/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation * * SPDX-License-Identifier: Apache-2.0 */ #ifdef WITH_CUDA # include # include # include # include # include "device/cuda/device_impl.h" # include "util/debug.h" # include "util/log.h" # include "util/md5.h" # include "util/path.h" # include "util/string.h" # include "util/system.h" # include "util/texture.h" # include "util/time.h" # include "util/types.h" # ifdef _WIN32 # include "util/windows.h" # endif # include "kernel/device/cuda/globals.h" # include "session/display_driver.h" CCL_NAMESPACE_BEGIN class CUDADevice; bool CUDADevice::have_precompiled_kernels() { string cubins_path = path_get("lib"); return path_exists(cubins_path); } BVHLayoutMask CUDADevice::get_bvh_layout_mask(uint /*kernel_features*/) const { return BVH_LAYOUT_BVH2; } void CUDADevice::set_error(const string &error) { Device::set_error(error); if (first_error) { LOG_ERROR << "Refer to the Cycles GPU rendering documentation for possible solutions:\n" "https://docs.blender.org/manual/en/latest/render/cycles/gpu_rendering.html\n"; first_error = false; } } CUDADevice::CUDADevice(const DeviceInfo &info, Stats &stats, Profiler &profiler, bool headless) : GPUDevice(info, stats, profiler, headless) { /* Verify that base class types can be used with specific backend types */ static_assert(sizeof(texMemObject) == sizeof(CUtexObject)); static_assert(sizeof(arrayMemObject) == sizeof(CUarray)); first_error = true; cuDevId = info.num; cuDevice = 0; cuContext = nullptr; cuModule = nullptr; need_texture_info = false; pitch_alignment = 0; /* Initialize CUDA. */ CUresult result = cuInit(0); if (result != CUDA_SUCCESS) { set_error(string_printf("Failed to initialize CUDA runtime (%s)", cuewErrorString(result))); return; } /* Setup device and context. */ result = cuDeviceGet(&cuDevice, cuDevId); if (result != CUDA_SUCCESS) { set_error(string_printf("Failed to get CUDA device handle from ordinal (%s)", cuewErrorString(result))); return; } /* CU_CTX_MAP_HOST for mapping host memory when out of device memory. * CU_CTX_LMEM_RESIZE_TO_MAX for reserving local memory ahead of render, * so we can predict which memory to map to host. */ int value; cuda_assert(cuDeviceGetAttribute(&value, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, cuDevice)); can_map_host = value != 0; cuda_assert(cuDeviceGetAttribute( &pitch_alignment, CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT, cuDevice)); if (can_map_host) { init_host_memory(); } int active = 0; unsigned int ctx_flags = 0; cuda_assert(cuDevicePrimaryCtxGetState(cuDevice, &ctx_flags, &active)); /* Configure primary context only once. */ if (active == 0) { ctx_flags |= CU_CTX_LMEM_RESIZE_TO_MAX; result = cuDevicePrimaryCtxSetFlags(cuDevice, ctx_flags); if (result != CUDA_SUCCESS && result != CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE) { set_error(string_printf("Failed to configure CUDA context (%s)", cuewErrorString(result))); return; } } /* Create context. */ result = cuDevicePrimaryCtxRetain(&cuContext, cuDevice); if (result != CUDA_SUCCESS) { set_error(string_printf("Failed to retain CUDA context (%s)", cuewErrorString(result))); return; } int major, minor; cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId); cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId); cuDevArchitecture = major * 100 + minor * 10; } CUDADevice::~CUDADevice() { texture_info.free(); if (cuModule) { cuda_assert(cuModuleUnload(cuModule)); } cuda_assert(cuDevicePrimaryCtxRelease(cuDevice)); } bool CUDADevice::support_device(const uint /*kernel_features*/) { int major, minor; cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId); cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId); /* We only support sm_50 and above */ if (major < 5) { set_error(string_printf( "CUDA backend requires compute capability 5.0 or up, but found %d.