This makes accessing these properties more convenient. Since we only ever have
const references to `CPPType`, there isn't really a benefit to using methods to
avoid mutation.
Pull Request: https://projects.blender.org/blender/blender/pulls/137482
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.
While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.
Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.
Some directories in `./intern/` have also been excluded:
- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.
An "AUTHORS" file has been added, using the chromium projects authors
file as a template.
Design task: #110784
Ref !110783.
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.
This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.
Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.
Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:
https://reuse.software/faq/
Goals of this refactor:
* Reduce memory consumption of `IndexMask`. The old `IndexMask` uses an
`int64_t` for each index which is more than necessary in pretty much all
practical cases currently. Using `int32_t` might still become limiting
in the future in case we use this to index e.g. byte buffers larger than
a few gigabytes. We also don't want to template `IndexMask`, because
that would cause a split in the "ecosystem", or everything would have to
be implemented twice or templated.
* Allow for more multi-threading. The old `IndexMask` contains a single
array. This is generally good but has the problem that it is hard to fill
from multiple-threads when the final size is not known from the beginning.
This is commonly the case when e.g. converting an array of bool to an
index mask. Currently, this kind of code only runs on a single thread.
* Allow for efficient set operations like join, intersect and difference.
It should be possible to multi-thread those operations.
* It should be possible to iterate over an `IndexMask` very efficiently.
The most important part of that is to avoid all memory access when iterating
over continuous ranges. For some core nodes (e.g. math nodes), we generate
optimized code for the cases of irregular index masks and simple index ranges.
To achieve these goals, a few compromises had to made:
* Slicing of the mask (at specific indices) and random element access is
`O(log #indices)` now, but with a low constant factor. It should be possible
to split a mask into n approximately equally sized parts in `O(n)` though,
making the time per split `O(1)`.
* Using range-based for loops does not work well when iterating over a nested
data structure like the new `IndexMask`. Therefor, `foreach_*` functions with
callbacks have to be used. To avoid extra code complexity at the call site,
the `foreach_*` methods support multi-threading out of the box.
The new data structure splits an `IndexMask` into an arbitrary number of ordered
`IndexMaskSegment`. Each segment can contain at most `2^14 = 16384` indices. The
indices within a segment are stored as `int16_t`. Each segment has an additional
`int64_t` offset which allows storing arbitrary `int64_t` indices. This approach
has the main benefits that segments can be processed/constructed individually on
multiple threads without a serial bottleneck. Also it reduces the memory
requirements significantly.
For more details see comments in `BLI_index_mask.hh`.
I did a few tests to verify that the data structure generally improves
performance and does not cause regressions:
* Our field evaluation benchmarks take about as much as before. This is to be
expected because we already made sure that e.g. add node evaluation is
vectorized. The important thing here is to check that changes to the way we
iterate over the indices still allows for auto-vectorization.
* Memory usage by a mask is about 1/4 of what it was before in the average case.
That's mainly caused by the switch from `int64_t` to `int16_t` for indices.
In the worst case, the memory requirements can be larger when there are many
indices that are very far away. However, when they are far away from each other,
that indicates that there aren't many indices in total. In common cases, memory
usage can be way lower than 1/4 of before, because sub-ranges use static memory.
* For some more specific numbers I benchmarked `IndexMask::from_bools` in
`index_mask_from_selection` on 10.000.000 elements at various probabilities for
`true` at every index:
```
Probability Old New
0 4.6 ms 0.8 ms
0.001 5.1 ms 1.3 ms
0.2 8.4 ms 1.8 ms
0.5 15.3 ms 3.0 ms
0.8 20.1 ms 3.0 ms
0.999 25.1 ms 1.7 ms
1 13.5 ms 1.1 ms
```
Pull Request: https://projects.blender.org/blender/blender/pulls/104629
For example
```
OIIOOutputDriver::~OIIOOutputDriver()
{
}
```
becomes
```
OIIOOutputDriver::~OIIOOutputDriver() {}
```
Saves quite some vertical space, which is especially handy for
constructors.
Pull Request: https://projects.blender.org/blender/blender/pulls/105594
This moves all multi-function related code in the `functions` module
into a new `multi_function` namespace. This is similar to how there
is a `lazy_function` namespace.
The main benefit of this is that many types names that were prefixed
with `MF` (for "multi function") can be simplified.
