/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation * * SPDX-License-Identifier: Apache-2.0 */ /* TODO(sergey): There is a bit of headers dependency hell going on * here, so for now we just put here. In the future it might be better * to have dedicated file for such tweaks. */ #if (defined(__GNUC__) && !defined(__clang__)) && defined(NDEBUG) # pragma GCC diagnostic ignored "-Wmaybe-uninitialized" # pragma GCC diagnostic ignored "-Wuninitialized" #endif #include #include "scene/colorspace.h" #include "scene/object.h" #include "util/log.h" #include "util/string.h" #include "kernel/device/cpu/image.h" #include "kernel/osl/globals.h" #include "kernel/osl/services.h" #include "kernel/osl/services_shared.h" #include "kernel/osl/types.h" #include "kernel/integrator/state.h" #include "kernel/integrator/state_util.h" #include "kernel/geom/primitive.h" #include "kernel/geom/shader_data.h" #include "kernel/bvh/bvh.h" #include "kernel/camera/camera.h" #include "kernel/svm/ao.h" #include "kernel/svm/bevel.h" #include "kernel/util/ies.h" CCL_NAMESPACE_BEGIN /* RenderServices implementation */ static void copy_matrix(OSL::Matrix44 &m, const Transform &tfm) { ProjectionTransform t = projection_transpose(ProjectionTransform(tfm)); memcpy((float *)&m, (const float *)&t, sizeof(m)); } static void copy_matrix(OSL::Matrix44 &m, const ProjectionTransform &tfm) { ProjectionTransform t = projection_transpose(tfm); memcpy((float *)&m, (const float *)&t, sizeof(m)); } /* static ustrings */ ustring OSLRenderServices::u_distance("distance"); ustring OSLRenderServices::u_index("index"); ustring OSLRenderServices::u_world("world"); ustring OSLRenderServices::u_camera("camera"); ustring OSLRenderServices::u_screen("screen"); ustring OSLRenderServices::u_raster("raster"); ustring OSLRenderServices::u_ndc("NDC"); ustring OSLRenderServices::u_object_location("object:location"); ustring OSLRenderServices::u_object_color("object:color"); ustring OSLRenderServices::u_object_alpha("object:alpha"); ustring OSLRenderServices::u_object_index("object:index"); ustring OSLRenderServices::u_object_is_light("object:is_light"); ustring OSLRenderServices::u_bump_map_normal("geom:bump_map_normal"); ustring OSLRenderServices::u_geom_dupli_generated("geom:dupli_generated"); ustring OSLRenderServices::u_geom_dupli_uv("geom:dupli_uv"); ustring OSLRenderServices::u_material_index("material:index"); ustring OSLRenderServices::u_object_random("object:random"); ustring OSLRenderServices::u_particle_index("particle:index"); ustring OSLRenderServices::u_particle_random("particle:random"); ustring OSLRenderServices::u_particle_age("particle:age"); ustring OSLRenderServices::u_particle_lifetime("particle:lifetime"); ustring OSLRenderServices::u_particle_location("particle:location"); ustring OSLRenderServices::u_particle_rotation("particle:rotation"); ustring OSLRenderServices::u_particle_size("particle:size"); ustring OSLRenderServices::u_particle_velocity("particle:velocity"); ustring OSLRenderServices::u_particle_angular_velocity("particle:angular_velocity"); ustring OSLRenderServices::u_geom_numpolyvertices("geom:numpolyvertices"); ustring OSLRenderServices::u_geom_trianglevertices("geom:trianglevertices"); ustring OSLRenderServices::u_geom_polyvertices("geom:polyvertices"); ustring OSLRenderServices::u_geom_name("geom:name"); ustring OSLRenderServices::u_geom_undisplaced("geom:undisplaced"); ustring OSLRenderServices::u_is_smooth("geom:is_smooth"); ustring OSLRenderServices::u_is_curve("geom:is_curve"); ustring OSLRenderServices::u_curve_thickness("geom:curve_thickness"); ustring OSLRenderServices::u_curve_length("geom:curve_length"); ustring OSLRenderServices::u_curve_tangent_normal("geom:curve_tangent_normal"); ustring OSLRenderServices::u_curve_random("geom:curve_random"); ustring OSLRenderServices::u_is_point("geom:is_point"); ustring OSLRenderServices::u_point_radius("geom:point_radius"); ustring OSLRenderServices::u_point_position("geom:point_position"); ustring OSLRenderServices::u_point_random("geom:point_random"); ustring OSLRenderServices::u_normal_map_normal("geom:normal_map_normal"); ustring OSLRenderServices::u_path_ray_length("path:ray_length"); ustring OSLRenderServices::u_path_ray_depth("path:ray_depth"); ustring OSLRenderServices::u_path_diffuse_depth("path:diffuse_depth"); ustring OSLRenderServices::u_path_glossy_depth("path:glossy_depth"); ustring OSLRenderServices::u_path_transparent_depth("path:transparent_depth"); ustring OSLRenderServices::u_path_transmission_depth("path:transmission_depth"); ustring OSLRenderServices::u_trace("trace"); ustring OSLRenderServices::u_hit("hit"); ustring OSLRenderServices::u_hitdist("hitdist"); ustring OSLRenderServices::u_N("N"); ustring OSLRenderServices::u_Ng("Ng"); ustring OSLRenderServices::u_P("P"); ustring OSLRenderServices::u_I("I"); ustring OSLRenderServices::u_u("u"); ustring OSLRenderServices::u_v("v"); ustring OSLRenderServices::u_empty; ustring OSLRenderServices::u_sensor_size("cam:sensor_size"); ustring OSLRenderServices::u_image_resolution("cam:image_resolution"); ustring OSLRenderServices::u_aperture_aspect_ratio("cam:aperture_aspect_ratio"); ustring OSLRenderServices::u_aperture_size("cam:aperture_size"); ustring OSLRenderServices::u_aperture_position("cam:aperture_position"); ustring OSLRenderServices::u_focal_distance("cam:focal_distance"); ImageManager *OSLRenderServices::image_manager = nullptr; OSLRenderServices::OSLRenderServices(OSL::TextureSystem *texture_system, const int device_type) : OSL::RendererServices(texture_system), device_type_(device_type) { } OSLRenderServices::~OSLRenderServices() { if (m_texturesys) { VLOG_INFO << "OSL texture system stats:\n" << m_texturesys->getstats(); } } int OSLRenderServices::supports(string_view feature) const { #ifdef WITH_OPTIX if (feature == "OptiX") { return device_type_ == DEVICE_OPTIX; } #endif return false; } bool OSLRenderServices::get_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSL::TransformationPtr xform, const float time) { ShaderGlobals *globals = reinterpret_cast(sg); if (globals == nullptr || globals->sd == nullptr) { return false; } /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ const ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; const int object = sd->object; if (object != OBJECT_NONE) { #ifdef __OBJECT_MOTION__ Transform tfm; if (time == sd->time) { tfm = object_get_transform(kg, sd); } else { tfm = object_fetch_transform_motion_test(kg, object, time, nullptr); } #else const Transform tfm = object_get_transform(kg, sd); #endif copy_matrix(result, tfm); return true; } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSL::TransformationPtr xform, const float time) { ShaderGlobals *globals = reinterpret_cast(sg); if (globals == nullptr || globals->sd == nullptr) { return false; } /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ const ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; const int object = sd->object; if (object != OBJECT_NONE) { #ifdef __OBJECT_MOTION__ Transform itfm; if (time == sd->time) { itfm = object_get_inverse_transform(kg, sd); } else { object_fetch_transform_motion_test(kg, object, time, &itfm); } #else const Transform itfm = object_get_inverse_transform(kg, sd); #endif copy_matrix(result, itfm); return true; } return false; } bool OSLRenderServices::get_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSLUStringHash from, const float time) { ShaderGlobals *globals = reinterpret_cast(sg); const ThreadKernelGlobalsCPU *kg = globals->kg; if (from == u_ndc) { copy_matrix(result, kernel_data.cam.ndctoworld); return true; } if (from == u_raster) { copy_matrix(result, kernel_data.cam.rastertoworld); return true; } if (from == u_screen) { copy_matrix(result, kernel_data.cam.screentoworld); return true; } if (from == u_camera) { copy_matrix(result, kernel_data.cam.cameratoworld); return true; } if (from == u_world) { result.makeIdentity(); return true; } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSLUStringHash to, const float time) { ShaderGlobals *globals = reinterpret_cast(sg); const ThreadKernelGlobalsCPU *kg = globals->kg; if (to == u_ndc) { copy_matrix(result, kernel_data.cam.worldtondc); return true; } if (to == u_raster) { copy_matrix(result, kernel_data.cam.worldtoraster); return true; } if (to == u_screen) { copy_matrix(result, kernel_data.cam.worldtoscreen); return true; } if (to == u_camera) { copy_matrix(result, kernel_data.cam.worldtocamera); return true; } if (to == u_world) { result.makeIdentity(); return true; } return false; } bool OSLRenderServices::get_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSL::TransformationPtr xform) { ShaderGlobals *globals = reinterpret_cast(sg); if (globals == nullptr || globals->sd == nullptr) { return false; } /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ const ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; const int object = sd->object; if (object != OBJECT_NONE) { const Transform tfm = object_get_transform(kg, sd); copy_matrix(result, tfm); return true; } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSL::TransformationPtr xform) { ShaderGlobals *globals = reinterpret_cast(sg); if (globals == nullptr || globals->sd == nullptr) { return false; } /* this is only used for shader and object space, we don't really have * a concept of shader space, so we just use object space for both. */ const ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; const int object = sd->object; if (object != OBJECT_NONE) { const Transform tfm = object_get_inverse_transform(kg, sd); copy_matrix(result, tfm); return true; } return false; } bool OSLRenderServices::get_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSLUStringHash from) { ShaderGlobals *globals = reinterpret_cast(sg); const ThreadKernelGlobalsCPU *kg = globals->kg; if (from == u_ndc) { copy_matrix(result, kernel_data.cam.ndctoworld); return true; } if (from == u_raster) { copy_matrix(result, kernel_data.cam.rastertoworld); return true; } if (from == u_screen) { copy_matrix(result, kernel_data.cam.screentoworld); return true; } if (from == u_camera) { copy_matrix(result, kernel_data.cam.cameratoworld); return true; } return false; } bool OSLRenderServices::get_inverse_matrix(OSL::ShaderGlobals *sg, OSL::Matrix44 &result, OSLUStringHash to) { ShaderGlobals *globals = reinterpret_cast(sg); const ThreadKernelGlobalsCPU *kg = globals->kg; if (to == u_ndc) { copy_matrix(result, kernel_data.cam.worldtondc); return true; } if (to == u_raster) { copy_matrix(result, kernel_data.cam.worldtoraster); return true; } if (to == u_screen) { copy_matrix(result, kernel_data.cam.worldtoscreen); return true; } if (to == u_camera) { copy_matrix(result, kernel_data.cam.worldtocamera); return true; } return false; } bool