%d.", major, minor)); return false; } return true; } bool CUDADevice::check_peer_access(Device *peer_device) { if (peer_device == this) { return false; } if (peer_device->info.type != DEVICE_CUDA && peer_device->info.type != DEVICE_OPTIX) { return false; } CUDADevice *const peer_device_cuda = static_cast(peer_device); int can_access = 0; cuda_assert(cuDeviceCanAccessPeer(&can_access, cuDevice, peer_device_cuda->cuDevice)); if (can_access == 0) { return false; } // Ensure array access over the link is possible as well (for 3D textures) cuda_assert(cuDeviceGetP2PAttribute(&can_access, CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED, cuDevice, peer_device_cuda->cuDevice)); if (can_access == 0) { return false; } // Enable peer access in both directions { const CUDAContextScope scope(this); CUresult result = cuCtxEnablePeerAccess(peer_device_cuda->cuContext, 0); if (result != CUDA_SUCCESS && result != CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED) { set_error(string_printf("Failed to enable peer access on CUDA context (%s)", cuewErrorString(result))); return false; } } { const CUDAContextScope scope(peer_device_cuda); CUresult result = cuCtxEnablePeerAccess(cuContext, 0); if (result != CUDA_SUCCESS && result != CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED) { set_error(string_printf("Failed to enable peer access on CUDA context (%s)", cuewErrorString(result))); return false; } } return true; } bool CUDADevice::use_adaptive_compilation() { return DebugFlags().cuda.adaptive_compile; } /* Common NVCC flags which stays the same regardless of shading model, * kernel sources md5 and only depends on compiler or compilation settings. */ string CUDADevice::compile_kernel_get_common_cflags(const uint kernel_features) { const int machine = system_cpu_bits(); const string source_path = path_get("source"); const string include_path = source_path; string cflags = string_printf( "-m%d " "--ptxas-options=\"-v\" " "--use_fast_math " "-DNVCC " "-I\"%s\"", machine, include_path.c_str()); if (use_adaptive_compilation()) { cflags += " -D__KERNEL_FEATURES__=" + to_string(kernel_features); } const char *extra_cflags = getenv("CYCLES_CUDA_EXTRA_CFLAGS"); if (extra_cflags) { cflags += string(" ") + string(extra_cflags); } # ifdef WITH_NANOVDB cflags += " -DWITH_NANOVDB"; # endif # ifdef WITH_CYCLES_DEBUG cflags += " -DWITH_CYCLES_DEBUG"; # endif return cflags; } string CUDADevice::compile_kernel(const string &common_cflags, const char *name, const char *base, bool force_ptx) { /* Compute kernel name. */ int major, minor; cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId); cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId); /* Attempt to use kernel provided with Blender. */ if (!use_adaptive_compilation()) { if (!force_ptx) { const string cubin = path_get(string_printf("lib/%s_sm_%d%d.cubin.zst", name, major, minor)); LOG_INFO << "Testing for pre-compiled kernel " << cubin << "."; if (path_exists(cubin)) { LOG_INFO << "Using precompiled kernel."; return cubin; } } /* The driver can JIT-compile PTX generated for older generations, so find the closest one. */ int ptx_major = major, ptx_minor = minor; while (ptx_major >= 5) { const string ptx = path_get( string_printf("lib/%s_compute_%d%d.ptx.zst", name, ptx_major, ptx_minor)); LOG_INFO << "Testing for pre-compiled kernel " << ptx << "."; if (path_exists(ptx)) { LOG_INFO << "Using precompiled kernel."; return ptx; } if (ptx_minor > 0) { ptx_minor--; } else { ptx_major--; ptx_minor = 9; } } } /* Try to use locally compiled kernel. */ string source_path = path_get("source"); const string source_md5 = path_files_md5_hash(source_path); /* We include cflags into md5 so changing cuda toolkit or changing other * compiler command line arguments makes sure cubin gets re-built. */ const string kernel_md5 = util_md5_string(source_md5 + common_cflags); const char *const kernel_ext = force_ptx ? "ptx" : "cubin"; const char *const kernel_arch = force_ptx ? "compute" : "sm"; const string cubin_file = string_printf( "cycles_%s_%s_%d%d_%s.