Previously, the `UserData` and `LocalUserData` classes were only supposed to be
used by the lazy-function system. However, they are generic enough so that they
can also be used by the multi-function system. Therefore, this patch extracts
them into a separate header that can be used in both evaluation systems.
I'm doing this in preparation for being able to pass the geometry nodes logger
to multi-functions, to be able to report errors from there.
Pull Request: https://projects.blender.org/blender/blender/pulls/138861
This refactors `SocketValueVariant` with the following goals in mind:
* Support type erasure so that not all users of `SocketValueVariant` have
to know about all the types sockets can have.
* Move towards supporting "rainbow sockets" which are sockets whoose
type is only known at run-time.
* Reduce complexity when dealing with socket values in general. Previously,
one had to use `SocketValueVariantCPPType` a lot to manage uninitialized
memory. This is better abstracted away now.
One related change that I had to do that I didn't see coming at first was that
I had to refactor `set_default_remaining_outputs` because now the default value
of a `SocketValueVariant` would not contain any value. Previously, it was
initialized the zero-value of the template parameter. Similarly, I had to change
how implicit conversions are created, because comparing the `CPPType` of linked
sockets was not enough anymore to determine if a conversion is necessary.
We could potentially use `SocketValueVariant` for the remaining socket types in the
future as well. Not entirely sure if that helps yet. `SocketValueVariant` can easily be
adapted to make that work though. That would also justify the name
"SocketValueVariant" better.
Pull Request: https://projects.blender.org/blender/blender/pulls/116231
NDEBUG is part of the C standard and disables asserts. Only this will
now be used to decide if asserts are enabled.
DEBUG was a Blender specific define, that has now been removed.
_DEBUG is a Visual Studio define for builds in Debug configuration.
Blender defines this for all platforms. This is still used in a few
places in the draw code, and in external libraries Bullet and Mantaflow.
Pull Request: https://projects.blender.org/blender/blender/pulls/115774
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.
While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.
Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.
Some directories in `./intern/` have also been excluded:
- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.
An "AUTHORS" file has been added, using the chromium projects authors
file as a template.
Design task: #110784
Ref !110783.
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.
This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.
Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.
Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:
https://reuse.software/faq/
The main goal here is to reduce the number of times thread-local data has
to be looked up using e.g. `EnumerableThreadSpecific.local()`. While this
isn't a bottleneck in many cases, it is when the action performed on the local
data is very short and that happens very often (e.g. logging used sockets
during geometry nodes evaluation).
The solution is to simply pass the thread-local data as parameter to many
functions that use it, instead of looking it up in those functions which
generally is more costly.
The lazy-function graph executor now only looks up the local data if
it knows that it might be on a new thread, otherwise it uses the local data
retrieved earlier.
Alongside with `UserData` there is `LocalUserData` now. This allows users
of the lazy-function evaluation (such as geometry nodes) to have custom
thread-local data that is passed to all the lazy-functions automatically.
This is used for logging now.
For example
```
OIIOOutputDriver::~OIIOOutputDriver()
{
}
```
becomes
```
OIIOOutputDriver::~OIIOOutputDriver() {}
```
Saves quite some vertical space, which is especially handy for
constructors.
Pull Request: https://projects.blender.org/blender/blender/pulls/105594
This moves all multi-function related code in the `functions` module
into a new `multi_function` namespace. This is similar to how there
is a `lazy_function` namespace.
The main benefit of this is that many types names that were prefixed
with `MF` (for "multi function") can be simplified.
There is also a common shorthand for the `multi_function` namespace: `mf`.
This is also similar to lazy-functions where the shortened namespace
is called `lf`.
Lazy-function graphs are now evaluated properly even if they contain
cycles. Note that cycles are only ok if there is no data dependency cycle.
For example, a node might output something that is fed back into itself.
As long as the output can be computed without the input that it feeds into,
everything is ok.
The code that builds the graph is responsible for making sure that there
are no actual data dependencies.
In large node setup the threading overhead was sometimes very significant.
That's especially true when most nodes do very little work.
This commit improves the scheduling by not using multi-threading in many
cases unless it's likely that it will be worth it. For more details see the comments
in `BLI_lazy_threading.hh`.
Differential Revision: https://developer.blender.org/D15976
This refactors the geometry nodes evaluation system. No changes for the
user are expected. At a high level the goals are:
* Support using geometry nodes outside of the geometry nodes modifier.
* Support using the evaluator infrastructure for other purposes like field evaluation.
* Support more nodes, especially when many of them are disabled behind switch nodes.
* Support doing preprocessing on node groups.
For more details see T98492.
There are fairly detailed comments in the code, but here is a high level overview
for how it works now:
* There is a new "lazy-function" system. It is similar in spirit to the multi-function
system but with different goals. Instead of optimizing throughput for highly
parallelizable work, this system is designed to compute only the data that is actually
necessary. What data is necessary can be determined dynamically during evaluation.
Many lazy-functions can be composed in a graph to form a new lazy-function, which can
again be used in a graph etc.
* Each geometry node group is converted into a lazy-function graph prior to evaluation.
To evaluate geometry nodes, one then just has to evaluate that graph. Node groups are
no longer inlined into their parents.
Next steps for the evaluation system is to reduce the use of threads in some situations
to avoid overhead. Many small node groups don't benefit from multi-threading at all.
This is much easier to do now because not everything has to be inlined in one huge
node tree anymore.
Differential Revision: https://developer.blender.org/D15914