OSLRenderServices::get_array_attribute(OSL::ShaderGlobals *sg, bool derivatives, OSLUStringHash object, const TypeDesc type, OSLUStringHash name, const int index, void *val) { return false; } template inline bool set_attribute( const T v, const T dx, const T dy, TypeDesc type, bool derivatives, void *val); inline void set_data_float( const float v, const float dx, const float dy, bool derivatives, void *val) { float *fval = static_cast(val); fval[0] = v; if (derivatives) { fval[1] = dx; fval[2] = dy; } } inline void set_data_float3( const float3 v, const float3 dx, const float3 dy, bool derivatives, void *val) { float *fval = static_cast(val); fval[0] = v.x; fval[1] = v.y; fval[2] = v.z; if (derivatives) { fval[3] = dx.x; fval[4] = dx.y; fval[5] = dx.z; fval[6] = dy.x; fval[7] = dy.y; fval[8] = dy.z; } } inline void set_data_float4( const float4 v, const float4 dx, const float4 dy, bool derivatives, void *val) { float *fval = static_cast(val); fval[0] = v.x; fval[1] = v.y; fval[2] = v.z; fval[3] = v.w; if (derivatives) { fval[4] = dx.x; fval[5] = dx.y; fval[6] = dx.z; fval[7] = dx.w; fval[8] = dy.x; fval[9] = dy.y; fval[10] = dy.z; fval[11] = dy.w; } } ccl_device_template_spec bool set_attribute( const float v, const float dx, const float dy, TypeDesc type, bool derivatives, void *val) { if (type == TypeFloatArray4) { set_data_float4(make_float4(v, v, v, 1.0f), make_float4(dx, dx, dx, 0.0f), make_float4(dy, dy, dy, 0.0f), derivatives, val); return true; } if (type == TypePoint || type == TypeVector || type == TypeNormal || type == TypeColor) { set_data_float3(make_float3(v), make_float3(dx), make_float3(dy), derivatives, val); return true; } if (type == TypeFloat) { set_data_float(v, dx, dy, derivatives, val); return true; } return false; } ccl_device_template_spec bool set_attribute( const float2 v, const float2 dx, const float2 dy, TypeDesc type, bool derivatives, void *val) { if (type == TypeFloatArray4) { set_data_float4(make_float4(v.x, v.y, 0.0f, 1.0f), make_float4(dx.x, dx.y, 0.0f, 0.0f), make_float4(dy.x, dy.y, 0.0f, 0.0f), derivatives, val); return true; } if (type == TypePoint || type == TypeVector || type == TypeNormal || type == TypeColor) { set_data_float3(make_float3(v), make_float3(dx), make_float3(dy), derivatives, val); return true; } if (type == TypeFloat) { set_data_float(average(v), average(dx), average(dy), derivatives, val); return true; } return false; } ccl_device_template_spec bool set_attribute( const float3 v, const float3 dx, const float3 dy, TypeDesc type, bool derivatives, void *val) { if (type == TypeFloatArray4) { set_data_float4( make_float4(v, 1.0f), make_float4(dx, 0.0f), make_float4(dy, 0.0f), derivatives, val); return true; } if (type == TypePoint || type == TypeVector || type == TypeNormal || type == TypeColor) { set_data_float3(v, dx, dy, derivatives, val); return true; } if (type == TypeFloat) { set_data_float(average(v), average(dx), average(dy), derivatives, val); return true; } return false; } /* Attributes with the TypeRGBA type descriptor should be retrieved and stored * in a float array of size 4 (e.g. node_vertex_color.osl), this array have * a type descriptor TypeFloatArray4. If the storage is not a TypeFloatArray4, * we either store the first three components in a vector, store the average of * the components in a float, or fail the retrieval and do nothing. We allow * this for the correct operation of the Attribute node. */ ccl_device_template_spec bool set_attribute( const float4 v, const float4 dx, const float4 dy, TypeDesc type, bool derivatives, void *val) { if (type == TypeFloatArray4) { set_data_float4(v, dx, dy, derivatives, val); return true; } if (type == TypePoint || type == TypeVector || type == TypeNormal || type == TypeColor) { set_data_float3(make_float3(v), make_float3(dx), make_float3(dy), derivatives, val); return true; } if (type == TypeFloat) { set_data_float(average(make_float3(v)), average(make_float3(dx)), average(make_float3(dy)), derivatives, val); return true; } return false; } template ccl_device_inline bool set_attribute(const T f, const TypeDesc type, bool derivatives, void *val) { return set_attribute(f, make_zero(), make_zero(), type, derivatives, val); } ccl_device_template_spec bool set_attribute(const int i, const TypeDesc type, bool derivatives, void *val) { if (type.basetype == TypeDesc::INT && type.aggregate == TypeDesc::SCALAR && type.arraylen == 0) { int *ival = (int *)val; ival[0] = i; if (derivatives) { ival[1] = 0; ival[2] = 0; } return true; } return false; } ccl_device_template_spec bool set_attribute(ustring str, const TypeDesc type, bool derivatives, void *val) { if (type.basetype == TypeDesc::STRING && type.aggregate == TypeDesc::SCALAR && type.arraylen == 0) { ustring *sval = (ustring *)val; sval[0] = str; if (derivatives) { sval[1] = OSLRenderServices::u_empty; sval[2] = OSLRenderServices::u_empty; } return true; } return false; } static bool set_attribute_float3_3(const float3 P[3], TypeDesc type, bool derivatives, void *val) { if (type.vecsemantics == TypeDesc::POINT && type.arraylen >= 3) { float *fval = (float *)val; fval[0] = P[0].x; fval[1] = P[0].y; fval[2] = P[0].z; fval[3] = P[1].x; fval[4] = P[1].y; fval[5] = P[1].z; fval[6] = P[2].x; fval[7] = P[2].y; fval[8] = P[2].z; if (type.arraylen > 3) { memset(fval + 3 * 3, 0, sizeof(float) * 3 * (type.arraylen - 3)); } if (derivatives) { memset(fval + type.arraylen * 3, 0, sizeof(float) * 2 * 3 * type.arraylen); } return true; } return false; } static bool set_attribute_matrix(const Transform &tfm, const TypeDesc type, void *val) { if (type == TypeMatrix) { copy_matrix(*(OSL::Matrix44 *)val, tfm); return true; } return false; } template inline bool get_object_attribute_impl(const ThreadKernelGlobalsCPU *kg, ShaderData *sd, const AttributeDescriptor &desc, const TypeDesc &type, bool derivatives, void *val) { T v; T dx = make_zero(); T dy = make_zero(); #ifdef __VOLUME__ if (primitive_is_volume_attribute(sd, desc)) { v = primitive_volume_attribute(kg, sd, desc); } else #endif { v = primitive_surface_attribute( kg, sd, desc, derivatives ? &dx : nullptr, derivatives ? &dy : nullptr); } return set_attribute(v, dx, dy, type, derivatives, val); } static bool get_object_attribute(const ThreadKernelGlobalsCPU *kg, ShaderData *sd, const AttributeDescriptor &desc, const TypeDesc &type, bool derivatives, void *val) { if (desc.type == NODE_ATTR_FLOAT) { return get_object_attribute_impl(kg, sd, desc, type, derivatives, val); } else if (desc.type == NODE_ATTR_FLOAT2) { return get_object_attribute_impl(kg, sd, desc, type, derivatives, val); } else if (desc.type == NODE_ATTR_FLOAT3) { return get_object_attribute_impl(kg, sd, desc, type, derivatives, val); } else if (desc.type == NODE_ATTR_FLOAT4 || desc.type == NODE_ATTR_RGBA) { return get_object_attribute_impl(kg, sd, desc, type, derivatives, val); } else if (desc.type == NODE_ATTR_MATRIX) { const Transform tfm = primitive_attribute_matrix(kg, desc); return set_attribute_matrix(tfm, type, val); } return false; } bool OSLRenderServices::get_object_standard_attribute( ShaderGlobals *globals, OSLUStringHash name, const TypeDesc type, bool derivatives, void *val) { ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; /* todo: turn this into hash table? */ /* Object Attributes */ if (name == u_object_location) { const float3 f = object_location(kg, sd); return set_attribute(f, type, derivatives, val); } if (name == u_object_color) { const float3 f = object_color(kg, sd->object); return set_attribute(f, type, derivatives, val); } if (name == u_object_alpha) { const float f = object_alpha(kg, sd->object); return set_attribute(f, type, derivatives, val); } if (name == u_object_index) { const float f = object_pass_id(kg, sd->object); return set_attribute(f, type, derivatives, val); } if (name == u_object_is_light) { const float f = (sd->type & PRIMITIVE_LAMP) != 0; return set_attribute(f, type, derivatives, val); } if (name == u_geom_dupli_generated) { const float3 f = object_dupli_generated(kg, sd->object); return set_attribute(f, type, derivatives, val); } if (name == u_geom_dupli_uv) { const float3 f = object_dupli_uv(kg, sd->object); return set_attribute(f, type, derivatives, val); } if (name == u_material_index) { const float f = shader_pass_id(kg, sd); return set_attribute(f, type, derivatives, val); } if (name == u_object_random) { const float f = object_random_number(kg, sd->object); return set_attribute(f, type, derivatives, val); } /* Particle Attributes */ if (name == u_particle_index) { const int particle_id = object_particle_id(kg, sd->object); const float f = particle_index(kg, particle_id); return set_attribute(f, type, derivatives, val); } if (name == u_particle_random) { const int particle_id = object_particle_id(kg, sd->object); const float f = hash_uint2_to_float(particle_index(kg, particle_id), 0); return set_attribute(f, type, derivatives, val); } if (name == u_particle_age) { const int particle_id = object_particle_id(kg, sd->object); const float f = particle_age(kg, particle_id); return set_attribute(f, type, derivatives, val); } if (name == u_particle_lifetime) { const int particle_id = object_particle_id(kg, sd->object); const float f = particle_lifetime(kg, particle_id); return set_attribute(f, type, derivatives, val); } if (name == u_particle_location) { const int particle_id = object_particle_id(kg, sd->object); const float3 f = particle_location(kg, particle_id); return set_attribute(f, type, derivatives, val); } #if 0 /* unsupported */ if (name == u_particle_rotation) { int particle_id = object_particle_id(kg, sd->object); float4 f = particle_rotation(kg, particle_id); return set_attribute(f, type, derivatives, val); } #endif if (name == u_particle_size) { const int particle_id = object_particle_id(kg, sd->object); const float f = particle_size(kg, particle_id); return set_attribute(f, type, derivatives, val); } if (name == u_particle_velocity) { const int particle_id = object_particle_id(kg, sd->object); const float3 f = particle_velocity(kg, particle_id); return set_attribute(f, type, derivatives, val); } if (name == u_particle_angular_velocity) { const int particle_id = object_particle_id(kg, sd->object); const float3 f = particle_angular_velocity(kg, particle_id); return set_attribute(f, type, derivatives, val); } /* Geometry Attributes */ if (name == u_geom_numpolyvertices) { return set_attribute(3, type, derivatives, val); } if ((name == u_geom_trianglevertices || name == u_geom_polyvertices) && sd->type & PRIMITIVE_TRIANGLE) { float3 P[3]; if (sd->type & PRIMITIVE_MOTION) { motion_triangle_vertices(kg, sd->object, sd->prim, sd->time, P); } else { triangle_vertices(kg, sd->prim, P); } if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) { object_position_transform(kg, sd, &P[0]); object_position_transform(kg, sd, &P[1]); object_position_transform(kg, sd, &P[2]); } return