%s", name, kernel_arch, major, minor, kernel_md5.c_str(), kernel_ext); const string cubin = path_cache_get(path_join("kernels", cubin_file)); LOG_INFO << "Testing for locally compiled kernel " << cubin << "."; if (path_exists(cubin)) { LOG_INFO << "Using locally compiled kernel."; return cubin; } # ifdef _WIN32 if (!use_adaptive_compilation() && have_precompiled_kernels()) { if (major < 5) { set_error( string_printf("CUDA backend requires compute capability 5.0 or up, but found %d.%d. " "Your GPU is not supported.", major, minor)); } else { set_error( string_printf("CUDA binary kernel for this graphics card compute " "capability (%d.%d) not found.", major, minor)); } return string(); } # endif /* Compile. */ const char *const nvcc = cuewCompilerPath(); if (nvcc == nullptr) { set_error( "CUDA nvcc compiler not found. " "Install CUDA toolkit in default location."); return string(); } const int nvcc_cuda_version = cuewCompilerVersion(); LOG_INFO << "Found nvcc " << nvcc << ", CUDA version " << nvcc_cuda_version << "."; if (nvcc_cuda_version < 101) { LOG_ERROR << "Unsupported CUDA version " << nvcc_cuda_version / 10 << "." << nvcc_cuda_version % 10 << ", you need CUDA 10.1 or newer"; return string(); } if (!(nvcc_cuda_version >= 102 && nvcc_cuda_version < 130)) { LOG_ERROR << "CUDA version " << nvcc_cuda_version / 10 << "." << nvcc_cuda_version % 10 << "CUDA 10.1 to 12 are officially supported."; } double starttime = time_dt(); path_create_directories(cubin); source_path = path_join(path_join(source_path, "kernel"), path_join("device", path_join(base, string_printf("%s.cu", name)))); string command = string_printf( "\"%s\" " "-arch=%s_%d%d " "--%s \"%s\" " "-o \"%s\" " "%s", nvcc, kernel_arch, major, minor, kernel_ext, source_path.c_str(), cubin.c_str(), common_cflags.c_str()); LOG_INFO_IMPORTANT << "Compiling " << ((use_adaptive_compilation()) ? "adaptive " : "") << "CUDA kernel ..."; LOG_INFO_IMPORTANT << command; # ifdef _WIN32 command = "call " + command; # endif if (system(command.c_str()) != 0) { set_error( "Failed to execute compilation command, " "see console for details."); return string(); } /* Verify if compilation succeeded */ if (!path_exists(cubin)) { set_error( "CUDA kernel compilation failed, " "see console for details."); return string(); } LOG_INFO_IMPORTANT << "Kernel compilation finished in " << std::fixed << std::setprecision(2) << time_dt() - starttime << "s"; return cubin; } bool CUDADevice::load_kernels(const uint kernel_features) { /* TODO(sergey): Support kernels re-load for CUDA devices adaptive compile. * * Currently re-loading kernel will invalidate memory pointers, * causing problems in cuCtxSynchronize. */ if (cuModule) { if (use_adaptive_compilation()) { LOG_INFO << "Skipping CUDA kernel reload for adaptive compilation, not currently supported."; } return true; } /* check if cuda init succeeded */ if (cuContext == nullptr) { return false; } /* check if GPU is supported */ if (!support_device(kernel_features)) { return false; } /* get kernel */ const char *kernel_name = "kernel"; string cflags = compile_kernel_get_common_cflags(kernel_features); string cubin = compile_kernel(cflags, kernel_name); if (cubin.empty()) { return false; } /* open module */ CUDAContextScope scope(this); string cubin_data; CUresult result; if (path_read_compressed_text(cubin, cubin_data)) { result = cuModuleLoadData(&cuModule, cubin_data.c_str()); } else { result = CUDA_ERROR_FILE_NOT_FOUND; } if (result != CUDA_SUCCESS) { set_error(string_printf( "Failed to load CUDA kernel from '%s' (%s)", cubin.c_str(), cuewErrorString(result))); } if (result == CUDA_SUCCESS) { kernels.load(this); reserve_local_memory(kernel_features); } return (result == CUDA_SUCCESS); } void CUDADevice::reserve_local_memory(const uint kernel_features) { /* Together with CU_CTX_LMEM_RESIZE_TO_MAX, this reserves local memory * needed for kernel launches, so