/* SPDX-FileCopyrightText: 2011-2013 Intel Corporation * SPDX-FileCopyrightText: 2011-2022 Blender Foundation * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include "util/math_base.h" #include "util/math_float4.h" #include "util/types_float3.h" #include "util/types_float4.h" CCL_NAMESPACE_BEGIN ccl_device_inline float3 zero_float3() { #ifdef __KERNEL_SSE__ return float3(_mm_setzero_ps()); #else return make_float3(0.0f, 0.0f, 0.0f); #endif } ccl_device_inline float3 one_float3() { return make_float3(1.0f, 1.0f, 1.0f); } ccl_device_template_spec float3 make_zero() { return zero_float3(); } ccl_device_inline float3 reciprocal(const float3 a) { #ifdef __KERNEL_SSE__ /* Don't use _mm_rcp_ps due to poor precision. */ return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128)); #else return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z); #endif } #ifndef __KERNEL_METAL__ ccl_device_inline float3 operator-(const float3 &a) { # ifdef __KERNEL_SSE__ return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000)))); # else return make_float3(-a.x, -a.y, -a.z); # endif } ccl_device_inline float3 operator*(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ return float3(_mm_mul_ps(a.m128, b.m128)); # else return make_float3(a.x * b.x, a.y * b.y, a.z * b.z); # endif } ccl_device_inline float3 operator*(const float3 a, const float f) { # ifdef __KERNEL_SSE__ return float3(_mm_mul_ps(a.m128, _mm_set1_ps(f))); # else return make_float3(a.x * f, a.y * f, a.z * f); # endif } ccl_device_inline float3 operator*(const float f, const float3 a) { # if defined(__KERNEL_SSE__) return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128)); # else return make_float3(a.x * f, a.y * f, a.z * f); # endif } ccl_device_inline float3 operator/(const float f, const float3 a) { # if defined(__KERNEL_SSE__) return float3(_mm_div_ps(_mm_set1_ps(f), a.m128)); # else return make_float3(f / a.x, f / a.y, f / a.z); # endif } ccl_device_inline float3 operator/(const float3 a, const float f) { # if defined(__KERNEL_SSE__) return float3(_mm_div_ps(a.m128, _mm_set1_ps(f))); # else float invf = 1.0f / f; return make_float3(a.x * invf, a.y * invf, a.z * invf); # endif } ccl_device_inline float3 operator/(const float3 a, const float3 b) { # if defined(__KERNEL_SSE__) return float3(_mm_div_ps(a.m128, b.m128)); # else return make_float3(a.x / b.x, a.y / b.y, a.z / b.z); # endif } ccl_device_inline float3 operator+(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ return float3(_mm_add_ps(a.m128, b.m128)); # else return make_float3(a.x + b.x, a.y + b.y, a.z + b.z); # endif } ccl_device_inline float3 operator+(const float3 a, const float f) { return a + make_float3(f); } ccl_device_inline float3 operator-(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ return float3(_mm_sub_ps(a.m128, b.m128)); # else return make_float3(a.x - b.x, a.y - b.y, a.z - b.z); # endif } ccl_device_inline float3 operator-(const float3 a, const float f) { return a - make_float3(f); } ccl_device_inline float3 operator+=(float3 &a, const float3 b) { return a = a + b; } ccl_device_inline float3 operator-=(float3 &a, const float3 b) { return a = a - b; } ccl_device_inline float3 operator*=(float3 &a, const float3 b) { return a = a * b; } ccl_device_inline float3 operator*=(float3 &a, const float f) { return a = a * f; } ccl_device_inline float3 operator/=(float3 &a, const float3 b) { return a = a / b; } ccl_device_inline float3 operator/=(float3 &a, const float f) { const float invf = 1.0f / f; return a = a * invf; } # if !(defined(__KERNEL_CUDA__) || defined(__KERNEL_HIP__) || defined(__KERNEL_ONEAPI__)) ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float3 b) { a = float3(a) * b; return a; } ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float f) { a = float3(a) * f; return a; } ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float3 b) { a = float3(a) / b; return a; } ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float f) { a = float3(a) / f; return a; } # endif ccl_device_inline bool operator==(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7; # else return (a.x == b.x && a.y == b.y && a.z == b.z); # endif } ccl_device_inline bool operator!