The main issue of 'type-less' standard C allocations is that there is no check on
allocated type possible.
This is a serious source of annoyance (and crashes) when making some
low-level structs non-trivial, as tracking down all usages of these
structs in higher-level other structs and their allocation is... really
painful.
MEM_[cm]allocN<T> templates on the other hand do check that the
given type is trivial, at build time (static assert), which makes such issue...
trivial to catch.
NOTE: New code should strive to use MEM_new (i.e. allocation and
construction) as much as possible, even for trivial PoD types.
Pull Request: https://projects.blender.org/blender/blender/pulls/135813
After recent commits, the .cc file is only used for actual object data
evaluation in the depsgraph, and the header is only used for the old
DerivedMesh data structure that's still being phased out.
Part of overall "improve image filtering situation" (#116980), this PR addresses
two issues:
- Bilinear (default) image filtering makes half a source pixel wide transparent
border around the image. This is very noticeable when scaling images/movies up
in VSE. However, when there is no scaling up but you have slightly rotated
image, this creates a "somewhat nice" anti-aliasing around the edge.
- The other filtering kinds (e.g. cubic) do not have this behavior. So they do
not create unexpected transparency when scaling up (yay), however for slightly
rotated images the edge is "jagged" (oh no).
More detail and images in PR.
Pull Request: https://projects.blender.org/blender/blender/pulls/117717
There exist a bunch of "give me a (filtered) image pixel at this location"
functions, some with duplicated functionality, some with almost the same but
not quite, some that look similar but behave slightly differently, etc.
Some of them were in BLI, some were in ImBuf.
This commit tries to improve the situation by:
* Adding low level interpolation functions to `BLI_math_interp.hh`
- With documentation on their behavior,
- And with more unit tests.
* At `ImBuf` level, there are only convenience inline wrappers to the above BLI
functions (split off into a separate header `IMB_interp.hh`). However, since
these wrappers are inline, some things get a tiny bit faster as a side
effect. E.g. VSE image strip, scaling to 4K resolution (Windows/Ryzen5950X):
- Nearest filter: 2.33 -> 1.94ms
- Bilinear filter: 5.83 -> 5.69ms
- Subsampled3x3 filter: 28.6 -> 22.4ms
Details on the functions:
- All of them have `_byte` and `_fl` suffixes.
- They exist in 4-channel byte (uchar4) and float (float4), as well as
explicitly passed amount of channels for other float images.
- New functions in BLI `blender::math` namespace:
- `interpolate_nearest`
- `interpolate_bilinear`
- `interpolate_bilinear_wrap`. Note that unlike previous "wrap" function,
this one no longer requires the caller to do their own wrapping.
- `interpolate_cubic_bspline`. Previous similar function was called just
"bicubic" which could mean many different things.
- Same functions exist in `IMB_interp.hh`, they are just convenience that takes
ImBuf and uses data pointer, width, height from that.
Other bits:
- Renamed `mod_f_positive` to `floored_fmod` (better matches `safe_floored_modf`
and `floored_modulo` that exist elsewhere), made it branchless and added more
unit tests.
- `interpolate_bilinear_wrap_fl` no longer clamps result to 0..1 range. Instead,
moved the clamp to be outside of the call in `paint_image_proj.cc` and
`paint_utils.cc`. Though the need for clamping in there is also questionable.
Pull Request: https://projects.blender.org/blender/blender/pulls/117387
Along with the 4.1 libraries upgrade, we are bumping the clang-format
version from 8-12 to 17. This affects quite a few files.
If not already the case, you may consider pointing your IDE to the
clang-format binary bundled with the Blender precompiled libraries.
Except for vertex groups and a few older color types, these
are generally replaced by newer generic attribute types.
Also remove some includes of DNA_mesh_types.h, since it's
included indirectly by BKE_mesh.hh currently.
Each value is now out of the global namespace, so they can be shorter
and easier to read. Most of this commit just adds the necessary casting
and namespace specification. `enum class` can be forward declared since
it has a specified size. We will make use of that in the next commit.
Use the standard "elements_num" naming, and use the "corner" name rather
than the old "loop" name: `verts_num`, `edges_num`, and `corners_num`.
This matches the existing `faces_num` field which was already renamed.
Pull Request: https://projects.blender.org/blender/blender/pulls/116350
Make the naming consistent with the recent change from "loop" to
"corner". Avoid the need for a special type for these triangles by
conveying the semantics in the naming instead.