There is also a common shorthand for the `multi_function` namespace: `mf`.
This is also similar to lazy-functions where the shortened namespace
is called `lf`.
* `depends_on_context` was not used for a long time already.
* `param_data_indices` is not used since rB42b88c008861b6.
* The remaining data is moved to a single `Vector` to avoid
having to do two allocations when the size signature becomes
larger than fits into the inline buffer.
This avoids a move of the signature after building it. Tthe value had
to be moved out of `MFSignatureBuilder` in the `build` method.
This also makes the naming a bit less confusing where sometimes
both the `MFSignature` and `MFSignatureBuilder` were referred
to as "signature".
This potentially overallocates buffers so that they are usable
for more data types, which allows buffers to be reused more
easily. That leads to fewer separate allocations and improved
cache usage (in one of my test files the number of separate
allocations went down from 1826 to 1555).
This improves performance of the procedure executor on secondary metrics
(i.e. not for the main use case when many elements are processed together,
but for the use case when a single element is processed at a time).
In my benchmark I'm measuring a 50-60% improvement:
* Procedure with a single function (executed many times): `5.8s -> 2.7s`.
* Procedure with 1000 functions (executed many times): `2.4 -> 1.0s`.
The speedup is mainly achieved in multiple ways:
* Store an `Array` of variable states, instead of a map. The array is indexed
with indices stored in each variable. This also avoids separately allocating
variable states.
* Move less data around in the scheduler and use a `Stack` instead of `Map`.
`Map` was used before because it allows for some optimizations that might
be more important in the future, but they don't matter right now (e.g. joining
execution paths that diverged earlier).
* Avoid memory allocations by giving the `LinearAllocator` some memory
from the stack.
Goals:
* Better high level control over where devirtualization occurs. There is always
a trade-off between performance and compile-time/binary-size.
* Simplify using array devirtualization.
* Better performance for cases where devirtualization wasn't used before.
Many geometry nodes accept fields as inputs. Internally, that means that the
execution functions have to accept so called "virtual arrays" as inputs. Those
can be e.g. actual arrays, just single values, or lazily computed arrays.
Due to these different possible virtual arrays implementations, access to
individual elements is slower than it would be if everything was just a normal
array (access does through a virtual function call). For more complex execution
functions, this overhead does not matter, but for small functions (like a simple
addition) it very much does. The virtual function call also prevents the compiler
from doing some optimizations (e.g. loop unrolling and inserting simd instructions).
The solution is to "devirtualize" the virtual arrays for small functions where the
overhead is measurable. Essentially, the function is generated many times with
different array types as input. Then there is a run-time dispatch that calls the
best implementation. We have been doing devirtualization in e.g. math nodes
for a long time already. This patch just generalizes the concept and makes it
easier to control. It also makes it easier to investigate the different trade-offs
when it comes to devirtualization.
Nodes that we've optimized using devirtualization before didn't get a speedup.
However, a couple of nodes are using devirtualization now, that didn't before.
Those got a 2-4x speedup in common cases.
* Map Range
* Random Value
* Switch
* Combine XYZ
Differential Revision: https://developer.blender.org/D14628
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
This reduces the number of separate memory allocations done
by the multi-function procedure executor (which is used by the
field evaluation).
Now a linear memory allocator is used to allocate all intermediate
values. Furthermore, more buffers are reused when possible. This
reduces the total amount of allocated memory and improves
cache efficiency because the values are more likely to be in cache
already.
The performance improvement of this patch are most noticable
when few elements are processed by many functions. The situation
will improve even more with D13548, because then buffers can actually
be reused in practice. I measured up to 20% faster field evaluation
in extreme cases with this change.
Previously, there was a fixed grain size for all multi-functions. That was
not sufficient because some functions could benefit a lot from smaller
grain sizes.
This refactors adds a new `MultiFunction::call_auto` method which has the
same effect as just calling `MultiFunction::call` but additionally figures
out how to execute the specific multi-function efficiently. It determines
a good grain size and decides whether the mask indices should be shifted
or not.
Most multi-function evaluations benefit from this, but medium sized work
loads (1000 - 50000 elements) benefit from it the most. Especially when
expensive multi-functions (e.g. noise) is involved. This is because for
smaller work loads, threading is rarely used and for larger work loads
threading worked fine before already.
With this patch, multi-functions can specify execution hints, that allow
the caller to execute it most efficiently. These execution hints still
have to be added to more functions.