that we can reliably figure out when * to allocate scene data in mapped host memory. */ size_t total = 0, free_before = 0, free_after = 0; { CUDAContextScope scope(this); cuMemGetInfo(&free_before, &total); } { /* Use the biggest kernel for estimation. */ const DeviceKernel test_kernel = (kernel_features & KERNEL_FEATURE_NODE_RAYTRACE) ? DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE : (kernel_features & KERNEL_FEATURE_MNEE) ? DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE : DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE; /* Launch kernel, using just 1 block appears sufficient to reserve memory for all * multiprocessors. It would be good to do this in parallel for the multi GPU case * still to make it faster. */ CUDADeviceQueue queue(this); device_ptr d_path_index = 0; device_ptr d_render_buffer = 0; int d_work_size = 0; DeviceKernelArguments args(&d_path_index, &d_render_buffer, &d_work_size); queue.init_execution(); queue.enqueue(test_kernel, 1, args); queue.synchronize(); } { CUDAContextScope scope(this); cuMemGetInfo(&free_after, &total); } LOG_INFO << "Local memory reserved " << string_human_readable_number(free_before - free_after) << " bytes. (" << string_human_readable_size(free_before - free_after) << ")"; # if 0 /* For testing mapped host memory, fill up device memory. */ const size_t keep_mb = 1024; while (free_after > keep_mb * 1024 * 1024LL) { CUdeviceptr tmp; cuda_assert(cuMemAlloc(&tmp, 10 * 1024 * 1024LL)); cuMemGetInfo(&free_after, &total); } # endif } void CUDADevice::get_device_memory_info(size_t &total, size_t &free) { CUDAContextScope scope(this); cuMemGetInfo(&free, &total); } bool CUDADevice::alloc_device(void *&device_pointer, const size_t size) { CUDAContextScope scope(this); CUresult mem_alloc_result = cuMemAlloc((CUdeviceptr *)&device_pointer, size); return mem_alloc_result == CUDA_SUCCESS; } void CUDADevice::free_device(void *device_pointer) { CUDAContextScope scope(this); cuda_assert(cuMemFree((CUdeviceptr)device_pointer)); } bool CUDADevice::shared_alloc(void *&shared_pointer, const size_t size) { CUDAContextScope scope(this); CUresult mem_alloc_result = cuMemHostAlloc( &shared_pointer, size, CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED); return mem_alloc_result == CUDA_SUCCESS; } void CUDADevice::shared_free(void *shared_pointer) { CUDAContextScope scope(this); cuMemFreeHost(shared_pointer); } void *CUDADevice::shared_to_device_pointer(const void *shared_pointer) { CUDAContextScope scope(this); void *device_pointer = nullptr; cuda_assert( cuMemHostGetDevicePointer_v2((CUdeviceptr *)&device_pointer, (void *)shared_pointer, 0)); return device_pointer; } void CUDADevice::copy_host_to_device(void *device_pointer, void *host_pointer, const size_t size) { const CUDAContextScope scope(this); cuda_assert(cuMemcpyHtoD((CUdeviceptr)device_pointer, host_pointer, size)); } void CUDADevice::mem_alloc(device_memory &mem) { if (mem.type == MEM_TEXTURE) { assert(!"mem_alloc not supported for textures."); } else if (mem.type == MEM_GLOBAL) { assert(!"mem_alloc not supported for global memory."); } else { generic_alloc(mem); } } void CUDADevice::mem_copy_to(device_memory &mem) { if (mem.type == MEM_GLOBAL) { global_copy_to(mem); } else if (mem.type == MEM_TEXTURE) { tex_copy_to((device_texture &)mem); } else { if (!mem.device_pointer) { generic_alloc(mem); generic_copy_to(mem); } else if (mem.is_resident(this)) { generic_copy_to(mem); } } } void CUDADevice::mem_move_to_host(device_memory &mem) { if (mem.type == MEM_GLOBAL) { global_free(mem); global_alloc(mem); } else if (mem.type == MEM_TEXTURE) { tex_free((device_texture &)mem); tex_alloc((device_texture &)mem); } else { assert(!"mem_move_to_host only supported for texture and global memory"); } } void CUDADevice::mem_copy_from( device_memory &mem, const size_t y, size_t w, const size_t h, size_t elem) { if (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) { assert(!"mem_copy_from not supported for textures."); } else if (mem.host_pointer) { const size_t size = elem * w * h; const size_t offset = elem * y * w; if (mem.device_pointer) { const CUDAContextScope scope(this); cuda_assert(cuMemcpyDtoH( (char *)mem.host_pointer + offset, (CUdeviceptr)mem.device_pointer + offset, size)); } else { memset((char *)mem.host_pointer + offset, 0, size); } } } void CUDADevice::mem_zero(device_memory &mem) { if (!mem.device_pointer) { mem_alloc(mem); } if (!mem.device_pointer) { return; } if (!