- `looptris` -> `corner_tris`
- `lt` -> `tri` (or `corner_tri` when there is less context)
- `looptri_index` -> `tri_index` (or `corner_tri_index`)
- `lt->tri[0]` -> `tri[0]`
- `Span<MLoopTri>` -> `Span<int3>`
- `looptri_faces` -> `tri_faces` (or `corner_tri_faces`)
If we followed the naming pattern of "corner_verts" and "edge_verts"
exactly, we'd probably use "tri_corners" instead. But that sounds much
worse and less intuitive to me.
I've found that by using standard vector types for this sort of data,
the commonalities with other areas become much clearer, and code ends
up being naturally more data oriented. Besides that, the consistency
is nice, and we get to mostly remove use of `DNA_meshdata_types.h`.
Pull Request: https://projects.blender.org/blender/blender/pulls/116238
This gives better asserts in debug builds through use of Span, more
safety when name convention attributes happen to have different types
or domains, and simpler code in some cases. But the main reasoning is to
avoid relying on the specifics of CustomData more to allow us to replace
it in the future.
Implements the rest of #101689, after 5e9ea9243b.
- `vdata` -> `vert_data`
- `edata` -> `edge_data`
- `pdata` -> `face_data`
- `ldata` -> `loop_data`
A deeper rename of `loop` to `corner` will be proposed as a next
step, and renaming `totvert` and `totedge` can be done separately.
Pull Request: https://projects.blender.org/blender/blender/pulls/110432
Implements part of #101689.
The "poly" name was chosen to distinguish the `MLoop` + `MPoly`
combination from the `MFace` struct it replaced. Those two structures
persisted together for a long time, but nowadays `MPoly` is gone, and
`MFace` is only used in some legacy code like the particle system.
To avoid unnecessarily using a different term, increase consistency
with the UI and with BMesh, and generally make code a bit easier to
read, this commit replaces the `poly` term with `poly`. Most variables
that use the term are renamed too. `Mesh.totface` and `Mesh.fdata` now
have a `_legacy` suffix to reduce confusion. In a next step, `pdata`
can be renamed to `face_data` as well.
Pull Request: https://projects.blender.org/blender/blender/pulls/109819
The Texture margin 'adjacent faces' algorithm always used the
full UV map, even if not all polygons were actually part of the
baking. Remedy this by checking the mask if passed in.
Pull Request: https://projects.blender.org/blender/blender/pulls/109500
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.
This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.
Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.
Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:
https://reuse.software/faq/
Combine the newer less efficient C++ implementations and the older
less convenient C functions. The maps now contain one large array of
indices, split into groups by a separate array of offset indices.
Though performance of creating the maps is relatively unchanged, the
new implementation uses 4 bytes less per source element than the C
maps, and 20 bytes less than the newer C++ functions (which also
had more overhead with larger N-gons). The usage syntax is simpler
than the C functions as well.
The reduced memory usage is helpful for when these maps are cached
in the near future. It will also allow sharing the offsets between
maps for different domains like vertex to corner and vertex to face.
A simple `GroupedSpan` class is introduced to make accessing the
topology maps much simpler. It combines offset indices and a separate
span, splitting it into chunks in an efficient way.
Pull Request: https://projects.blender.org/blender/blender/pulls/107861
For derived mesh triangulation information, currently the three face
corner indices are stored in the same struct as index of the mesh
polygon the triangle is part of. While those pieces of information are
often used together, they often aren't, and combining them prevents
the indices from being used with generic utilities. It also means that
1/3 more memory has to be written when recalculating the triangulation
after deforming the mesh, and that the entire triangle data has to be
read when only the polygon indices are needed.
This commit splits the polygon index into a separate cache on `Mesh`.
The triangulation data isn't saved to files, so this doesn't affect
.blend files at all.
In a simple test deforming a mesh with geometry nodes, the time used
to recalculate the triangulation reduced from 2.0 ms to 1.6 ms,
increasing overall FPS from 14.6 to 15.
Pull Request: https://projects.blender.org/blender/blender/pulls/106774
Implements #95967.
Currently the `MPoly` struct is 12 bytes, and stores the index of a
face's first corner and the number of corners/verts/edges. Polygons
and corners are always created in order by Blender, meaning each
face's corners will be after the previous face's corners. We can take
advantage of this fact and eliminate the redundancy in mesh face
storage by only storing a single integer corner offset for each face.
The size of the face is then encoded by the offset of the next face.
The size of a single integer is 4 bytes, so this reduces memory
usage by 3 times.
The same method is used for `CurvesGeometry`, so Blender already has
an abstraction to simplify using these offsets called `OffsetIndices`.
This class is used to easily retrieve a range of corner indices for
each face. This also gives the opportunity for sharing some logic with
curves.