=(const float3 a, const float3 b) { return !(a == b); } ccl_device_inline int3 operator>=(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ return int3(_mm_castps_si128(_mm_cmpge_ps(a.m128, b.m128))); # else return make_int3(a.x >= b.x, a.y >= b.y, a.z >= b.z); # endif } ccl_device_inline float dot(const float3 a, const float3 b) { # if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__) return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F)); # else return a.x * b.x + a.y * b.y + a.z * b.z; # endif } #endif ccl_device_inline float dot_xy(const float3 a, const float3 b) { #if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__) return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a, b), b)); #else return a.x * b.x + a.y * b.y; #endif } ccl_device_inline float len(const float3 a) { #if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__) return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F))); #else return sqrtf(dot(a, a)); #endif } ccl_device_inline float reduce_min(const float3 a) { return min(min(a.x, a.y), a.z); } ccl_device_inline float reduce_max(const float3 a) { return max(max(a.x, a.y), a.z); } ccl_device_inline float len_squared(const float3 a) { return dot(a, a); } #ifndef __KERNEL_METAL__ ccl_device_inline float distance(const float3 a, const float3 b) { return len(a - b); } ccl_device_inline float3 cross(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ const float4 x = float4(a.m128); const float4 y = shuffle<1, 2, 0, 3>(float4(b.m128)); const float4 z = float4(_mm_mul_ps(shuffle<1, 2, 0, 3>(float4(a.m128)), float4(b.m128))); return float3(shuffle<1, 2, 0, 3>(msub(x, y, z)).m128); # else return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); # endif } ccl_device_inline float3 normalize(const float3 a) { # if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__) const __m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F)); return float3(_mm_div_ps(a.m128, norm)); # else return a / len(a); # endif } ccl_device_inline float3 min(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ return float3(_mm_min_ps(a.m128, b.m128)); # else return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z)); # endif } ccl_device_inline float3 max(const float3 a, const float3 b) { # ifdef __KERNEL_SSE__ return float3(_mm_max_ps(a.m128, b.m128)); # else return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z)); # endif } ccl_device_inline float3 clamp(const float3 a, const float3 mn, const float3 mx) { return min(max(a, mn), mx); } ccl_device_inline float3 fabs(const float3 a) { # ifdef __KERNEL_SSE__ # ifdef __KERNEL_NEON__ return float3(vabsq_f32(a.m128)); # else __m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)); return float3(_mm_and_ps(a.m128, mask)); # endif # else return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z)); # endif } /* The floating-point remainder of the division operation a / b calculated by this function is * exactly the value a - iquot * b, where iquot is a / b with its fractional part truncated. * * The returned value has the same sign as a and is less than b in magnitude. */ ccl_device_inline float3 fmod(const float3 a, const float b) { # if defined(__KERNEL_NEON__) /* Use native Neon instructions. * The logic is the same as the SSE code below, but on Apple M2 Ultra this seems to be faster. * Possibly due to some runtime checks in _mm_round_ps which do not get properly inlined. */ const float32x4_t iquot = vrndq_f32(a / b); return float3(vsubq_f32(a, vmulq_f32(iquot, vdupq_n_f32(b)))); # elif defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__) const __m128 