(mem.is_shared(this) && mem.host_pointer == mem.shared_pointer)) { const CUDAContextScope scope(this); cuda_assert(cuMemsetD8((CUdeviceptr)mem.device_pointer, 0, mem.memory_size())); } else if (mem.host_pointer) { memset(mem.host_pointer, 0, mem.memory_size()); } } void CUDADevice::mem_free(device_memory &mem) { if (mem.type == MEM_GLOBAL) { global_free(mem); } else if (mem.type == MEM_TEXTURE) { tex_free((device_texture &)mem); } else { generic_free(mem); } } device_ptr CUDADevice::mem_alloc_sub_ptr(device_memory &mem, const size_t offset, size_t /*size*/) { return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset)); } void CUDADevice::const_copy_to(const char *name, void *host, const size_t size) { CUDAContextScope scope(this); CUdeviceptr mem; size_t bytes; cuda_assert(cuModuleGetGlobal(&mem, &bytes, cuModule, "kernel_params")); assert(bytes == sizeof(KernelParamsCUDA)); /* Update data storage pointers in launch parameters. */ # define KERNEL_DATA_ARRAY(data_type, data_name) \ if (strcmp(name, #data_name) == 0) { \ cuda_assert(cuMemcpyHtoD(mem + offsetof(KernelParamsCUDA, data_name), host, size)); \ return; \ } KERNEL_DATA_ARRAY(KernelData, data) KERNEL_DATA_ARRAY(IntegratorStateGPU, integrator_state) # include "kernel/data_arrays.h" # undef KERNEL_DATA_ARRAY } void CUDADevice::global_alloc(device_memory &mem) { if (mem.is_resident(this)) { generic_alloc(mem); generic_copy_to(mem); } const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer)); } void CUDADevice::global_copy_to(device_memory &mem) { if (!mem.device_pointer) { generic_alloc(mem); generic_copy_to(mem); } else if (mem.is_resident(this)) { generic_copy_to(mem); } const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer)); } void CUDADevice::global_free(device_memory &mem) { if (mem.is_resident(this) && mem.device_pointer) { generic_free(mem); } } static size_t tex_src_pitch(const device_texture &mem) { return mem.data_width * datatype_size(mem.data_type) * mem.data_elements; } static CUDA_MEMCPY2D tex_2d_copy_param(const device_texture &mem, const int pitch_alignment) { /* 2D texture using pitch aligned linear memory. */ const size_t src_pitch = tex_src_pitch(mem); const size_t dst_pitch = align_up(src_pitch, pitch_alignment); CUDA_MEMCPY2D param; memset(¶m, 0, sizeof(param)); param.dstMemoryType = CU_MEMORYTYPE_DEVICE; param.dstDevice = mem.device_pointer; param.dstPitch = dst_pitch; param.srcMemoryType = CU_MEMORYTYPE_HOST; param.srcHost = mem.host_pointer; param.srcPitch = src_pitch; param.WidthInBytes = param.srcPitch; param.Height = mem.data_height; return param; } void CUDADevice::tex_alloc(device_texture &mem) { CUDAContextScope scope(this); CUaddress_mode address_mode = CU_TR_ADDRESS_MODE_WRAP; switch (mem.info.extension) { case EXTENSION_REPEAT: address_mode = CU_TR_ADDRESS_MODE_WRAP; break; case EXTENSION_EXTEND: address_mode = CU_TR_ADDRESS_MODE_CLAMP; break; case EXTENSION_CLIP: address_mode = CU_TR_ADDRESS_MODE_BORDER; break; case EXTENSION_MIRROR: address_mode = CU_TR_ADDRESS_MODE_MIRROR; break; default: assert(0); break; } CUfilter_mode filter_mode; if (mem.info.interpolation == INTERPOLATION_CLOSEST) { filter_mode = CU_TR_FILTER_MODE_POINT; } else { filter_mode = CU_TR_FILTER_MODE_LINEAR; } /* Image Texture Storage */ /* Cycles expects to read all texture data as normalized float values in * kernel/device/gpu/image.h. But storing all data as floats would