/* SPDX-FileCopyrightText: 2023 Blender Authors * * SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup pymathutils */ #include #include #include "mathutils.hh" #include "BLI_math_base_safe.h" #include "BLI_math_matrix.h" #include "BLI_math_rotation.h" #include "BLI_math_vector.h" #include "BLI_utildefines.h" #include "../generic/py_capi_utils.hh" #ifndef MATH_STANDALONE # include "BLI_dynstr.h" #endif /** * Higher dimensions are supported, for many common operations * (dealing with vector/matrix multiply or handling as 3D locations) * stack memory is used with a fixed size - defined here. */ #define MAX_DIMENSIONS 4 /** * Swizzle axes get packed into a single value that is used as a closure. Each * axis uses SWIZZLE_BITS_PER_AXIS bits. The first bit (SWIZZLE_VALID_AXIS) is * used as a sentinel: if it is unset, the axis is not valid. */ #define SWIZZLE_BITS_PER_AXIS 3 #define SWIZZLE_VALID_AXIS 0x4 #define SWIZZLE_AXIS 0x3 static PyObject *Vector_copy(VectorObject *self); static PyObject *Vector_deepcopy(VectorObject *self, PyObject *args); /* -------------------------------------------------------------------- */ /** \name Utilities * \{ */ /** * Row vector multiplication - (Vector * Matrix) *
 * [x][y][z] * [1][4][7]
 *             [2][5][8]
 *             [3][6][9]
 * 
* \note vector/matrix multiplication is not commutative. */ static int row_vector_multiplication(float r_vec[MAX_DIMENSIONS], VectorObject *vec, MatrixObject *mat) { float vec_cpy[MAX_DIMENSIONS]; int row, col, z = 0, vec_num = vec->vec_num; if (mat->row_num != vec_num) { if (mat->row_num == 4 && vec_num == 3) { vec_cpy[3] = 1.0f; } else { PyErr_SetString(PyExc_ValueError, "vector * matrix: matrix column size " "and the vector size must be the same"); return -1; } } if (BaseMath_ReadCallback(vec) == -1 || BaseMath_ReadCallback(mat) == -1) { return -1; } memcpy(vec_cpy, vec->vec, vec_num * sizeof(float)); r_vec[3] = 1.0f; /* Multiplication. */ for (col = 0; col < mat->col_num; col++) { double dot = 0.0; for (row = 0; row < mat->row_num; row++) { dot += double(MATRIX_ITEM(mat, row, col) * vec_cpy[row]); } r_vec[z++] = float(dot); } return 0; } static PyObject *vec__apply_to_copy(PyObject *(*vec_func)(VectorObject *), VectorObject *self) { PyObject *ret = Vector_copy(self); PyObject *ret_dummy = vec_func((VectorObject *)ret); if (ret_dummy) { Py_DECREF(ret_dummy); return (PyObject *)ret; } /* error */ Py_DECREF(ret); return nullptr; } /** \note #BaseMath_ReadCallback must be called beforehand. */ static PyObject *Vector_to_tuple_ex(VectorObject *self, int ndigits) { PyObject *ret; int i; ret = PyTuple_New(self->vec_num); if (ndigits >= 0) { for (i = 0; i < self->vec_num; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round(double(self->vec[i]), ndigits))); } } else { for (i = 0; i < self->vec_num; i++) { PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->vec[i])); } } return ret; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: `__new__` / `mathutils.Vector()` * \{ */ /** * Supports 2D, 3D, and 4D vector objects both int and float values * accepted. Mixed float and int values accepted. Ints are parsed to float */ static PyObject *Vector_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { float *vec = nullptr; int vec_num = 3; /* default to a 3D vector */ if (kwds && PyDict_Size(kwds)) { PyErr_SetString(PyExc_TypeError, "Vector(): " "takes no keyword args"); return nullptr; } switch (PyTuple_GET_SIZE(args)) { case 0: vec = static_cast(PyMem_Malloc(vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating pointer space"); return nullptr; } copy_vn_fl(vec, vec_num, 0.0f); break; case 1: if ((vec_num = mathutils_array_parse_alloc( &vec, 2, PyTuple_GET_ITEM(args, 0), "mathutils.Vector()")) == -1) { return nullptr; } break; default: PyErr_SetString(PyExc_TypeError, "mathutils.Vector(): " "more than a single arg given"); return nullptr; } return Vector_CreatePyObject_alloc(vec, vec_num, type); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Class Methods * \{ */ PyDoc_STRVAR( /* Wrap. */ C_Vector_Fill_doc, ".. classmethod:: Fill(size, fill=0.0)\n" "\n" " Create a vector of length size with all values set to fill.\n" "\n" " :arg size: The length of the vector to be created.\n" " :type size: int\n" " :arg fill: The value used to fill the vector.\n" " :type fill: float\n"); static PyObject *C_Vector_Fill(PyObject *cls, PyObject *args) { float *vec; int vec_num; float fill = 0.0f; if (!PyArg_ParseTuple(args, "i|f:Vector.Fill", &vec_num, &fill)) { return nullptr; } if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return nullptr; } vec = static_cast(PyMem_Malloc(vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.Fill(): " "problem allocating pointer space"); return nullptr; } copy_vn_fl(vec, vec_num, fill); return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls); } PyDoc_STRVAR( /* Wrap. */ C_Vector_Range_doc, ".. classmethod:: Range(start, stop, step=1)\n" "\n" " Create a filled with a range of values.\n" "\n" " :arg start: The start of the range used to fill the vector.\n" " :type start: int\n" " :arg stop: The end of the range used to fill the vector.\n" " :type stop: int\n" " :arg step: The step between successive values in the vector.