iquot = _mm_round_ps(a / b, _MM_FROUND_TRUNC); return float3(_mm_sub_ps(a, _mm_mul_ps(iquot, _mm_set1_ps(b)))); # else return make_float3(fmodf(a.x, b), fmodf(a.y, b), fmodf(a.z, b)); # endif } ccl_device_inline float3 sqrt(const float3 a) { # ifdef __KERNEL_SSE__ return float3(_mm_sqrt_ps(a)); # else return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z)); # endif } ccl_device_inline float3 floor(const float3 a) { # ifdef __KERNEL_SSE__ return float3(_mm_floor_ps(a)); # else return make_float3(floorf(a.x), floorf(a.y), floorf(a.z)); # endif } ccl_device_inline float3 ceil(const float3 a) { # ifdef __KERNEL_SSE__ return float3(_mm_ceil_ps(a)); # else return make_float3(ceilf(a.x), ceilf(a.y), ceilf(a.z)); # endif } ccl_device_inline float3 mix(const float3 a, const float3 b, const float t) { return a + t * (b - a); } ccl_device_inline float3 saturate(const float3 a) { return make_float3(saturatef(a.x), saturatef(a.y), saturatef(a.z)); } ccl_device_inline float3 exp(const float3 v) { return make_float3(expf(v.x), expf(v.y), expf(v.z)); } ccl_device_inline float3 log(const float3 v) { return make_float3(logf(v.x), logf(v.y), logf(v.z)); } ccl_device_inline float3 cos(const float3 v) { return make_float3(cosf(v.x), cosf(v.y), cosf(v.z)); } ccl_device_inline float3 reflect(const float3 incident, const float3 unit_normal) { return incident - 2.0f * unit_normal * dot(incident, unit_normal); } ccl_device_inline float3 refract(const float3 incident, const float3 normal, const float eta) { const float k = 1.0f - eta * eta * (1.0f - dot(normal, incident) * dot(normal, incident)); if (k < 0.0f) { return zero_float3(); } return eta * incident - (eta * dot(normal, incident) + sqrt(k)) * normal; } ccl_device_inline float3 faceforward(const float3 vector, const float3 incident, const float3 reference) { return (dot(reference, incident) < 0.0f) ? vector : -vector; } #endif ccl_device_inline float3 project(const float3 v, const float3 v_proj) { const float len_squared = dot(v_proj, v_proj); return (len_squared != 0.0f) ? (dot(v, v_proj) / len_squared) * v_proj : zero_float3(); } ccl_device_inline float3 normalize_len(const float3 a, ccl_private float *t) { *t = len(a); const float x = 1.0f / *t; return a * x; } ccl_device_inline float3 safe_normalize(const float3 a) { const float t = len(a); return (t != 0.0f) ? a * (1.0f / t) : a; } ccl_device_inline float3 safe_normalize_fallback(const float3 a, const float3 fallback) { const float t = len(a); return (t != 0.0f) ? a * (1.0f / t) : fallback; } ccl_device_inline float3 safe_normalize_len(const float3 a, ccl_private float *t) { *t = len(a); return (*t != 0.0f) ? a / (*t) : a; } ccl_device_inline float3 safe_divide(const float3 a, const float3 b) { return make_float3((b.x != 0.0f) ? a.x / b.x : 0.0f, (b.y != 0.0f) ? a.y / b.y : 0.0f, (b.z != 0.0f) ? a.z / b.z : 0.0f); } ccl_device_inline float3 safe_divide(const float3 a, const float b) { return (b != 0.0f) ? a / b : zero_float3(); } ccl_device_inline float3 interp(const float3 a, const float3 b, const float t) { return a + t * (b - a); } ccl_device_inline float3 sqr(const float3 a) { return a * a; } ccl_device_inline bool is_zero(const float3 a) { #ifdef __KERNEL_SSE__ return a == make_float3(0.0f); #else return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f); #endif } ccl_device_inline float reduce_add(const float3 a) { #if defined(__KERNEL_SSE__) && defined(__KERNEL_NEON__) __m128 t = a.m128; t = vsetq_lane_f32(0.0f, t, 3); return vaddvq_f32(t); #else return (a.x + a.y + a.z); #endif } ccl_device_inline float average(const float3 a) { return reduce_add(a) * (1.0f / 3.0f); } ccl_device_inline bool isequal(const float3 a, const float3 b) { #if defined(__KERNEL_METAL__) return all(a == b); #else return a == b; #endif } template ccl_device_inline float3 select(const MaskType mask, const float3 a, const float3 b) { #if defined(__KERNEL_METAL__) return