More consistently return geometry bounds with the `Bounds` type that
holds the min and max in one variable. This simplifies some code and
reduces the need to initialize separate min and max variables first.
Meshes now use the same `bounds_min_max()` function as curves and
point clouds, though the wrapper mesh isn't affected yet.
The motivation is to make some of the changes for #96968 simpler.
Move `GeometrySet` and `GeometryComponent` and subclasses
to the `blender::bke` namespace. This wasn't done earlier since
these were one of the first C++ classes used throughout Blender,
but now it is common.
Also remove the now-unnecessary C-header, since all users of
the geometry set header are now in C++.
Pull Request: https://projects.blender.org/blender/blender/pulls/109020
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.
This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.
Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.
Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:
https://reuse.software/faq/
The usage of the lib pointer was cryptic to say the least, it was
essentialy used to allow or not local IDs results in the mapping
old_id_pointer -> new_id_pointer lookup result.
Now:
- Explicitely pass a boolean to allow or not local ID as result in
lower-level code.
- Pass the 'self ID' pointer instead of its library to the whole
liblinking code (that was already the case in a few places).
Note that naming of the 'self id' pointer is currently very inconsistent
throughout the readfile liblink code, this will have to be cleaned up in
a separate step later. For now, `self_id` has been chosen for new code
as it matches the terminology in lib_query code.
The later change can also allow finer handling of lookup on undo, based
on how it was re-read (or not), should the need for this arise.
Implicit sharing means attribute ownership is shared between geometry
data-blocks, and the sharing happens automatically. So it's unnecessary
to choose whether to enable it when copying a mesh.
Add the ability to retrieve implicit sharing info directly from the
C++ attribute API, which simplifies memory usage and performance
optimizations making use of it. This commit uses the additions to
the API to avoid copies in a few places:
- The "rest_position" attribute in the mesh modifier stack
- Instance on Points node
- Instances to points node
- Mesh to points node
- Points to vertices node
Many files are affected because in order to include the new information
in the API's returned data, I had to switch a bunch of types from
`VArray` to `AttributeReader`. This generally makes sense anyway, since
it allows retrieving the domain, which wasn't possible before in some
cases. I overloaded the `*` deference operator for some syntactic sugar
to avoid the (very ugly) `.varray` that would be necessary otherwise.
Pull Request: https://projects.blender.org/blender/blender/pulls/107059
Similar to e35f971da1. We aren't meant to rely on the
zero-initiatialization on creation anyway. I observed a small (a few
percent) decrease in minimum runtime in the geometry nodes points node.
The position attribute has special meaning for point clouds, and
meshes and curves have access methods for the attribute as well.
This saves boilerplate and gives more consistency between types.
This integrates the new implicit-sharing system (from fbcddfcd68)
with `CustomData`. Now the potentially long arrays referenced by custom
data layers can be shared between different systems but most importantly
between different geometries. This makes e.g. copying a mesh much cheaper
because none of the attributes has to be copied. Only when an attribute
is modified does it have to be copied.
Also see the original design task: #95845.
This reduces memory and improves performance by avoiding unnecessary
data copies. For example, the used memory after loading a highly
subdivided mesh is reduced from 2.4GB to 1.79GB. This is about 25%
less which is the expected amount because in `main` there are 4 copies
of the data:
1. The original data which is allocated when the file is loaded.
2. The copy for the depsgraph allocated during depsgraph evaluation.
3. The copy for the undo system allocated when the first undo step is
created right after loading the file.
4. GPU buffers allocated for drawing.
This patch only gets rid of copy number 2 for the depsgraph. In theory
the other copies can be removed as part of follow up PRs as well though.
-----
The patch has three main components:
* Slightly modified `CustomData` API to make it work better with implicit
sharing:
* `CD_REFERENCE` and `CD_DUPLICATE` have been removed because they are
meaningless when implicit-sharing is used.
* `CD_ASSIGN` has been removed as well because it's not an allocation
type anyway. The functionality of using existing arrays as custom
data layers has not been removed though.
* This can still be done with `CustomData_add_layer_with_data` which
also has a new argument that allows passing in information about
whether the array is shared.
* `CD_FLAG_NOFREE` has been removed because it's no longer necessary. It
only existed because of `CD_REFERENCE`.