set_attribute_float3_3(P, type, derivatives, val); } if (name == u_geom_name) { const ustring object_name = kg->osl.globals->object_names[sd->object]; return set_attribute(object_name, type, derivatives, val); } if (name == u_is_smooth) { const float f = ((sd->shader & SHADER_SMOOTH_NORMAL) != 0); return set_attribute(f, type, derivatives, val); } #ifdef __HAIR__ /* Hair Attributes */ if (name == u_is_curve) { const float f = (sd->type & PRIMITIVE_CURVE) != 0; return set_attribute(f, type, derivatives, val); } if (name == u_curve_thickness) { const float f = curve_thickness(kg, sd); return set_attribute(f, type, derivatives, val); } if (name == u_curve_tangent_normal) { const float3 f = curve_tangent_normal(kg, sd); return set_attribute(f, type, derivatives, val); } if (name == u_curve_random) { const float f = curve_random(kg, sd); return set_attribute(f, type, derivatives, val); } #endif #ifdef __POINTCLOUD__ /* point attributes */ if (name == u_is_point) { const float f = (sd->type & PRIMITIVE_POINT) != 0; return set_attribute(f, type, derivatives, val); } if (name == u_point_radius) { const float f = point_radius(kg, sd); return set_attribute(f, type, derivatives, val); } if (name == u_point_position) { const float3 f = point_position(kg, sd); return set_attribute(f, type, derivatives, val); } if (name == u_point_random) { const float f = point_random(kg, sd); return set_attribute(f, type, derivatives, val); } #endif if (name == u_normal_map_normal) { if (sd->type & PRIMITIVE_TRIANGLE) { const float3 f = triangle_smooth_normal_unnormalized(kg, sd, sd->Ng, sd->prim, sd->u, sd->v); return set_attribute(f, type, derivatives, val); } return false; } if (name == u_bump_map_normal) { float3 f[3]; if (!attribute_bump_map_normal(kg, sd, f)) { return false; } return set_attribute(f[0], f[1], f[2], type, derivatives, val); } return get_background_attribute(globals, name, type, derivatives, val); } bool OSLRenderServices::get_background_attribute( ShaderGlobals *globals, OSLUStringHash name, const TypeDesc type, bool derivatives, void *val) { ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; const IntegratorStateCPU *state = globals->path_state; const IntegratorShadowStateCPU *shadow_state = globals->shadow_path_state; if (name == u_path_ray_length) { /* Ray Length */ const float f = sd->ray_length; return set_attribute(f, type, derivatives, val); } #define READ_PATH_STATE(elem) \ ((state != nullptr) ? state->path.elem : \ (shadow_state != nullptr) ? shadow_state->shadow_path.elem : \ 0) if (name == u_path_ray_depth) { /* Ray Depth */ int f = READ_PATH_STATE(bounce); /* Read bounce from different locations depending on if this is a shadow path. For background, * light emission and shadow evaluation from a surface or volume we are effectively one bounce * further. */ if (globals->raytype & (PATH_RAY_SHADOW | PATH_RAY_EMISSION)) { f += 1; } return set_attribute(f, type, derivatives, val); } if (name == u_path_diffuse_depth) { /* Diffuse Ray Depth */ const int f = READ_PATH_STATE(diffuse_bounce); return set_attribute(f, type, derivatives, val); } if (name == u_path_glossy_depth) { /* Glossy Ray Depth */ const int f = READ_PATH_STATE(glossy_bounce); return set_attribute(f, type, derivatives, val); } if (name == u_path_transmission_depth) { /* Transmission Ray Depth */ const int f = READ_PATH_STATE(transmission_bounce); return set_attribute(f, type, derivatives, val); } if (name == u_path_transparent_depth) { /* Transparent Ray Depth */ const int f = READ_PATH_STATE(transparent_bounce); return set_attribute(f, type, derivatives, val); } #undef READ_PATH_STATE if (name == u_ndc) { /* NDC coordinates with special exception for orthographic projection. */ float3 ndc[3]; if ((globals->raytype & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) { ndc[0] = camera_world_to_ndc(kg, sd, sd->ray_P); if (derivatives) { ndc[1] = zero_float3(); ndc[2] = zero_float3(); } } else { ndc[0] = camera_world_to_ndc(kg, sd, sd->P); if (derivatives) { const differential3 dP = differential_from_compact(sd->Ng, sd->dP); ndc[1] = camera_world_to_ndc(kg, sd, sd->P + dP.dx) - ndc[0]; ndc[2] = camera_world_to_ndc(kg, sd, sd->P + dP.dy) - ndc[0]; } } return set_attribute(ndc[0], ndc[1], ndc[2], type, derivatives, val); } return false; } bool OSLRenderServices::get_camera_attribute( ShaderGlobals *globals, OSLUStringHash name, TypeDesc type, bool derivatives, void *val) { const ThreadKernelGlobalsCPU *kg = globals->kg; if (name == u_sensor_size) { const float2 sensor = make_float2(kernel_data.cam.sensorwidth, kernel_data.cam.sensorheight); return set_attribute(sensor, type, derivatives, val); } else if (name == u_image_resolution) { const float2 image = make_float2(kernel_data.cam.width, kernel_data.cam.height); return set_attribute(image, type, derivatives, val); } else if (name == u_aperture_aspect_ratio) { return set_attribute(1.0f / kernel_data.cam.inv_aperture_ratio, type, derivatives, val); } else if (name == u_aperture_size) { return set_attribute(kernel_data.cam.aperturesize, type, derivatives, val); } else if (name == u_aperture_position) { /* The random numbers for aperture sampling are packed into N. */ const float2 rand_lens = make_float2(globals->N.x, globals->N.y); const float2 pos = camera_sample_aperture(&kernel_data.cam, rand_lens); return