be very inefficient due to the * huge size of float textures. So in the code below, we define different texture types including * integer types, with the aim of using CUDA's default promotion behavior of integer data to * floating point data in the range [0, 1], as noted in the CUDA documentation on * cuTexObjectCreate API Call. * Note that 32-bit integers are not supported by this promotion behavior and cannot be used * with Cycles's current implementation in kernel/device/gpu/image.h. */ CUarray_format_enum format; switch (mem.data_type) { case TYPE_UCHAR: format = CU_AD_FORMAT_UNSIGNED_INT8; break; case TYPE_UINT16: format = CU_AD_FORMAT_UNSIGNED_INT16; break; case TYPE_FLOAT: format = CU_AD_FORMAT_FLOAT; break; case TYPE_HALF: format = CU_AD_FORMAT_HALF; break; default: assert(0); return; } Mem *cmem = nullptr; if (!mem.is_resident(this)) { thread_scoped_lock lock(device_mem_map_mutex); cmem = &device_mem_map[&mem]; cmem->texobject = 0; } else if (mem.data_height > 0) { /* 2D texture, using pitch aligned linear memory. */ const size_t dst_pitch = align_up(tex_src_pitch(mem), pitch_alignment); const size_t dst_size = dst_pitch * mem.data_height; cmem = generic_alloc(mem, dst_size - mem.memory_size()); if (!cmem) { return; } const CUDA_MEMCPY2D param = tex_2d_copy_param(mem, pitch_alignment); cuda_assert(cuMemcpy2DUnaligned(¶m)); } else { /* 1D texture, using linear memory. */ cmem = generic_alloc(mem); if (!cmem) { return; } cuda_assert(cuMemcpyHtoD(mem.device_pointer, mem.host_pointer, mem.memory_size())); } /* Set Mapping and tag that we need to (re-)upload to device */ TextureInfo tex_info = mem.info; if (!is_nanovdb_type(mem.info.data_type)) { CUDA_RESOURCE_DESC resDesc; memset(&resDesc, 0, sizeof(resDesc)); if (mem.data_height > 0) { const size_t dst_pitch = align_up(tex_src_pitch(mem), pitch_alignment); resDesc.resType = CU_RESOURCE_TYPE_PITCH2D; resDesc.res.pitch2D.devPtr = mem.device_pointer; resDesc.res.pitch2D.format = format; resDesc.res.pitch2D.numChannels = mem.data_elements; resDesc.res.pitch2D.height = mem.data_height; resDesc.res.pitch2D.width = mem.data_width; resDesc.res.pitch2D.pitchInBytes = dst_pitch; } else { resDesc.resType = CU_RESOURCE_TYPE_LINEAR; resDesc.res.linear.devPtr = mem.device_pointer; resDesc.res.linear.format = format; resDesc.res.linear.numChannels = mem.data_elements; resDesc.res.linear.sizeInBytes = mem.device_size; } CUDA_TEXTURE_DESC texDesc; memset(&texDesc, 0, sizeof(texDesc)); texDesc.addressMode[0] = address_mode; texDesc.addressMode[1] = address_mode; texDesc.addressMode[2] = address_mode; texDesc.filterMode = filter_mode; /* CUDA's flag CU_TRSF_READ_AS_INTEGER is intentionally not used and it is * significant, see above an explanation about how Blender treat textures. */ texDesc.flags = CU_TRSF_NORMALIZED_COORDINATES; thread_scoped_lock lock(device_mem_map_mutex); cmem = &device_mem_map[&mem]; cuda_assert(cuTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, nullptr)); tex_info.data = (uint64_t)cmem->texobject; } else { tex_info.data = (uint64_t)mem.device_pointer; } { /* Update texture info. */ thread_scoped_lock lock(texture_info_mutex); const uint slot = mem.slot; if (slot >= texture_info.size()) { /* Allocate some slots in advance, to reduce amount of re-allocations. */ texture_info.resize(slot + 128); } texture_info[slot] = tex_info; need_texture_info = true; } } void CUDADevice::tex_copy_to(device_texture &mem) { if (!mem.device_pointer) { /* Not yet allocated on device. */ tex_alloc(mem); } else if (!mem.is_resident(this)) { /* Peering with another device, may still need to create texture info and object. */ bool texture_allocated = false; { thread_scoped_lock lock(texture_info_mutex); texture_allocated = mem.slot < texture_info.size() && texture_info[mem.slot].data != 0; } if (!texture_allocated) { tex_alloc(mem); } } else { /* Resident and fully allocated, only copy. */ if (mem.data_height > 