* `CustomData_copy` and `CustomData_merge` have been split up into a
functions that do copy the actual attribute values and those that do
not. The latter functions now have the `_layout` suffix
(e.g. `CustomData_copy_layout`).
* Changes in `customdata.cc` to make it actually use implicit-sharing.
* Changes in various other files to adapt to the changes in `BKE_customdata.h`.
Pull Request: https://projects.blender.org/blender/blender/pulls/106228
This simplifies the usage of the API and is preparation for #104478.
The `CustomData_add_layer` and `CustomData_add_layer_named` now have corresponding
`*_with_data` functions that should be used when creating the layer from existing data.
Pull Request: https://projects.blender.org/blender/blender/pulls/105708
The goal is to give technical artists the ability to optimize modifier usage
and/or geometry node groups for performance. In the long term, it
would be useful if Blender could provide its own UI to display profiling
information to users. However, right now, there are too many open
design questions making it infeasible to tackle this in the short term.
This commit uses a simpler approach: Instead of adding new ui for
profiling data, it exposes the execution-time of modifiers in the Python
API. This allows technical artists to access the information and to build
their own UI to display the relevant information. In the long term this
will hopefully also help us to integrate a native ui for this in Blender
by observing how users use this information.
Note: The execution time of a modifier highly depends on what other
things the CPU is doing at the same time. For example, in many more
complex files, many objects and therefore modifiers are evaluated at
the same time by multiple threads which makes the measurement
much less reliable. For best results, make sure that only one object
is evaluated at a time (e.g. by changing it in isolation) and that no
other process on the system keeps the CPU busy.
As shown below, the execution time has to be accessed on the
evaluated object, not the original object.
```lang=python
import bpy
depsgraph = bpy.context.view_layer.depsgraph
ob = bpy.context.active_object
ob_eval = ob.evaluated_get(depsgraph)
modifier_eval = ob_eval.modifiers[0]
print(modifier_eval.execution_time, "s")
```
Differential Revision: https://developer.blender.org/D17185
Use a consistent style for declaring the names of struct members
in their declarations. Note that this convention was already used in
many places but not everywhere.
Remove spaces around the text (matching commented arguments) with
the advantage that the the spell checking utility skips these terms.
Making it possible to extract & validate these comments automatically.
Also use struct names for `bAnimChannelType` & `bConstraintTypeInfo`
which were using brief descriptions.
Bounding box calculation can be a large in some situations, especially
instancing. This patch caches the min and max of the bounding box in
runtime data of meshes, point clouds, and curves, implementing part of
T96968.
Bounds are now calculated lazily-- only after they are tagged dirty.
Also, cached bounds are also shared when copying geometry data-blocks
that have equivalent data. When bounds are calculated on an evaluated
data-block, they are also accessible on the original, and the next
evaluated ID will also share them. A geometry will stop sharing bounds
as soon as its positions (or radii) are changed.
Just caching the bounds gave a 2-3x speedup with thousands of mesh
geometry instances in the viewport. Sharing the bounds can eliminate
recalculations entirely in cases like copying meshes in geometry nodes
or the selection paint brush in curves sculpt mode, which causes a
reevaluation but doesn't change the positions.
**Implementation**
The sharing is achieved with a `shared_ptr` that points to a cache mutex
(from D16419) and the cached bounds data. When geometries are copied,
the bounds are shared by default, and only "un-shared" when the bounds
are tagged dirty.
Point clouds have a new runtime struct to store this data. Functions
for tagging the data dirty are improved for added for point clouds
and improved for curves. A missing tag has also been fixed for mesh
sculpt mode.
**Future**
There are further improvements which can be worked on next
- Apply changes to volume objects and other types where it makes sense
- Continue cleanup changes described in T96968
- Apply shared cache design to more expensive data like triangulation
or normals
Differential Revision: https://developer.blender.org/D16204
Don't add the radius attribute to point clouds by default, since not
having a radius attribute should be a valid state. The radius is only
set when a radius attribute also exists on curves.
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
This adds a utility function to copy the data from a PointCloud
outside of the main database to one that is in the database. This
is similar to `BKE_mesh_nomain_to_mesh`.
