Check was misc-const-correctness, combined with readability-isolate-declaration
as suggested by the docs.
Temporarily clang-format "QualifierAlignment: Left" was used to get consistency
with the prevailing order of keywords.
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
* Use .empty() and .data()
* Use nullptr instead of 0
* No else after return
* Simple class member initialization
* Add override for virtual methods
* Include C++ instead of C headers
* Remove some unused includes
* Use default constructors
* Always use braces
* Consistent names in definition and declaration
* Change typedef to using
Pull Request: https://projects.blender.org/blender/blender/pulls/132361
Along with the 4.1 libraries upgrade, we are bumping the clang-format
version from 8-12 to 17. This affects quite a few files.
If not already the case, you may consider pointing your IDE to the
clang-format binary bundled with the Blender precompiled libraries.
The NanoVDB headers are not compatible with Metal due to missing address
space qualifiers. We currently have a big patch for NanoVDB header
files, which is difficult to update for OpenVDB 11. Instead extract a
few hundred lines of code from NanoVDB to do just what we need.
Pull Request: https://projects.blender.org/blender/blender/pulls/115992
While the multiscattering GGX code is cool and solves the darkening problem at higher roughnesses, it's also currently buggy, hard to maintain and often impractical to use due to the higher noise and render time.
In practice, though, having the exact correct directional distribution is not that important as long as the overall albedo is correct and we a) don't get the darkening effect and b) do get the saturation effect at higher roughnesses.
This can simply be achieved by adding a second lobe (https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_slides_v2.pdf) or scaling the single-scattering GGX lobe (https://blog.selfshadow.com/publications/turquin/ms_comp_final.pdf). Both approaches require the same precomputation and produce outputs of comparable quality, so I went for the simple albedo scaling since it's easier to implement and more efficient.
Overall, the results are pretty good: All scenarios that I tested (Glossy BSDF, Glass BSDF, Principled BSDF with metallic or transmissive = 1) pass the white furnace test (a material with pure-white color in front of a pure-white background should be indistinguishable from the background if it preserves energy), and the overall albedo for non-white materials matches that produced by the real multi-scattering code (with the expected saturation increase as the roughness increases).
In order to produce the precomputed tables, the PR also includes a utility that computes them. This is not built by default, since there's no reason for a user to run it (it only makes sense for documentation/reproducibility purposes and when making changes to the microfacet models).
Pull Request: https://projects.blender.org/blender/blender/pulls/107958
* Store compact ray differentials in ShaderData and compute full differentials
on demand. This reduces register pressure on the GPU.
* Remove BSDF differential code that was effectively doing nothing as the
differential orientation was discarded when making it compact.
This gives a 1-5% speedup with RTX A6000 + OptiX in our benchmarks, with the
bigger speedups in simpler scenes.
Renders appear to be identical except for the Both displacement option that
does both displacement and bump.
Differential Revision: https://developer.blender.org/D15677
These replace float3 and packed_float3 in various places in the kernel where a
spectral color representation will be used in the future. That representation
will require more than 3 channels and conversion to from/RGB. The kernel code
was refactored to remove the assumption that Spectrum and RGB colors are the
same thing.
There are no functional changes, Spectrum is still a float3 and the conversion
functions are no-ops.
Differential Revision: https://developer.blender.org/D15535
This was tested in some places to check if code was being compiled for the
CPU, however this is only defined in the kernel. Checking __KERNEL_GPU__
always works.
* Rename "texture" to "data array". This has not used textures for a long time,
there are just global memory arrays now. (On old CUDA GPUs there was a cache
for textures but not global memory, so we used to put all data in textures.)
* For CUDA and HIP, put globals in KernelParams struct like other devices.
* Drop __ prefix for data array names, no possibility for naming conflict now that
these are in a struct.
When converting from XYZ to RGB it can happen, in some sky models, that the resulting RGB values are negative.
Atm, this is not considered and the returned values for the sky model can be negative.
This patch clamps the returned RGB values to be `= 0.f`
Reviewed By: brecht, sergey
Differential Revision: https://developer.blender.org/D14777
Keep the existing Rec.709 fit and convert to other colorspace if needed, it
seems accurate enough in practice, and keeps the same performance for the
default case.
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.
Ref D14069, T95597
saturate is depricated in favour of __saturatef this replaces saturate
with __saturatef on CUDA by createing a saturatef function which replaces
all instances of saturate and are hooked up to the correct function on all
platforms.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D13010
Remove prefix of filenames that is the same as the folder name. This used
to help when #includes were using individual files, but now they are always
relative to the cycles root directory and so the prefixes are redundant.
For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.
* Split render/ into scene/ and session/. The scene/ folder now contains the
scene and its nodes. The session/ folder contains the render session and
associated data structures like drivers and render buffers.
* Move top level kernel headers into new folders kernel/camera/, kernel/film/,
kernel/light/, kernel/sample/, kernel/util/
* Move integrator related kernel headers into kernel/integrator/
* Move OSL shaders from kernel/shaders/ to kernel/osl/shaders/
For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.