set_attribute(pos * kernel_data.cam.aperturesize, type, derivatives, val); } else if (name == u_focal_distance) { return set_attribute(kernel_data.cam.focaldistance, type, derivatives, val); } return false; } bool OSLRenderServices::get_attribute(OSL::ShaderGlobals *sg, bool derivatives, OSLUStringHash object_name, const TypeDesc type, OSLUStringHash name, void *val) { ShaderGlobals *globals = reinterpret_cast(sg); if (globals == nullptr) { return false; } ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; if (sd == nullptr) { /* Camera shader. */ return get_camera_attribute(globals, name, type, derivatives, val); } /* lookup of attribute on another object */ int object; if (object_name != u_empty) { const OSLGlobals::ObjectNameMap::iterator it = kg->osl.globals->object_name_map.find( object_name); if (it == kg->osl.globals->object_name_map.end()) { return false; } object = it->second; } else { object = sd->object; } /* find attribute on object */ const AttributeDescriptor desc = find_attribute(kg, object, sd->prim, name.hash()); if (desc.offset != ATTR_STD_NOT_FOUND) { return get_object_attribute(kg, sd, desc, type, derivatives, val); } /* not found in attribute, check standard object info */ return get_object_standard_attribute(globals, name, type, derivatives, val); } bool OSLRenderServices::get_userdata( bool derivatives, OSLUStringHash name, const TypeDesc type, OSL::ShaderGlobals *sg, void *val) { return false; /* disabled by lockgeom */ } OSL::TextureSystem::TextureHandle *OSLRenderServices::get_texture_handle( OSLUStringHash filename, OSL::ShadingContext *context, const OSL::TextureOpt *opt) { return get_texture_handle(to_ustring(filename), context, opt); } OSL::TextureSystem::TextureHandle *OSLRenderServices::get_texture_handle( OSL::ustring filename, OSL::ShadingContext * /*context*/, const OSL::TextureOpt * /*options*/) { OSLTextureHandleMap::iterator it = textures.find(filename); if (device_type_ == DEVICE_CPU) { /* For non-OIIO textures, just return a pointer to our own OSLTextureHandle. */ if (it != textures.end()) { if (it->second.type != OSLTextureHandle::OIIO) { return (OSL::TextureSystem::TextureHandle *)(&it->second); } } /* Get handle from OpenImageIO. */ OSL::TextureSystem *ts = m_texturesys; OSL::TextureSystem::TextureHandle *handle = ts->get_texture_handle(to_ustring(filename)); if (handle == nullptr) { return nullptr; } /* Insert new OSLTextureHandle if needed. */ if (it == textures.end()) { textures.insert(filename, OSLTextureHandle(OSLTextureHandle::OIIO)); it = textures.find(filename); } /* Assign OIIO texture handle and return. * OIIO::unordered_map_concurrent always returns a const handle even if the underlying * std::unordered_map supports updating values just fine. */ const_cast(it->second).oiio_handle = handle; return (OSL::TextureSystem::TextureHandle *)(&it->second); } /* Construct GPU texture handle for existing textures. */ if (it != textures.end()) { switch (it->second.type) { case OSLTextureHandle::OIIO: return nullptr; case OSLTextureHandle::SVM: if (!it->second.handle.empty() && it->second.handle.get_manager() != image_manager) { it.clear(); break; } return reinterpret_cast(OSL_TEXTURE_HANDLE_TYPE_SVM | it->second.svm_slots[0].y); case OSLTextureHandle::IES: if (!it->second.handle.empty() && it->second.handle.get_manager() != image_manager) { it.clear(); break; } return reinterpret_cast(OSL_TEXTURE_HANDLE_TYPE_IES | it->second.svm_slots[0].y); case OSLTextureHandle::AO: return reinterpret_cast( OSL_TEXTURE_HANDLE_TYPE_AO_OR_BEVEL | 1); case OSLTextureHandle::BEVEL: return reinterpret_cast( OSL_TEXTURE_HANDLE_TYPE_AO_OR_BEVEL | 2); } } if (!image_manager) { return nullptr; } /* Load new textures using SVM image manager. */ const ImageHandle handle = image_manager->add_image(filename.string(), ImageParams()); if (handle.empty()) { return nullptr; } if (!textures.insert(filename, OSLTextureHandle(handle))) { return nullptr; } return reinterpret_cast(OSL_TEXTURE_HANDLE_TYPE_SVM | handle.svm_slot()); } bool OSLRenderServices::good(OSL::TextureSystem::TextureHandle *texture_handle) { OSLTextureHandle *handle = (OSLTextureHandle *)texture_handle; if (handle->oiio_handle) { OSL::TextureSystem *ts = m_texturesys; return ts->good(handle->oiio_handle); } return true; } bool OSLRenderServices::texture(OSLUStringHash filename, TextureHandle *texture_handle, TexturePerthread *texture_thread_info, OSL::TextureOpt &options, OSL::ShaderGlobals *sg, float s, float t, const float dsdx, const float dtdx, const float dsdy, const float dtdy, const int nchannels, float *result, float *dresultds, float *dresultdt, OSLUStringHash *errormessage) { OSLTextureHandle *handle = (OSLTextureHandle *)texture_handle; const OSLTextureHandle::Type texture_type = (handle) ? handle->type : OSLTextureHandle::OIIO; ShaderGlobals *globals = reinterpret_cast(sg); ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kernel_globals = globals->kg; const IntegratorStateCPU *state = globals->path_state; bool status = false; switch (texture_type) { case OSLTextureHandle::BEVEL: { #ifdef __SHADER_RAYTRACE__ /* Bevel shader hack. */ if (nchannels >= 3 && state != nullptr) { const int num_samples = (int)s; const float radius = t; const float3 N = svm_bevel(kernel_globals, state, sd, radius, num_samples); result[0] = N.x; result[1] = N.y; result[2] = N.z; status = true; } #endif