Some performance measurements of a field evaluation involving noise and
math nodes, ordered by the number of elements being evaluated:
```
1,000,000: 133 ms -> 120 ms
100,000: 30 ms -> 18 ms
10,000: 20 ms -> 2.7 ms
1,000: 4 ms -> 0.5 ms
100: 0.5 ms -> 0.4 ms
```
The idea behind this change is the same as in
rB6ee2abde82ef121cd6e927995053ac33afdbb438.
A `MultiFunction::debug_parameter_name` method could be
added separately when necessary.
Previously, the function names were stored in `std::string` and were often
created dynamically (especially when the function just output a constant).
This resulted in a lot of overhead.
Now the function name is just a `const char *` that should be statically
allocated. This is good enough for the majority of cases. If a multi-function
needs a more dynamic name, it can override the `MultiFunction::debug_name`
method.
In my test file with >400,000 simple math nodes, the execution time improves from
3s to 1s.
Goals of this refactor:
* Simplify creating virtual arrays.
* Simplify passing virtual arrays around.
* Simplify converting between typed and generic virtual arrays.
* Reduce memory allocations.
As a quick reminder, a virtual arrays is a data structure that behaves like an
array (i.e. it can be accessed using an index). However, it may not actually
be stored as array internally. The two most important implementations
of virtual arrays are those that correspond to an actual plain array and those
that have the same value for every index. However, many more
implementations exist for various reasons (interfacing with legacy attributes,
unified iterator over all points in multiple splines, ...).
With this refactor the core types (`VArray`, `GVArray`, `VMutableArray` and
`GVMutableArray`) can be used like "normal values". They typically live
on the stack. Before, they were usually inside a `std::unique_ptr`. This makes
passing them around much easier. Creation of new virtual arrays is also
much simpler now due to some constructors. Memory allocations are
reduced by making use of small object optimization inside the core types.
Previously, `VArray` was a class with virtual methods that had to be overridden
to change the behavior of a the virtual array. Now,`VArray` has a fixed size
and has no virtual methods. Instead it contains a `VArrayImpl` that is
similar to the old `VArray`. `VArrayImpl` should rarely ever be used directly,
unless a new virtual array implementation is added.
To support the small object optimization for many `VArrayImpl` classes,
a new `blender::Any` type is added. It is similar to `std::any` with two
additional features. It has an adjustable inline buffer size and alignment.
The inline buffer size of `std::any` can't be relied on and is usually too
small for our use case here. Furthermore, `blender::Any` can store
additional user-defined type information without increasing the
stack size.
Differential Revision: https://developer.blender.org/D12986
Multi-functions are not allowed to throw exceptions that are not
caught in the same multi-function. Previously, it was difficult to
backtrack a crash to a previously thrown exception.
Sometimes not all outputs of a multi-function are required by the
caller. In those cases it would be a waste of compute resources
to calculate the unused values anyway. Now, the caller of a
multi-function can specify when a specific output is not used.
The called function can check if an output is unused and may
ignore it. Multi-functions can still computed unused outputs as
before if they don't want to check if a specific output is unused.
The multi-function procedure system has been updated to support
ignored outputs in call instructions. An ignored output just has no
variable assigned to it.
The field system has been updated to generate a multi-function
procedure where unused outputs are ignored.
This implements the initial core framework for fields and anonymous
attributes (also see T91274).
The new functionality is hidden behind the "Geometry Nodes Fields"
feature flag. When enabled in the user preferences, the following
new nodes become available: `Position`, `Index`, `Normal`,
`Set Position` and `Attribute Capture`.
Socket inspection has not been updated to work with fields yet.
Besides these changes at the user level, this patch contains the
ground work for:
* building and evaluating fields at run-time (`FN_fields.hh`) and
* creating and accessing anonymous attributes on geometry
(`BKE_anonymous_attribute.h`).
For evaluating fields we use a new so called multi-function procedure
(`FN_multi_function_procedure.hh`). It allows composing multi-functions
in arbitrary ways and supports efficient evaluation as is required by
fields. See `FN_multi_function_procedure.hh` for more details on how
this evaluation mechanism can be used.
A new `AttributeIDRef` has been added which allows handling named
and anonymous attributes in the same way in many places.
Hans and I worked on this patch together.
Differential Revision: https://developer.blender.org/D12414