Another benefit of the change is that the offsets and sizes stored in
`MPoly` can no longer disagree with each other. Storing faces in the
order of their corners can simplify some code too.
Face/polygon variables now use the `IndexRange` type, which comes with
quite a few utilities that can simplify code.
Some:
- The offset integer array has to be one longer than the face count to
avoid a branch for every face, which means the data is no longer part
of the mesh's `CustomData`.
- We lose the ability to "reference" an original mesh's offset array
until more reusable CoW from #104478 is committed. That will be added
in a separate commit.
- Since they aren't part of `CustomData`, poly offsets often have to be
copied manually.
- To simplify using `OffsetIndices` in many places, some functions and
structs in headers were moved to only compile in C++.
- All meshes created by Blender use the same order for faces and face
corners, but just in case, meshes with mismatched order are fixed by
versioning code.
- `MeshPolygon.totloop` is no longer editable in RNA. This API break is
necessary here unfortunately. It should be worth it in 3.6, since
that's the best way to allow loading meshes from 4.0, which is
important for an LTS version.
Pull Request: https://projects.blender.org/blender/blender/pulls/105938
For example
```
OIIOOutputDriver::~OIIOOutputDriver()
{
}
```
becomes
```
OIIOOutputDriver::~OIIOOutputDriver() {}
```
Saves quite some vertical space, which is especially handy for
constructors.
Pull Request: https://projects.blender.org/blender/blender/pulls/105594
Implements #102359.
Split the `MLoop` struct into two separate integer arrays called
`corner_verts` and `corner_edges`, referring to the vertex each corner
is attached to and the next edge around the face at each corner. These
arrays can be sliced to give access to the edges or vertices in a face.
Then they are often referred to as "poly_verts" or "poly_edges".
The main benefits are halving the necessary memory bandwidth when only
one array is used and simplifications from using regular integer indices
instead of a special-purpose struct.
The commit also starts a renaming from "loop" to "corner" in mesh code.
Like the other mesh struct of array refactors, forward compatibility is
kept by writing files with the older format. This will be done until 4.0
to ease the transition process.
Looking at a small portion of the patch should give a good impression
for the rest of the changes. I tried to make the changes as small as
possible so it's easy to tell the correctness from the diff. Though I
found Blender developers have been very inventive over the last decade
when finding different ways to loop over the corners in a face.
For performance, nearly every piece of code that deals with `Mesh` is
slightly impacted. Any algorithm that is memory bottle-necked should
see an improvement. For example, here is a comparison of interpolating
a vertex float attribute to face corners (Ryzen 3700x):
**Before** (Average: 3.7 ms, Min: 3.4 ms)
```
threading::parallel_for(loops.index_range(), 4096, [&](IndexRange range) {
for (const int64_t i : range) {
dst[i] = src[loops[i].v];
}
});
```
**After** (Average: 2.9 ms, Min: 2.6 ms)
```
array_utils::gather(src, corner_verts, dst);
```
That's an improvement of 28% to the average timings, and it's also a
simplification, since an index-based routine can be used instead.
For more examples using the new arrays, see the design task.
Pull Request: https://projects.blender.org/blender/blender/pulls/104424
Refactoring mesh code, it has become clear that local cleanups and
simplifications are limited by the need to keep a C public API for
mesh functions. This change makes code more obvious and makes further
refactoring much easier.
- Add a new `BKE_mesh.hh` header for a C++ only mesh API
- Introduce a new `blender::bke::mesh` namespace, documented here:
https://wiki.blender.org/wiki/Source/Objects/Mesh#Namespaces
- Move some functions to the new namespace, cleaning up their arguments
- Move code to `Array` and `float3` where necessary to use the new API
- Define existing inline mesh data access functions to the new header
- Keep some C API functions where necessary because of RNA
- Move all C++ files to use the new header, which includes the old one
In the future it may make sense to split up `BKE_mesh.hh` more, but for
now keeping the same name as the existing header keeps things simple.
Pull Request: https://projects.blender.org/blender/blender/pulls/105416
With the goal of clearly differentiating between arrays and single
elements, improving consistency across Blender, and using wording
that's easier to read and say, change variable names for Mesh edges
and polygons/faces.
Common renames are the following, with some extra prefixes, etc.
- `mpoly` -> `polys`
- `mpoly`/`mp`/`p` -> `poly`
- `medge` -> `edges`
- `med`/`ed`/`e` -> `edge`
`MLoop` variables aren't affected because they will be replaced
when they're split up into to arrays in #104424.