break; } case OSLTextureHandle::AO: { #ifdef __SHADER_RAYTRACE__ /* AO shader hack. */ if (state != nullptr) { const int num_samples = (int)s; const float radius = t; const float3 N = make_float3(dsdx, dtdx, dsdy); int flags = 0; if ((int)dtdy) { flags |= NODE_AO_INSIDE; } if ((int)options.sblur) { flags |= NODE_AO_ONLY_LOCAL; } if ((int)options.tblur) { flags |= NODE_AO_GLOBAL_RADIUS; } result[0] = svm_ao(kernel_globals, state, sd, N, radius, num_samples, flags); status = true; } #endif break; } case OSLTextureHandle::SVM: { int id = -1; if (handle->svm_slots[0].w == -1) { /* Packed single texture. */ id = handle->svm_slots[0].y; } else { /* Packed tiled texture. */ const int tx = (int)s; const int ty = (int)t; const int tile = 1001 + 10 * ty + tx; for (const int4 &tile_node : handle->svm_slots) { if (tile_node.x == tile) { id = tile_node.y; break; } if (tile_node.z == tile) { id = tile_node.w; break; } } s -= tx; t -= ty; } float4 rgba; if (id == -1) { rgba = make_float4( TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B, TEX_IMAGE_MISSING_A); } else { rgba = kernel_tex_image_interp(kernel_globals, id, s, 1.0f - t); } result[0] = rgba[0]; if (nchannels > 1) { result[1] = rgba[1]; } if (nchannels > 2) { result[2] = rgba[2]; } if (nchannels > 3) { result[3] = rgba[3]; } status = true; break; } case OSLTextureHandle::IES: { /* IES light. */ result[0] = kernel_ies_interp(kernel_globals, handle->svm_slots[0].y, s, t); status = true; break; } case OSLTextureHandle::OIIO: { /* OpenImageIO texture cache. */ OSL::TextureSystem *ts = m_texturesys; if (handle && handle->oiio_handle) { if (texture_thread_info == nullptr) { texture_thread_info = kernel_globals->osl.oiio_thread_info; } status = ts->texture(handle->oiio_handle, texture_thread_info, options, s, t, dsdx, dtdx, dsdy, dtdy, nchannels, result, dresultds, dresultdt); } else { status = ts->texture(to_ustring(filename), options, s, t, dsdx, dtdx, dsdy, dtdy, nchannels, result, dresultds, dresultdt); } if (!status) { /* This might be slow, but prevents error messages leak and * other nasty stuff happening. */ ts->geterror(); } else if (handle && handle->processor) { ColorSpaceManager::to_scene_linear(handle->processor, result, nchannels); } break; } } if (!status) { if (nchannels == 3 || nchannels == 4) { result[0] = 1.0f; result[1] = 0.0f; result[2] = 1.0f; if (nchannels == 4) { result[3] = 1.0f; } } } return status; } bool OSLRenderServices::texture3d(OSLUStringHash filename, TextureHandle *texture_handle, TexturePerthread *texture_thread_info, OSL::TextureOpt &options, OSL::ShaderGlobals *sg, const OSL::Vec3 &P, const OSL::Vec3 &dPdx, const OSL::Vec3 &dPdy, const OSL::Vec3 &dPdz, const int nchannels, float *result, float *dresultds, float *dresultdt, float *dresultdr, OSLUStringHash *errormessage) { OSLTextureHandle *handle = (OSLTextureHandle *)texture_handle; const OSLTextureHandle::Type texture_type = (handle) ? handle->type : OSLTextureHandle::OIIO; ShaderGlobals *globals = reinterpret_cast(sg); const ThreadKernelGlobalsCPU *kernel_globals = globals->kg; bool status = false; switch (texture_type) { case OSLTextureHandle::SVM: { /* Packed texture. */ const int slot = handle->svm_slots[0].y; const float3 P_float3 = make_float3(P.x, P.y, P.z); float4 rgba = kernel_tex_image_interp_3d(kernel_globals, slot, P_float3, INTERPOLATION_NONE); result[0] = rgba[0]; if (nchannels > 1) { result[1] = rgba[1]; } if (nchannels > 2) { result[2] = rgba[2]; } if (nchannels > 3) { result[3] = rgba[3]; } status = true; break; } case OSLTextureHandle::OIIO: { /* OpenImageIO texture cache. */ OSL::TextureSystem *ts = m_texturesys; if (handle && handle->oiio_handle) { if (texture_thread_info == nullptr) { texture_thread_info = kernel_globals->osl.oiio_thread_info; } status = ts->texture3d(handle->oiio_handle, texture_thread_info, options, P, dPdx, dPdy, dPdz, nchannels, result, dresultds, dresultdt, dresultdr); } else { status = ts->texture3d(to_ustring(filename), options, P, dPdx, dPdy, dPdz, nchannels, result, dresultds, dresultdt, dresultdr); } if (!status) { /* This might be slow, but prevents error messages leak and * other nasty stuff happening. */ ts->geterror(); } else if (handle && handle->processor) { ColorSpaceManager::to_scene_linear(handle->processor, result, nchannels); } break; } case OSLTextureHandle::IES: case OSLTextureHandle::AO: case OSLTextureHandle::BEVEL: { status = false; break; } } if (!status) { if (nchannels == 3 || nchannels == 4) { result[0] = 1.0f; result[1] = 0.0f; result[2] = 1.0f; if (nchannels == 4) { result[3] = 1.0f; } } } return status; } bool OSLRenderServices::environment(OSLUStringHash filename, TextureHandle *texture_handle, TexturePerthread *thread_info, OSL::TextureOpt &options, OSL::ShaderGlobals *sg, const OSL::Vec3 &R, const OSL::Vec3 &dRdx, const OSL::Vec3 &dRdy, const int nchannels, float *result, float *dresultds, float *dresultdt, OSLUStringHash *errormessage) { OSLTextureHandle *handle = (OSLTextureHandle *)texture_handle; OSL::TextureSystem *ts = m_texturesys; ShaderGlobals *globals = reinterpret_cast(sg); bool status = false; if (handle && handle->oiio_handle) { if (thread_info == nullptr) { thread_info = globals->kg->osl.oiio_thread_info; } status = ts->environment(handle->oiio_handle, thread_info, options, R, dRdx, dRdy, nchannels, result, dresultds, dresultdt); } else { status = ts->environment( to_ustring(filename), options, R, dRdx, dRdy, nchannels, result, dresultds, dresultdt); } if (!status) { if (nchannels == 3 || nchannels == 4) { result[0] = 1.0f; result[1] = 0.0f; result[2] = 1.0f; if (nchannels == 4) { result[3] = 1.0f; } } } else if (handle && handle->processor) { ColorSpaceManager::to_scene_linear(handle->processor, result, nchannels); } return status; } bool OSLRenderServices::get_texture_info(OSLUStringHash filename, TextureHandle *texture_handle, TexturePerthread *texture_thread_info, OSL::ShaderGlobals * /*sg*/, const int subimage, OSLUStringHash dataname, const TypeDesc datatype, void *data, OSLUStringHash * /*errormessage*/) { OSLTextureHandle *handle = (OSLTextureHandle *)texture_handle; OSL::TextureSystem *ts = m_texturesys; if (handle) { /* No texture info for other texture types. */ if (handle->type != OSLTextureHandle::OIIO) { return false; } if (handle->oiio_handle) { /* Get texture info from OpenImageIO. */ return ts->get_texture_info(handle->oiio_handle, texture_thread_info, subimage, to_ustring(dataname), datatype, data); } } /* Get texture info from OpenImageIO, slower using filename. */ return ts->get_texture_info( to_ustring(filename), subimage, to_ustring(dataname), datatype, data); } int OSLRenderServices::pointcloud_search(OSL::ShaderGlobals *sg, OSLUStringHash filename, const OSL::Vec3 ¢er, const float radius, const int max_points, bool sort, #if OSL_LIBRARY_VERSION_CODE >= 11400 int *indices, #else size_t *out_indices, #endif float *out_distances, const int derivs_offset) { return 0; } int OSLRenderServices::pointcloud_get(OSL::ShaderGlobals *sg, OSLUStringHash filename, #if OSL_LIBRARY_VERSION_CODE >= 11400 const int *indices, #else size_t *indices, #endif const int count, OSLUStringHash attr_name, const TypeDesc attr_type, void *out_data) { return 0; } bool OSLRenderServices::pointcloud_write(OSL::ShaderGlobals *sg, OSLUStringHash filename, const OSL::Vec3 &pos, const int nattribs, const OSLUStringRep *names, const TypeDesc *types, const void **data) { return false; } bool OSLRenderServices::trace(TraceOpt &options, OSL::ShaderGlobals *sg, const OSL::Vec3 &P, const OSL::Vec3 &dPdx, const OSL::Vec3 &dPdy, const OSL::Vec3 &R, const OSL::Vec3 &dRdx, const OSL::Vec3 &dRdy) { /* todo: options.shader support, maybe options.traceset */ ShaderGlobals *globals = reinterpret_cast(sg); ShaderData *sd = globals->sd; const ThreadKernelGlobalsCPU *kg = globals->kg; if (sd == nullptr) { return false; } /* setup ray */ Ray ray; ray.P = make_float3(P.x, P.y, P.z); ray.D = make_float3(R.x, R.y, R.z); ray.tmin = 0.0f; ray.tmax = (options.maxdist == 1.0e30f) ? FLT_MAX : options.maxdist - options.mindist; ray.time = sd->time; ray.self.object = OBJECT_NONE; ray.self.prim = PRIM_NONE; ray.self.light_object = OBJECT_NONE; ray.self.light_prim = PRIM_NONE; if (options.mindist == 0.0f) { /* avoid self-intersections */ if (ray.P == sd->P) { ray.self.object = sd->object; ray.self.prim = sd->prim; } } else { /* offset for minimum distance */ ray.P += options.mindist * ray.D; } /* ray differentials */ differential3 dP; dP.dx = make_float3(dPdx.x, dPdx.y, dPdx.z); dP.dy = make_float3(dPdy.x, dPdy.y, dPdy.z); ray.dP = differential_make_compact(dP); differential3 dD; dD.dx = make_float3(dRdx.x, dRdx.y, dRdx.z); dD.dy = make_float3(dRdy.x, dRdy.y, dRdy.z); ray.dD = differential_make_compact(dD); /* allocate trace data */ OSLTraceData *tracedata = globals->tracedata; tracedata->ray = ray; tracedata->setup = false; tracedata->init = true; tracedata->hit = false; /* Can't ray-trace from shaders like displacement, before BVH exists. */ if (kernel_data.bvh.bvh_layout == BVH_LAYOUT_NONE) { return false; } /* Ray-trace, leaving out shadow opaque to avoid early exit. */ const uint visibility = PATH_RAY_ALL_VISIBILITY - PATH_RAY_SHADOW_OPAQUE; tracedata->hit = scene_intersect(kg, &ray, visibility, &tracedata->isect); return tracedata->hit; } bool OSLRenderServices::getmessage(OSL::ShaderGlobals *sg, OSLUStringHash source, OSLUStringHash name, const TypeDesc type, void *val, bool derivatives) { ShaderGlobals *globals = reinterpret_cast(sg); const ThreadKernelGlobalsCPU *kg = globals->kg; OSLTraceData *tracedata = globals->tracedata; if (source == u_trace && tracedata->init) { if (name == u_hit) { return set_attribute(tracedata->hit, type, derivatives, val); } if (tracedata->hit) { if (name == u_hitdist) { return set_attribute(tracedata->isect.t, type, derivatives, val); } ShaderData *sd = &tracedata->sd; if (!tracedata->setup) { /* lazy shader data setup */ shader_setup_from_ray(kg, sd, &tracedata->ray, &tracedata->isect); tracedata->setup = true; } if (name == u_N) { return set_attribute(sd->N, type, derivatives, val); } if (name == u_Ng) { return set_attribute(sd->Ng, type, derivatives, val); } if (name == u_P) { const differential3 dP = differential_from_compact(sd->Ng, sd->dP); return set_attribute(sd->P, dP.dx, dP.dy, type, derivatives, val); } if (name == u_I) { const differential3 dI = differential_from_compact(sd->wi, sd->dI); return set_attribute(sd->wi, dI.dx, dI.dy, type, derivatives, val); } if (name == u_u) { return set_attribute(sd->u, sd->du.dx, sd->du.dy, type, derivatives, val); } if (name == u_v) { return set_attribute(sd->v, sd->dv.dx, sd->dv.dy, type, derivatives, val); } return get_attribute(sg, derivatives, u_empty, type, name, val); } } return false; } CCL_NAMESPACE_END