Ref D11592
When resizing mesh and curves attribute storage, avoid initializing the
new memory for basic types. Also, avoid skipping "no free" layers; all
layers should be reallocated to the new size since they may be accessed.
The semantics introduced in 25237d2625 are essential for this
change, because otherwise we don't have a way to construct non-trivial
types in the new memory.
In a basic test of the extrude node, I observed a performance
improvement of about 30%, from 55ms to 42ms.
Differential Revision: https://developer.blender.org/D15818
Replace `mesh_attributes`, `mesh_attributes_for_write` and the point
cloud versions with methods on the `Mesh` and `PointCloud` types.
This makes them friendlier to use and improves readability.
Differential Revision: https://developer.blender.org/D15907
When allocating new `CustomData` layers, often we do redundant
initialization of arrays. For example, it's common that values are
allocated, set to their default value, and then set to some other
value. This is wasteful, and it negates the benefits of optimizations
to the allocator like D15082. There are two reasons for this. The
first is array-of-structs storage that makes it annoying to initialize
values manually, and the second is confusing options in the Custom Data
API. This patch addresses the latter.
The `CustomData` "alloc type" options are rearranged. Now, besides
the options that use existing layers, there are two remaining:
* `CD_SET_DEFAULT` sets the default value.
* Usually zeroes, but for colors this is white (how it was before).
* Should be used when you add the layer but don't set all values.
* `CD_CONSTRUCT` refers to the "default construct" C++ term.
* Only necessary or defined for non-trivial types like vertex groups.
* Doesn't do anything for trivial types like `int` or `float3`.
* Should be used every other time, when all values will be set.
The attribute API's `AttributeInit` types are updated as well.
To update code, replace `CD_CALLOC` with `CD_SET_DEFAULT` and
`CD_DEFAULT` with `CD_CONSTRUCT`. This doesn't cause any functional
changes yet. Follow-up commits will change to avoid initializing
new layers where the correctness is clear.
Differential Revision: https://developer.blender.org/D15617
This mirrors the C++ attribute API better, separates the implementation
of attributes from CustomData slightly, and makes functions simpler,
clearer, and safer.
Also fix an issue with removing an attribute caused by 97712b018d
meant the first attribute with the given type was removed instead of
the attribute with the given name.
Previously the function had a fair amount of ugly boilerplate to avoid
allocating the temporary layers array, and then free it if necessary.
`blender::Vector` solves that problem more elegantly. Passing a span,
using references in a few cases, and using a switch statement also make
the functions simpler.
This refactoring is in preparation for D14583 and D14685.
Differential Revision: https://developer.blender.org/D15011
Finding the greatest and/or smallest element in an array is a common
need. This commit refactors the point cloud bounds code added in
6d7dbdbb44 to a more general header in blenlib.
This will allow reusing the algorithm for curves without duplicating it.
Differential Revision: https://developer.blender.org/D14053
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:float2) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the blender::math namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others we
currently don't have (uintX, intX). All these variations were asking
for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector functions
should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the BLI_(float|double|mpq)(2|3|4).hh is a bit of a
let down. Most clases are incomplete, out of sync with each others with
different codestyles, and some functions that should be static are not
(i.e: float3::reflect()).
Upsides:
- Still support .x, .y, .z, .w for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types and
can be restricted to certain types. Also template specialization let us
define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance is
the same.
Downsides:
- Might impact debugability. Though I would arge that the bugs are rarelly
caused by the vector class itself (since the operations are quite trivial)
but by the type conversions.
- Might impact compile time. I did not saw a significant impact since the
usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length. For
instance, one can't call len_squared_v3v3 in math::length_squared() and
call it a day.
- Type cast does not work with the template version of the math:: vector
functions. Meaning you need to manually cast float * and (float *)[3] to
float3 for the function calls.
i.e: math::distance_squared(float3(nearest.co), positions[i]);
- Some parts might loose in readability:
float3::dot(v1.normalized(), v2.normalized())
becoming
math::dot(math::normalize(v1), math::normalize(v2))
But I propose, when appropriate, to use
using namespace blender::math; on function local or file scope to
increase readability. dot(normalize(v1), normalize(v2))
Consideration:
- Include back .length() method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement.
