This is an implementation of thin film iridescence in the Principled BSDF based on "A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence".
There are still several open topics that are left for future work:
- Currently, the thin film only affects dielectric Fresnel, not metallic. Properly specifying thin films on metals requires a proper conductive Fresnel term with complex IOR inputs, any attempt of trying to hack it into the F82 model we currently use for the Principled BSDF is fundamentally flawed. In the future, we'll add a node for proper conductive Fresnel, including thin films.
- The F0/F90 control is not very elegantly implemented right now. It fundamentally works, but enabling thin film while using a Specular Tint causes a jump in appearance since the models integrate it differently. Then again, thin film interference is a physical effect, so of course a non-physical tweak doesn't play nicely with it.
- The white point handling is currently quite crude. In short: The code computes XYZ values of the reflectance spectrum, but we'd need the XYZ values of the product of the reflectance spectrum and the neutral illuminant of the working color space. Currently, this is addressed by just dividing by the XYZ values of the illuminant, but it would be better to do a proper chromatic adaptation transform or to use the proper reference curves for the working space instead of the XYZ curves from the paper.
Pull Request: https://projects.blender.org/blender/blender/pulls/118477
This PR fixes the (currently unused) scene-based selective feature compilation macros. These feature based macros haven't been used for a few years, and enabling them currently results in compilation errors.
The only functional change in this PR is in geom/primitive.h where undef-ing `__HAIR__` had exposed an inconsistency in how pointcloud attributes were being fetched. Using the more general `primitive_surface_attribute_float4` (instead of `curve_attribute_float4`) fixed a compilation error that occurred when rendering pointcloud unit test scenes with adaptive compilation enabled.
Pull Request: https://projects.blender.org/blender/blender/pulls/121216
Transport rays that enter to another location in the scene, with
specified ray position and normal. This may be used to render portals
for visual effects, and other production rendering tricks.
This acts much like a Transparent BSDF. Render passes are passed
through, and this is affected by light path max transparent bounces.
Pull Request: https://projects.blender.org/blender/blender/pulls/114386
Clamp some of the inputs of the Glossy BSDF, Glass BSDF, Sheen BSDF,
and Subsurface Scattering nodes to improve consistency between render
engines and to avoid unexpected results.
* Clamp roughness to 0..1
* Clamp subsurface radius to 0..inf
* Clamp colors to 0..inf
Pull Request: https://projects.blender.org/blender/blender/pulls/120390
This replaces the fixed Tangent input in BsdfNode::compile
with a custom input.
This is done because very few nodes actually use the tangent input
and it would be better to have this slot available for other inputs
on different nodes in the future.
Pull Request: https://projects.blender.org/blender/blender/pulls/119042
The Perlin noise algorithms suffer from precision issues when a coordinate
is greater than about 250000.
To fix this the Perlin noise texture is repeated every 100000 on each axis.
This causes discontinuities every 100000, however at such scales this
usually shouldn't be noticeable.
Pull Request: https://projects.blender.org/blender/blender/pulls/119884
for a camera ray, compute the actual range of the hair width that the
current pixel covers, and only integrate that subset, to prevent a
ribbon-like appearance in close-up looks.
When the hair covers less than one pixel on the screen or when the ray
is not camera ray, the model works the same as before.
Pull Request: https://projects.blender.org/blender/blender/pulls/116094
This allows users to turn off reflective and refractive caustics
separately from each other when using the Generalized Schlick material.
This will impact the Principled BSDF and Glass BSDF, along with some
custom OSL scripts.
Pull Request: https://projects.blender.org/blender/blender/pulls/117617
Seems to be a fairly niche type, but some people (apparently mostly in the automotive space) use it.
Also improves the handling of IES files in general and lets Cycles accept IES files that are technically violating the spec - which seems to be most of them...
Pull Request: https://projects.blender.org/blender/blender/pulls/114689
Improve the handling of Principled BSDF Caustics from Metallic
and Transmissive components, improving consistency between SVM and OSL,
and offering more predictable results.
Pull Request: https://projects.blender.org/blender/blender/pulls/115081
Fix issues related to NaN normals in some situations by trying
to detect when these cases might occur and just reverting back
to default normals.
As a side effect of these changes, OSL now behaves correctly
when given a non-normalized normal.
Pull Request: https://projects.blender.org/blender/blender/pulls/114960
This path merges the Musgrave and Noise Texture nodes into a single
combined Noise Texture node. The reasoning is that both nodes
intrinsically do the same thing, which is the layering of Perlin noise
derivatives to produce fractal noise. So the patch de-duplicates code
and unifies the use of fractal noise for the end use.
Since the Noise node had a Distortion input and a Color output, while
the Musgrave node did not, those are now available to the Musgrave types
as new functionalities.
The Dimension input of the Musgrave node is analogous to the Roughness
input of the Noise node, so both inputs were unified to follow the same
behavior of the Roughness input, which is arguable more intuitive to
control. Similarly, the Detail input was slightly different across both
nodes, since the Noise node evaluated one extra layer of noise. This was
also unified to follow the behavior of the Noise node.
The patch, coincidentally fixes an unreported bug causing repeated
output for certain noise types and another floating precision bug
#112180.
The versioning code implemented with this patch ensures backward
compatibility for both the Musgrave and Noise Texture nodes. When
opening older Blender files in Blender 4.1 the output of both nodes are
guaranteed to always be exactly identical to that of Blender files
created before the nodes were merged in all cases.
Forward compatibility with Blender 4.0 is implemented by #114236.
Forward compatibility with Blender 3.6 LTS is implemented by #115015.