Currently the `MLoopUV` struct stores UV coordinates and flags related
to editing UV maps in the UV editor. This patch changes the coordinates
to use the generic 2D vector type, and moves the flags into three
separate boolean attributes. This follows the design in T95965, with
the ultimate intention of simplifying code and improving performance.
Importantly, the change allows exporters and renderers to use UVs
"touched" by geometry nodes, which only creates generic attributes.
It also allows geometry nodes to create "proper" UV maps from scratch,
though only with the Store Named Attribute node for now.
The new design considers any 2D vector attribute on the corner domain
to be a UV map. In the future, they might be distinguished from regular
2D vectors with attribute metadata, which may be helpful because they
are often interpolated differently.
Most of the code changes deal with passing around UV BMesh custom data
offsets and tracking the boolean "sublayers". The boolean layers are
use the following prefixes for attribute names: vert selection: `.vs.`,
edge selection: `.es.`, pinning: `.pn.`. Currently these are short to
avoid using up the maximum length of attribute names. To accommodate
for these 4 extra characters, the name length limit is enlarged to 68
bytes, while the maximum user settable name length is still 64 bytes.
Unfortunately Python/RNA API access to the UV flag data becomes slower.
Accessing the boolean layers directly is be better for performance in
general.
Like the other mesh SoA refactors, backward and forward compatibility
aren't affected, and won't be changed until 4.0. We pay for that by
making mesh reading and writing more expensive with conversions.
Resolves T85962
Differential Revision: https://developer.blender.org/D14365
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.
Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).
This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.
One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.
**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.
The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.
Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.
The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.
**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.
**Future Improvements**
* Remove uses of "vert_coords" functions:
* `BKE_mesh_vert_coords_alloc`
* `BKE_mesh_vert_coords_get`
* `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
* Currently `reinterpret_cast` is used for those C-API functions
Differential Revision: https://developer.blender.org/D15982
Because they are friendlier to use in C++ code than the existing mesh
mapping API, these mappings from one domain to another were often
reimplemented in separate files. This commit moves some basic
implementations to a `mesh_topology` namespace in the existing
mesh mapping header file. These is plenty of room for performance
improvement here, particularly by not using an array of Vectors, but
that can come later.
Split from D16029
Use `verts` instead of `vertices` and `polys` instead of `polygons`
in the API added in 05952aa94d. This aligns better with
existing naming where the shorter names are much more common.
For copy-on-write, we want to share attribute arrays between meshes
where possible. Mutable pointers like `Mesh.mvert` make that difficult
by making ownership vague. They also make code more complex by adding
redundancy.
The simplest solution is just removing them and retrieving layers from
`CustomData` as needed. Similar changes have already been applied to
curves and point clouds (e9f82d3dc7, 410a6efb74). Removing use of
the pointers generally makes code more obvious and more reusable.
Mesh data is now accessed with a C++ API (`Mesh::edges()` or
`Mesh::edges_for_write()`), and a C API (`BKE_mesh_edges(mesh)`).
The CoW changes this commit makes possible are described in T95845
and T95842, and started in D14139 and D14140. The change also simplifies
the ongoing mesh struct-of-array refactors from T95965.
**RNA/Python Access Performance**
Theoretically, accessing mesh elements with the RNA API may become
slower, since the layer needs to be found on every random access.
However, overhead is already high enough that this doesn't make a
noticible differenc, and performance is actually improved in some
cases. Random access can be up to 10% faster, but other situations
might be a bit slower. Generally using `foreach_get/set` are the best
way to improve performance. See the differential revision for more
discussion about Python performance.
Cycles has been updated to use raw pointers and the internal Blender
mesh types, mostly because there is no sense in having this overhead
when it's already compiled with Blender. In my tests this roughly
halves the Cycles mesh creation time (0.19s to 0.10s for a 1 million
face grid).
Differential Revision: https://developer.blender.org/D15488
Headers should only include other headers when absolutely necessary,
to avoid unnecessary dependencies and increasing compile times.
To make this change simpler, three DerivedMesh functions with a single
use were removed.
Knowing when layers are retrieved for write access will be essential
when adding proper copy-on-write support. This commit makes that
clearer by adding `const` where the retrieved data is not modified.
Ref T95842
Works for both Cycles and multires bake. Triangles are baked to multiple
UDIM images if they span across them, though such UV layouts are generally
discouraged as there is no filtering across UDIM tiles.
The bake margin currently only works within UDIM tiles. For the extend method
this is logical, for the adjacent faces method it may be useful to support
copying pixels from other UDIM tiles, though this seems somewhat complicated.
Fixes T95190
Ref T72390