This fits better with the way normal and displacement maps are typically
combined. Previously there was a mixing of displaced normal and undisplaced
tangent, which was broken behavior.
Additionally, to undisplaced_N and undisplaced_tangent attributes must now
always be used to get undisplaced coordinates. The regular N and tangent
attributes now always include displacement.
Ref #142022
Pull Request: https://projects.blender.org/blender/blender/pulls/143109
Previously with adaptive subdivision this happened to work with the N
attribute, but that was not meant to be undisplaced. This adds a new
undisplaced_N attribute specifically for this purpose.
For backwards compatibility in Blender 4.5, this also keeps N undisplaced.
But that will be changed in 5.0.
Pull Request: https://projects.blender.org/blender/blender/pulls/142090
* Add SubdAttributeInterpolation class for linear attribute interpolation.
* Dicing computes ptex UV and face ID for interpolation.
* Simplify mesh storage of subd primitive counts
* Remove kernel code for subd attribute interpolation
* Remove patch table packing and upload
The old optimization adds a fair amount of complexity to the kernel, affecting
performance even when not using the feature. It's also not that useful as it
does not work for UVs that needs special interpolation. With this simpler code
it should be easier to make it feature complete.
Pull Request: https://projects.blender.org/blender/blender/pulls/135681
Check was misc-const-correctness, combined with readability-isolate-declaration
as suggested by the docs.
Temporarily clang-format "QualifierAlignment: Left" was used to get consistency
with the prevailing order of keywords.
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
* Use .empty() and .data()
* Use nullptr instead of 0
* No else after return
* Simple class member initialization
* Add override for virtual methods
* Include C++ instead of C headers
* Remove some unused includes
* Use default constructors
* Always use braces
* Consistent names in definition and declaration
* Change typedef to using
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
Implements the paper [A Microfacet-based Hair Scattering
Model](https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.14588) by
Weizhen Huang, Matthias B. Hullin and Johannes Hanika.
### Features:
- This is a far-field model, as opposed to the previous near-field
Principled Hair BSDF model. The hair is expected to be less noisy, but
lower roughness values takes longer to render due to numerical
integration along the hair width. The hair also appears to be flat when
viewed up-close.
- The longitudinal width of the scattering lobe differs along the
azimuth, providing a higher contrast compared to the evenly spread
scattering in the near-field Principled Hair BSDF model. For a more
detailed comparison, please refer to the original paper.
- Supports elliptical cross-sections, adding more realism as human hairs
are usually elliptical. The orientation of the cross-section is aligned
with the curve normal, which can be adjusted using geometry nodes.
Default is minimal twist. During sampling, light rays that hit outside
the hair width will continue propogating as if the material is
transparent.
- There is non-physical modulation factors for the first three
lobes (Reflection, Transmission, Secondary Reflection).
### Missing:
- A good default for cross-section orientation. There was an
attempt (9039f76928) to default the orientation to align with the curve
normal in the mathematical sense, but the stability (when animated) is
unclear and it would be a hassle to generalise to all curve types. After
the model is in main, we could experiment with the geometry nodes team
to see what works the best as a default.
Co-authored-by: Lukas Stockner <lukas.stockner@freenet.de>
Pull Request: https://projects.blender.org/blender/blender/pulls/105600
For example
```
OIIOOutputDriver::~OIIOOutputDriver()
{
}
```
becomes
```
OIIOOutputDriver::~OIIOOutputDriver() {}
```
Saves quite some vertical space, which is especially handy for
constructors.
Pull Request: https://projects.blender.org/blender/blender/pulls/105594
To improve mesh upload speeds and reduce the size of the scene data which allows larger scenes to be rendered.
The meshes in Cycles are currently stored as flattened meshes, where each triangle is stored as a set of 3 vertices. Unflattening writes out the vertices in a list according to the index buffer. This uses a lot of memory and for current hardware does not provide a noticeable benefit. This change unflattens the mesh by directly using the meshes vertex and index buffers directly and skips the unflattening. This change allows for larger scenes and also a reduction in the sizes of the meshes. Further it results in a decrease the amount of time it takes to upload the data to a GPU. This is especially important for when multiple GPUs are used in a single machine.
Pull Request #105173
This adds support for rendering motion blur for volumes, using their
velocity field. This works for fluid simulations and imported VDB
volumes. For the latter, the name of the velocity field can be set per
volume object, with automatic detection of velocity fields that are
split into 3 scalar grids.
A new parameter is also added to scale velocity for more artistic control.
Like for Alembic and USD caches, a parameter to set the unit of time in
which the velocity vectors are expressed is also added. For Blender gas
simulations, the velocity unit should always be in seconds, so this is
only exposed for volume objects which may come from external OpenVDB
files.
These parameters are available under the `Render` panels for the fluid
domain and the volume object data properties respectively.
Credits: kernel advection code from Tangent Animation's Blackbird based
on earlier work by Geraldine Chua
Differential Revision: https://developer.blender.org/D14629
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.
Ref D14069, T95597
This add support for rendering of the point cloud object in Blender, as a native
geometry type in Cycles that is more memory and time efficient than instancing
sphere meshes. This can be useful for rendering sand, water splashes, particles,
motion graphics, etc.
Points are currently always rendered as spheres, with backface culling. More
shapes are likely to be added later, but this is the most important one and can
be customized with shaders.
For CPU rendering the Embree primitive is used, for GPU there is our own
intersection code. Motion blur is suppored. Volumes inside points are not
currently supported.
Implemented with help from:
* Kévin Dietrich: Alembic procedural integration
* Patrick Mourse: OptiX integration
* Josh Whelchel: update for cycles-x changes
Ref T92573
Differential Revision: https://developer.blender.org/D9887
Remove prefix of filenames that is the same as the folder name. This used
to help when #includes were using individual files, but now they are always
relative to the cycles root directory and so the prefixes are redundant.
For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.
* Split render/ into scene/ and session/. The scene/ folder now contains the
scene and its nodes. The session/ folder contains the render session and
associated data structures like drivers and render buffers.
* Move top level kernel headers into new folders kernel/camera/, kernel/film/,
kernel/light/, kernel/sample/, kernel/util/
* Move integrator related kernel headers into kernel/integrator/
* Move OSL shaders from kernel/shaders/ to kernel/osl/shaders/
For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.