes,
GPU denoisers will use the device selected in Blender Cycles
settings.
This allows any GPU denoiser to be used with CPU rendering.
Pull Request: https://projects.blender.org/blender/blender/pulls/118841
HIP RT enables AMD hardware ray tracing on RDNA2 and above, and falls back to a
to shader implementation for older graphics cards. It offers an average 25%
sample rendering rate improvement in Cycles benchmarks, on a W6800 card.
The ray tracing feature functions are accessed through HIP RT SDK, available on
GPUOpen. HIP RT traversal functionality is pre-compiled in bitcode format and
shipped with the SDK.
This is not yet enabled as there are issues to be resolved, but landing the
code now makes testing and further changes easier.
Known limitations:
* Not working yet with current public AMD drivers.
* Visual artifact in motion blur.
* One of the buffers allocated for traversal has a static size. Allocating it
dynamically would reduce memory usage.
* This is for Windows only currently, no Linux support.
Co-authored-by: Brecht Van Lommel <brecht@blender.org>
Ref #105538
Only use the denoised buffer for access of denoised passes, and
access the rest of the passes from the original render buffer.
This allows in-place modification of the guiding passes needed
by the denoiser without affecting the final render result pixels.
Pull Request: https://projects.blender.org/blender/blender/pulls/106668
All kernel specialisation is now performed in the background regardless of kernel type, meaning that the first render will be visible a few seconds sooner. The only exception is during benchmark warm up, in which case we wait for all kernels to be cached. When stopping a render, we call a new `cancel()` method on the device which causes any outstanding compilation work to be cancelled, and we destroy the device in a detached thread so that any stale queued compilations can be safely purged without blocking the UI for longer than necessary.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D16371
The issue here was that PathTraceWork was set up before checking if
any error occurred, and it didn't account for the dummy device so
it called a non-implemented function.
This fix therefore avoids creating PathTraceWork for dummy devices
and checks for device creation errors earlier in the process.
This adds path guiding features into Cycles by integrating Intel's Open Path
Guiding Library. It can be enabled in the Sampling > Path Guiding panel in the
render properties.
This feature helps reduce noise in scenes where finding a path to light is
difficult for regular path tracing.
The current implementation supports guiding directional sampling decisions on
surfaces, when the material contains a least one diffuse component, and in
volumes with isotropic and anisotropic Henyey-Greenstein phase functions.
On surfaces, the guided sampling decision is proportional to the product of
the incident radiance and the normal-oriented cosine lobe and in volumes it
is proportional to the product of the incident radiance and the phase function.
The incident radiance field of a scene is learned and updated during rendering
after each per-frame rendering iteration/progression.
At the moment, path guiding is only supported by the CPU backend. Support for
GPU backends will be added in future versions of OpenPGL.
Ref T92571
Differential Revision: https://developer.blender.org/D15286
This patch causes the render buffers to be copied to the denoiser
device only once before denoising and output/display is then fed
from that single buffer on the denoiser device. That way usually all
but one copy (from all the render devices to the denoiser device)
can be eliminated, provided that the denoiser device is also the
display device (in which case interop is used to update the display).
As such this patch also adds some logic that tries to ensure the
chosen denoiser device is the same as the display device.
Differential Revision: https://developer.blender.org/D15657
This patch partitions the active indices into chunks prior to sorting by material in order to tradeoff some material coherence for better locality. On Apple Silicon GPUs (particularly higher end M1-family GPUs), we observe overall render time speedups of up to 15%. The partitioning is implemented by repeating the range of `shader_sort_key` for each partition, and encoding a "locator" key which distributes the indices into sorted chunks.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D15331
This patch adds a new Cycles device with similar functionality to the
existing GPU devices. Kernel compilation and runtime interaction happen
via oneAPI DPC++ compiler and SYCL API.
This implementation is primarly focusing on Intel® Arc™ GPUs and other
future Intel GPUs. The first supported drivers are 101.1660 on Windows
and 22.10.22597 on Linux.