metal::select(b, a, bool3(mask)); #elif defined(__KERNEL_SSE__) # ifdef __KERNEL_SSE42__ return float3(_mm_blendv_ps(b.m128, a.m128, _mm_castsi128_ps(mask.m128))); # else return float4( _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(mask), a), _mm_andnot_ps(_mm_castsi128_ps(mask), b))); # endif #else return make_float3((mask.x) ? a.x : b.x, (mask.y) ? a.y : b.y, (mask.z) ? a.z : b.z); #endif } template ccl_device_inline float3 mask(const MaskType mask, const float3 a) { /* Replace elements of x with zero where mask isn't set. */ return select(mask, a, zero_float3()); } /* Consistent name for this would be pow, but HIP compiler crashes in name mangling. */ ccl_device_inline float3 power(const float3 v, const float e) { return make_float3(powf(v.x, e), powf(v.y, e), powf(v.z, e)); } ccl_device_inline bool isfinite_safe(const float3 v) { return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z); } ccl_device_inline float3 ensure_finite(const float3 v) { float3 r = v; if (!isfinite_safe(r.x)) { r.x = 0.0f; } if (!isfinite_safe(r.y)) { r.y = 0.0f; } if (!isfinite_safe(r.z)) { r.z = 0.0f; } return r; } /* Triangle */ ccl_device_inline float triangle_area(const ccl_private float3 &v1, const ccl_private float3 &v2, const ccl_private float3 &v3) { return len(cross(v3 - v2, v1 - v2)) * 0.5f; } /* Orthonormal vectors */ ccl_device_inline void make_orthonormals(const float3 N, ccl_private float3 *a, ccl_private float3 *b) { #if 0 if (fabsf(N.y) >= 0.999f) { *a = make_float3(1, 0, 0); *b = make_float3(0, 0, 1); return; } if (fabsf(N.z) >= 0.999f) { *a = make_float3(1, 0, 0); *b = make_float3(0, 1, 0); return; } #endif if (N.x != N.y || N.x != N.z) { *a = make_float3(N.z - N.y, N.x - N.z, N.y - N.x); //(1,1,1)x N } else { *a = make_float3(N.z - N.y, N.x + N.z, -N.y - N.x); //(-1,1,1)x N } *a = normalize(*a); *b = cross(N, *a); } /* Rotation of point around axis and angle */ ccl_device_inline float3 rotate_around_axis(const float3 p, const float3 axis, const float angle) { const float costheta = cosf(angle); const float sintheta = sinf(angle); float3 r; r.x = ((costheta + (1 - costheta) * axis.x * axis.x) * p.x) + (((1 - costheta) * axis.x * axis.y - axis.z * sintheta) * p.y) + (((1 - costheta) * axis.x * axis.z + axis.y * sintheta) * p.z); r.y = (((1 - costheta) * axis.x * axis.y + axis.z * sintheta) * p.x) + ((costheta + (1 - costheta) * axis.y * axis.y) * p.y) + (((1 - costheta) * axis.y * axis.z - axis.x * sintheta) * p.z); r.z = (((1 - costheta) * axis.x * axis.z - axis.y * sintheta) * p.x) + (((1 - costheta) * axis.y * axis.z + axis.x * sintheta) * p.y) + ((costheta + (1 - costheta) * axis.z * axis.z) * p.z); return r; } /* Calculate the angle between the two vectors a and b. * The usual approach `acos(dot(a, b))` has severe precision issues for small angles, * which are avoided by this method. * Based on "Mangled Angles" from https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf */ ccl_device_inline float precise_angle(const float3 a, const float3 b) { return 2.0f * atan2f(len(a - b), len(a + b)); } /* Tangent of the angle between vectors a and b. */ ccl_device_inline float tan_angle(const float3 a, const float3 b) { return len(cross(a, b)) / dot(a, b); } /* projections */ ccl_device_inline float2 map_to_tube(const float3 co) { float len; float u; float v; len = sqrtf(co.x * co.x + co.y * co.y); if (len > 0.0f) { u = (1.0f - (atan2f(co.x / len, co.y / len) / M_PI_F)) * 0.5f; v = (co.z + 1.0f) * 0.5f; } else { u = v = 0.0f; } return make_float2(u, v); } ccl_device_inline float2 map_to_sphere(const float3 co) { const float l = dot(co, co); float u; float v; if (l > 0.0f) { if (UNLIKELY(co.x == 0.0f && co.y == 0.0f)) { u = 0.0f; /* Otherwise domain error. */ } else { u = (0.5f - atan2f(co.x, co.y) * M_1_2PI_F); } v = 1.0f - safe_acosf(co.z / sqrtf(l)) * M_1_PI_F; } else { u = v = 0.0f; } return make_float2(u, v); } CCL_NAMESPACE_END