0) { CUDAContextScope scope(this); const CUDA_MEMCPY2D param = tex_2d_copy_param(mem, pitch_alignment); cuda_assert(cuMemcpy2DUnaligned(¶m)); } else { generic_copy_to(mem); } } } void CUDADevice::tex_free(device_texture &mem) { CUDAContextScope scope(this); thread_scoped_lock lock(device_mem_map_mutex); /* Check if the memory was allocated for this device. */ auto it = device_mem_map.find(&mem); if (it == device_mem_map.end()) { return; } const Mem &cmem = it->second; /* Always clear texture info and texture object, regardless of residency. */ { thread_scoped_lock lock(texture_info_mutex); texture_info[mem.slot] = TextureInfo(); } if (cmem.texobject) { /* Free bindless texture. */ cuTexObjectDestroy(cmem.texobject); } if (!mem.is_resident(this)) { /* Do not free memory here, since it was allocated on a different device. */ device_mem_map.erase(device_mem_map.find(&mem)); } else if (cmem.array) { /* Free array. */ cuArrayDestroy(reinterpret_cast(cmem.array)); stats.mem_free(mem.device_size); mem.device_pointer = 0; mem.device_size = 0; device_mem_map.erase(device_mem_map.find(&mem)); } else { lock.unlock(); generic_free(mem); } } unique_ptr CUDADevice::gpu_queue_create() { return make_unique(this); } bool CUDADevice::should_use_graphics_interop(const GraphicsInteropDevice &interop_device, const bool log) { if (headless) { /* Avoid any call which might involve interaction with a graphics backend when we know that * we don't have active graphics context. This avoid crash on certain platforms when calling * cuGLGetDevices(). */ return false; } CUDAContextScope scope(this); switch (interop_device.type) { case GraphicsInteropDevice::OPENGL: { /* Check whether this device is part of OpenGL context. * * Using CUDA device for graphics interoperability which is not part of the OpenGL context is * possible, but from the empiric measurements it can be considerably slower than using naive * pixels copy. */ int num_all_devices = 0; cuda_assert(cuDeviceGetCount(&num_all_devices)); if (num_all_devices == 0) { return false; } vector gl_devices(num_all_devices); uint num_gl_devices = 0; cuGLGetDevices(&num_gl_devices, gl_devices.data(), num_all_devices, CU_GL_DEVICE_LIST_ALL); bool found = false; for (uint i = 0; i < num_gl_devices; ++i) { if (gl_devices[i] == cuDevice) { found = true; break; } } if (log) { if (found) { LOG_INFO << "Graphics interop: found matching OpenGL device for CUDA"; } else { LOG_INFO << "Graphics interop: no matching OpenGL device for CUDA"; } } return found; } case ccl::GraphicsInteropDevice::VULKAN: { /* Only do interop with matching device UUID. */ CUuuid uuid = {}; cuDeviceGetUuid(&uuid, cuDevice); const bool found = (sizeof(uuid.bytes) == interop_device.uuid.size() && memcmp(uuid.bytes, interop_device.uuid.data(), sizeof(uuid.bytes)) == 0); if (log) { if (found) { LOG_INFO << "Graphics interop: found matching Vulkan device for CUDA"; } else { LOG_INFO << "Graphics interop: no matching Vulkan device for CUDA"; } LOG_INFO << "Graphics Interop: CUDA UUID " << string_hex(reinterpret_cast(uuid.bytes), sizeof(uuid.bytes)) << ", Vulkan UUID " << string_hex(interop_device.uuid.data(), interop_device.uuid.size()); } return found; } case GraphicsInteropDevice::METAL: case GraphicsInteropDevice::NONE: { return false; } } return false; } int CUDADevice::get_num_multiprocessors() { return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, 0); } int CUDADevice::get_max_num_threads_per_multiprocessor() { return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, 0); } bool CUDADevice::get_device_attribute(CUdevice_attribute attribute, int *value) { CUDAContextScope scope(this); return cuDeviceGetAttribute(value, attribute, cuDevice) == CUDA_SUCCESS; } int CUDADevice::get_device_default_attribute(CUdevice_attribute attribute, const int default_value) { int value = 0; if (!get_device_attribute(attribute, &value)) { return default_value; } return value; } CCL_NAMESPACE_END #endif