The necessary tools for compilation are:
- A SYCL compiler such as oneAPI DPC++ compiler or
https://github.com/intel/llvm
- Intel® oneAPI Level Zero which is used for low level device queries:
https://github.com/oneapi-src/level-zero
- To optionally generate prebuilt graphics binaries: Intel® Graphics
Compiler All are included in Linux precompiled libraries on svn:
https://svn.blender.org/svnroot/bf-blender/trunk/lib The same goes for
Windows precompiled binaries but for the graphics compiler, available
as "Intel® Graphics Offline Compiler for OpenCL™ Code" from
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html,
for which path can be set as OCLOC_INSTALL_DIR.
Being based on the open SYCL standard, this implementation could also be
extended to run on other compatible non-Intel hardware in the future.
Reviewed By: sergey, brecht
Differential Revision: https://developer.blender.org/D15254
Co-authored-by: Nikita Sirgienko <nikita.sirgienko@intel.com>
Co-authored-by: Stefan Werner <stefan.werner@intel.com>
* Float/double promotion warnings were mainly meant for avoiding slow
operatiosn in the kernel. Limit it to that to avoid hard to fix warnings
in Hydra.
* Const warnings in Hydra iterators.
* Unused variable warnings when building without glog.
* Wrong camera enum comparisons in assert.
* PASS_UNUSED is not a pass type, only for pass offsets.
Propagate the fp settings from the main thread to all the worker threads (the fp settings includes the FZ settings among other things) - this guarantees consistency in execution of floating point math regardless if its executed in tbb thread arena or on main thread
Add FZ mode to arm64/aarch64 in parallel to the way its been done on intel processors, currently compiling for arm target does not set this mode at all, hence potentially runs slower and with possible results mismatch with intel x86.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D14454
When new display driver is given to the PathTrace ensure that there are
no GPU resources used from it by the work. This solves graphics interop
descriptors leak.
This aqlso fixes Invalid graphics context in cuGraphicsUnregisterResource
error when doing final render on the display GPU.
Fixes T95837: Regression: GPU memory accumulation in Cycles render
Fixes T95733: Cycles Cuda/Optix error message with multi GPU devices. (Invalid graphics context in cuGraphicsUnregisterResource)
Fixes T95651: GPU error (Invalid graphics context in cuGraphicsUnregisterResource)
Fixes T95631: VRAM is not being freed when rendering (Invalid graphics context in cuGraphicsUnregisterResource)
Fixes T89747: Cycles Render - Textures Disappear then Crashes the Render
Maniphest Tasks: T95837, T95733, T95651, T95631, T89747
Differential Revision: https://developer.blender.org/D14146
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.
Ref D14069, T95597
The root of the issue is caused by Cycles ignoring OpenGL limitation on
the maximum resolution of textures: Cycles was allocating texture of the
final render resolution. It was exceeding limitation on certain GPUs and
driver.
The idea is simple: use multiple textures for the display, each of which
will fit into OpenGL limitations.
There is some code which allows the display driver to know when to start
the new tile. Also added some code to allow force graphics interop to be
re-created. The latter one ended up not used in the final version of the
patch, but it might be helpful for other drivers implementation.
The tile size is limited to 8K now as it is the safest size for textures
on many GPUs and OpenGL drivers.
This is an updated fix with a workaround for freezing with the NVIDIA
driver on Linux.
Differential Revision: https://developer.blender.org/D13385
This reverts commit 5e37f70307.
It is leading to freezing of the entire desktop for a few seconds when stopping
3D viewport rendering on my Linux / NVIDIA system.
The root of the issue is caused by Cycles ignoring OpenGL limitation on
the maximum resolution of textures: Cycles was allocating texture of the
final render resolution. It was exceeding limitation on certain GPUs and
driver.
The idea is simple: use multiple textures for the display, each of which
will fit into OpenGL limitations.
There is some code which allows the display driver to know when to start
the new tile. Also added some code to allow force graphics interop to be
re-created. The latter one ended up not used in the final version of the
patch, but it might be helpful for other drivers implementation.
The tile size is limited to 8K now as it is the safest size for textures
on many GPUs and OpenGL drivers.
Differential Revision: https://developer.blender.org/D13385