This PR adds a tag to prevent `kernel_data.integrator.seed` being baked into Metal pipelines as a specialisation constant when full kernel specialisation is enabled. This stops new pipelines from being continually compiled when animation is playing in live viewport mode.
Pull Request: https://projects.blender.org/blender/blender/pulls/124349
Currently, during baking each pixel stores a seed input that comes from the
Blender side. This is only needed for vertex color baking, however -
for regular image baking, we can just as well hash the pixel coordinates.
Therefore, we can save some memory (4 byte per pixel) by splitting the seed
info out into a separate pass and only storing it when needed.
Pull Request: https://projects.blender.org/blender/blender/pulls/122806
This patch implements blue-noise dithered sampling as described by Nathan Vegdahl (https://psychopath.io/post/2022_07_24_owen_scrambling_based_dithered_blue_noise_sampling), which in turn is based on "Screen-Space Blue-Noise Diffusion of Monte Carlo Sampling Error via Hierarchical Ordering of Pixels"(https://repository.kaust.edu.sa/items/1269ae24-2596-400b-a839-e54486033a93).
The basic idea is simple: Instead of generating independent sequences for each pixel by scrambling them, we use a single sequence for the entire image, with each pixel getting one chunk of the samples. The ordering across pixels is determined by hierarchical scrambling of the pixel's position along a space-filling curve, which ends up being pretty much the same operation as already used for the underlying sequence.
This results in a more high-frequency noise distribution, which appears smoother despite not being less noisy overall.
The main limitation at the moment is that the improvement is only clear if the full sample amount is used per pixel, so interactive preview rendering and adaptive sampling will not receive the benefit. One exception to this is that when using the new "Automatic" setting, the first sample in interactive rendering will also be blue-noise-distributed.
The sampling mode option is now exposed in the UI, with the three options being Blue Noise (the new mode), Classic (the previous Tabulated Sobol method) and the new default, Automatic (blue noise, with the additional property of ensuring the first sample is also blue-noise-distributed in interactive rendering). When debug mode is enabled, additional options appear, such as Sobol-Burley.
Note that the scrambling distance option is not compatible with the blue-noise pattern.
Pull Request: https://projects.blender.org/blender/blender/pulls/118479
This is an implementation of thin film iridescence in the Principled BSDF based on "A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence".
There are still several open topics that are left for future work:
- Currently, the thin film only affects dielectric Fresnel, not metallic. Properly specifying thin films on metals requires a proper conductive Fresnel term with complex IOR inputs, any attempt of trying to hack it into the F82 model we currently use for the Principled BSDF is fundamentally flawed. In the future, we'll add a node for proper conductive Fresnel, including thin films.
- The F0/F90 control is not very elegantly implemented right now. It fundamentally works, but enabling thin film while using a Specular Tint causes a jump in appearance since the models integrate it differently. Then again, thin film interference is a physical effect, so of course a non-physical tweak doesn't play nicely with it.
- The white point handling is currently quite crude. In short: The code computes XYZ values of the reflectance spectrum, but we'd need the XYZ values of the product of the reflectance spectrum and the neutral illuminant of the working color space. Currently, this is addressed by just dividing by the XYZ values of the illuminant, but it would be better to do a proper chromatic adaptation transform or to use the proper reference curves for the working space instead of the XYZ curves from the paper.
Pull Request: https://projects.blender.org/blender/blender/pulls/118477
This patch adds markup to specify that certain kernel data constants should not be specialised. Currently it is used for `tabulated_sobol_sequence_size` and `sobol_index_mask` which change frequently based on the aa sample count, trash the shader cache, and have little bearing on performance.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D16968
This is done based on the render sample count so that it doesn't impact
sampling quality. It's similar in spirit to the adaptive table size in D16561,
but in this case for performance rather than memory usage.
Differential Revision: https://developer.blender.org/D16726
The first two dimensions of scrambled, shuffled Sobol and shuffled PMJ02 are
equivalent, so this makes no real difference for the first two dimensions.
But Sobol allows us to naturally extend to more dimensions.
Pretabulated Sobol is now always used, and the sampling pattern settings is now
only available as a debug option.
This in turn allows the following two things (also implemented):
* Use proper 3D samples for combined lens + motion blur sampling. This
notably reduces the noise on objects that are simultaneously out-of-focus
and motion blurred.
* Use proper 3D samples for combined light selection + light sampling.
Cycles was already doing something clever here with 2D samples, but using
3D samples is more straightforward and avoids overloading one of the
dimensions.
In the future this will also allow for proper sampling of e.g. volumetric
light sources and other things that may need three or four dimensions.
Differential Revision: https://developer.blender.org/D16443
Uses a light tree to more effectively sample scenes with many lights. This can
significantly reduce noise, at the cost of a somewhat longer render time per
sample.
Light tree sampling is enabled by default. It can be disabled in the Sampling >
Lights panel. Scenes using light clamping or ray visibility tricks may render
different as these are biased techniques that depend on the sampling strategy.
The implementation is currently disabled on AMD HIP. This is planned to be fixed
before the release.
Implementation by Jeffrey Liu, Weizhen Huang, Alaska and Brecht Van Lommel.
Ref T77889
This was not working well in non-trivial scenes before the light tree, and now
it is even harder to make it work well with the light tree. It would average the
with equal weight for every light object regardless of intensity or distance, and
be quite noisy due to not working with multiple importance sampling.
We may restore this if were enough good use cases for the previous implementation,
but let's wait and see what the feedback is.
Some uses cases for this have been replaced by the shadow catcher passes, which
did not exist when this was added.
Ref T77889
* Split light types into own files, move light type specific code from
light tree and MNEE.
* Move flat light distribution code into own kernel file and host side
building function, in preparation of light tree addition. Add light/sample.h
as main entry point to kernel light sampling.
* Better separate calculation of pdf for selecting a light, and pdf for
sampling a point on the light. The selection pdf is now also stored in
LightSampling for MNEE to correctly recalculate the full pdf when the
shading position changes but the point on the light remains fixed.
* Improvement to kernel light storage, using packed_float3, better variable
names, etc.
Includes contributions by Brecht Van Lommel and Weizhen Huang.
Ref T77889
This resolves some issues with correlation artifacts at higher sample counts.
Fix T101356, correlation issues in new PMJ pattern.
Differential Revision: https://developer.blender.org/D16561
This adds path guiding features into Cycles by integrating Intel's Open Path
Guiding Library. It can be enabled in the Sampling > Path Guiding panel in the
render properties.
This feature helps reduce noise in scenes where finding a path to light is
difficult for regular path tracing.
The current implementation supports guiding directional sampling decisions on
surfaces, when the material contains a least one diffuse component, and in
volumes with isotropic and anisotropic Henyey-Greenstein phase functions.
On surfaces, the guided sampling decision is proportional to the product of
the incident radiance and the normal-oriented cosine lobe and in volumes it
is proportional to the product of the incident radiance and the phase function.
The incident radiance field of a scene is learned and updated during rendering
after each per-frame rendering iteration/progression.
At the moment, path guiding is only supported by the CPU backend. Support for
GPU backends will be added in future versions of OpenPGL.
Ref T92571
Differential Revision: https://developer.blender.org/D15286