Pull Request: #111187
Adjust clamping of inputs in the Principled BSDF to avoid errors and
inconsistencies between render engines, while trying to leave as many
inputs as possible unclamped for artisitc purposes.
Pull Request: https://projects.blender.org/blender/blender/pulls/112895
The previous formula for adjusting Coat Tint intensity resulted
in strong tints and sudden colour changes when using a low coat weight.
This commit fixes these issues by mixing between a white tint (no tint)
and the chosen tint based on the Coat Weight.
Pull Request: https://projects.blender.org/blender/blender/pulls/113468
The increased amount of BSDF code from Principled BSDF v2 and the
microfacet BSDF led to a big performance regression on Metal and AMD.
We have not been able to find a good workaround for all scenes.
This change disables the Principled Hair BSDF code when it is not used
in the scene. This makes common benchmark scenes faster, but
performance is still bad in scenes that do use it.
Ref #112596
Pull Request: https://projects.blender.org/blender/blender/pulls/113904
Update the Glass BSDF to internally use Generalized Schlick fresnel.
This allows for easier expansion of certain features in the future.
There should be no functional change from the users perspective.
Pull Request: https://projects.blender.org/blender/blender/pulls/112701
This keeps the behavior similar to the Disney BRDF, where 0.5
is neutral and lower/higher values respectively decrease/increase
the dielectric specular. But it's more correct in that it's not
an arbitrary scale on Fresnel, but rather adjusting the IOR.
Ref #99447
Ref #112848
Pull Request: https://projects.blender.org/blender/blender/pulls/112552
since the color is applied both at entry and exit, using the square root
of the color would make the perceived color closer to the desired one.
This also makes the transition smoother when changing the `Transmission`
value in the UI, and matches the behaviour of EEVEE.
This has two main advantages: First, it allows to get rid of the extra closure
since the remaining float can just be moved to the main closure allocation.
Second, previously sd->N was completely unused and therefore unintialized,
which ended up causing issues for the Normal render pass.
- Changes defaults from Emission Color 0.0, Emission Strength 1.0 to be the
other way around (Color 1.0, Strength 0.0), suggested by @brecht
- Makes emission component occluded by sheen and coat
(to simulate e.g. dust-covered light sources)
- Moves transparency into the Principled SVM/OSL node, to allow for future
support for e.g. transparent shadows in thin sheet mode.
Note that there are optimization opportunities here (mostly skipping the
non-transparent components for transparent shadow evaluation, and skipping
the parts that don't affect emission for light evaluation), but I have a
separate point for those in the Principled V2 planning since there's some
other optimization topics as well.
Co-authored-by: Weizhen Huang <weizhen@blender.org>
Pull Request: https://projects.blender.org/blender/blender/pulls/111155
Previously, the Principled BSDF used the Subsurface input to scale the radius.
When it was zero, it used a diffuse closure, otherwise a subsurface closure.
This sort of scaling input makes sense, but it should be specified in distance
units, rather than a 0..1 factor, so this commit changes the unit and renames
the input to Subsurface Scale.
Additionally, it adds support for mixing diffuse and subsurface components.
This is part of e.g. the OpenPBR spec, and the logic behind it is to support
modeling e.g. dirt or paint on top of skin. Before, materials would be either
fully diffuse (radius=0) or fully subsurface.
For typical materials, this mixing factor will be either zero or one
(just like metallic or transmission), but supporting fractional inputs makes
sense for e.g. smooth transitions at boundaries.
Another change is that there is no separate Subsurface Color anymore - before,
this was mixed with the Base Color using the Subsurface input as the factor,
but this was not really useful since that input was generally very small.
And finally, the handling of how the path enters the material for random walk
subsurface scattering is changed. Before, this always used lambertian (diffuse)
transmission, but this caused some problems, like overly white edges.
Instead, two different methods are now used, depending on the selected mode.
In Fixed Radius mode, the code assumes a simple medium boundary, and performs
refraction into the material using the main Roughness and IOR inputs.
Meanwhile, when not using Fixed Radius, the code assumes a more complex
boundary (as typically found on organic materials, e.g. skin), so the entry
bounce has a 50/50 chance of being either diffuse transmission or refraction
using the separate Subsurface IOR input and a fixed roughness of 1.
Credit for this method goes to Christophe Hery.
Pull Request: https://projects.blender.org/blender/blender/pulls/110989
- Adds tint control, which simulates volumetric absorption inside the coating.
This results in angle-dependent saturation and affects all underlying layers
(diffuse, subsurface, metallic, transmission). It provides a physically-based
alternative to ad-hoc effects such as tinted specular highlights.
- Renames the component from "Clearcoat" to "Coat", since it's no longer
necessarily clear now. This matches naming in e.g. other renderers or OpenPBR.
- Adds an explicit Coat IOR input, in preparation for future smarter IOR logic
around the interaction between Coat and main IOR. This used to be hardcoded
to 1.5.
- Removes hardcoded 0.25 weight multiplier, and adds versioning code to update
existing files accordingly. OBJ import/export still applies the factor.
- Replaces the GTR1 microfacet component with regular GGX. This removes a corner
case in the Microfacet code, solves #53038, and makes us more consistent with
other standard surface shaders. The original Disney BSDF used GTR1, but it
doesn't appear that it caught on in the industry.
Co-authored-by: Weizhen Huang <weizhen@blender.org>
Pull Request: https://projects.blender.org/blender/blender/pulls/110993
based on concentric disk mapping.
Concentric disk mapping was already present, but not used everywhere.
Now `sample_cos_hemisphere()`, `sample_uniform_hemisphere()`, and
`sample_uniform_cone()` use concentric disk mapping.
This changes the noise in many test images.
Pull Request: https://projects.blender.org/blender/blender/pulls/109774