It felt like too much for what we need and would be difficult to
extend / modify to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches delaunay_2d.cc and the intersection code. I would like to
know @Howard Trickey (howardt) opinion on the matter.
- The noexcept on the copy constructor of mpq(2|3) is being removed.
But according to @Jacques Lucke (JacquesLucke) it is not a real problem
for now.
I would like to give a huge thanks to @Jacques Lucke (JacquesLucke) who
helped during this and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: http://developer.blender.org/D13791
This is analagous to 6a71b2af66 which did the same
thing for mesh data. Two differences are that here the coordinates
are simply `float3`, and we account for the radius if it's available.
Here I observed a similar performance increase, from 50ms
average to 10ms average, with 16 million points, a 5x speedup.
The calculation is about 1.4 times faster when no radius is used, down
to 7.3ms average. Before, the calculation was only 1.2 times faster.
`GeometrySet::compute_boundbox_without_instances` may not initialize min
max in some cases such as meshes without vertices.
This can result in a Bounding Box with impossible dimensions
(min=FLT_MAX, max=-FLT_MAX).
So repeat the same solution seen in `BKE_object_boundbox_calc_from_mesh`
and set boundbox values to zero.
Reviewed By: HooglyBoogly
Differential Revision: https://developer.blender.org/D13664
- Added space below non doc-string comments to make it clear
these aren't comments for the symbols directly below them.
- Use doxy sections for some headers.
- Minor improvements to doc-strings.
Ref T92709
The main goal of this refactor is to make BPath module use `IDTypeInfo`,
and move each ID-specific part of the `foreach_path` looper into their
own IDTypeInfo struct, using a new `foreach_path` callback.
Additionally, following improvements/cleanups are included:
* Attempt to get better, more consistent namings.
** In particular, move from `path_visitor` to more standard `foreach_path`.
* Update and extend documentation.
** API doc was moved to header, according to recent discussions on this
topic.
* Remove `BKE_bpath_relocate_visitor` from API, this is specific
callback that belongs in `lib_id.c` user code.
NOTE: This commit is expected to be 100% non-behavioral-change. This
implies that several potential further changes were only noted as
comments (like using a more generic solution for
`lib_id_library_local_paths`, addressing inconsistencies like path of
packed libraries always being skipped, regardless of the
`BKE_BPATH_FOREACH_PATH_SKIP_PACKED` `eBPathForeachFlag` flag value,
etc.).
NOTE: basic unittests were added to master already in
rBdcc500e5a265093bc9cc.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D13381
Two issues addressed here:
I) `asset_type_info` is sub-data, not a callback. Therefore, move it
before the callbacks in the `IDTypeInfo` struct.
II) More important, initialize this new attribute in *ALL* `IDTypeInfo`
instances. No member of this struct should ever be left implicitely
uninitilazed, ever.
Aftermath of rBa84f1c02d251.
This commit adds to ID struct a new optional 'weak reference' to a
linked ID (in the form of a blend file library path and full ID name).
This can then be used on next append to try to find a matching local ID
instead of re-making the linked data local again.
Ref. T90545
NOTE: ID re-use will be disabled for regular append for the time being
(3.0 release), and only used for assets. Therefore, this commit should
not change anything user-wise.
Differential Revision: https://developer.blender.org/D12545
This was not really useful, and added estra useless steps in case and ID
should not actually be written.
Further more, it prevented clearing the usercount on write, which can be
cause a false positive 'chanhged' detection in undo/redo case.
This concerns currently only collections (`master_collection` of scenes)
and root node trees. It removes the matching type-specific helpers
(`BKE_collection_master_scene_search` and `BKE_node_tree_find_owner_ID`).
No functional change expected here.
NOTE: Current implementation of `owner_get` is far from optimal, we
could probably do it better, see {T69169}.
NOTE: While it could also have it, shapekeys IDTypeInfo was left out of
this change for now. Mainly because it sould not be used currently, and
we ultimately want to demote shape keys from ID status anyway.
Currently this is needed to properly tag PointCache's for info update
(fixes an issue reported in T82503).
Suspect we may need this in more cases in the future though, RNA
assign/update processes are not always 100% enough to deal with
complicated corner cases.