\n" " :type step: int\n"); static PyObject *C_Vector_Range(PyObject *cls, PyObject *args) { float *vec; int stop, vec_num; int start = 0; int step = 1; if (!PyArg_ParseTuple(args, "i|ii:Vector.Range", &start, &stop, &step)) { return nullptr; } switch (PyTuple_GET_SIZE(args)) { case 1: vec_num = start; start = 0; break; case 2: if (start >= stop) { PyErr_SetString(PyExc_RuntimeError, "Start value is larger " "than the stop value"); return nullptr; } vec_num = stop - start; break; default: if (start >= stop) { PyErr_SetString(PyExc_RuntimeError, "Start value is larger " "than the stop value"); return nullptr; } vec_num = (stop - start); if ((vec_num % step) != 0) { vec_num += step; } vec_num /= step; break; } if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return nullptr; } vec = static_cast(PyMem_Malloc(vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.Range(): " "problem allocating pointer space"); return nullptr; } range_vn_fl(vec, vec_num, float(start), float(step)); return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls); } PyDoc_STRVAR( /* Wrap. */ C_Vector_Linspace_doc, ".. classmethod:: Linspace(start, stop, size)\n" "\n" " Create a vector of the specified size which is filled with linearly spaced " "values between start and stop values.\n" "\n" " :arg start: The start of the range used to fill the vector.\n" " :type start: int\n" " :arg stop: The end of the range used to fill the vector.\n" " :type stop: int\n" " :arg size: The size of the vector to be created.\n" " :type size: int\n"); static PyObject *C_Vector_Linspace(PyObject *cls, PyObject *args) { float *vec; int vec_num; float start, end, step; if (!PyArg_ParseTuple(args, "ffi:Vector.Linspace", &start, &end, &vec_num)) { return nullptr; } if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.Linspace(): invalid size"); return nullptr; } step = (end - start) / float(vec_num - 1); vec = static_cast(PyMem_Malloc(vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.Linspace(): " "problem allocating pointer space"); return nullptr; } range_vn_fl(vec, vec_num, start, step); return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls); } PyDoc_STRVAR( /* Wrap. */ C_Vector_Repeat_doc, ".. classmethod:: Repeat(vector, size)\n" "\n" " Create a vector by repeating the values in vector until the required size is reached.\n" "\n" " :arg vector: The vector to draw values from.\n" " :type vector: :class:`mathutils.Vector`\n" " :arg size: The size of the vector to be created.\n" " :type size: int\n"); static PyObject *C_Vector_Repeat(PyObject *cls, PyObject *args) { float *vec; float *iter_vec = nullptr; int i, vec_num, value_num; PyObject *value; if (!PyArg_ParseTuple(args, "Oi:Vector.Repeat", &value, &vec_num)) { return nullptr; } if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.Repeat(): invalid vec_num"); return nullptr; } if ((value_num = mathutils_array_parse_alloc( &iter_vec, 2, value, "Vector.Repeat(vector, vec_num), invalid 'vector' arg")) == -1) { return nullptr; } if (iter_vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.Repeat(): " "problem allocating pointer space"); return nullptr; } vec = static_cast(PyMem_Malloc(vec_num * sizeof(float))); if (vec == nullptr) { PyMem_Free(iter_vec); PyErr_SetString(PyExc_MemoryError, "Vector.Repeat(): " "problem allocating pointer space"); return nullptr; } i = 0; while (i < vec_num) { vec[i] = iter_vec[i % value_num]; i++; } PyMem_Free(iter_vec); return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Zero * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_zero_doc, ".. method:: zero()\n" "\n" " Set all values to zero.\n"); static PyObject *Vector_zero(VectorObject *self) { if (BaseMath_Prepare_ForWrite(self) == -1) { return nullptr; } copy_vn_fl(self->vec, self->vec_num, 0.0f); if (BaseMath_WriteCallback(self) == -1) { return nullptr; } Py_RETURN_NONE; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Normalize * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_normalize_doc, ".. method:: normalize()\n" "\n" " Normalize the vector, making the length of the vector always 1.0.\n" "\n" " .. warning:: Normalizing a vector where all values are zero has no effect.\n" "\n" " .. note:: Normalize works for vectors of all sizes,\n" " however 4D Vectors w axis is left untouched.\n"); static PyObject *Vector_normalize(VectorObject *self) { const int vec_num = (self->vec_num == 4 ? 3 : self->vec_num); if (BaseMath_ReadCallback_ForWrite(self) == -1) { return nullptr; } normalize_vn(self->vec, vec_num); (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } PyDoc_STRVAR( /* Wrap. */ Vector_normalized_doc, ".. method:: normalized()\n" "\n" " Return a new, normalized vector.\n" "\n" " :return: a normalized copy of the vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_normalized(VectorObject *self) { return vec__apply_to_copy(Vector_normalize, self); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Resize * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_resize_doc, ".. method:: resize(size=3)\n" "\n" " Resize the vector to have size number of elements.\n"); static PyObject *Vector_resize(VectorObject *self, PyObject *value) { int vec_num; if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize(): " "cannot resize wrapped data - only Python vectors"); return nullptr; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize(): " "cannot resize a vector that has an owner"); return nullptr; } if ((vec_num = PyC_Long_AsI32(value)) == -1) { PyErr_SetString(PyExc_TypeError, "Vector.resize(size): " "expected size argument to be an integer"); return nullptr; } if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.resize(): invalid size"); return nullptr; } self->vec = static_cast(PyMem_Realloc(self->vec, (vec_num * sizeof(float)))); if (self->vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.resize(): " "problem allocating pointer space"); return nullptr; } /* If the vector has increased in length, set all new elements to 0.0f */ if (vec_num > self->vec_num) { copy_vn_fl(self->vec + self->vec_num, vec_num - self->vec_num, 0.0f); } self->vec_num = vec_num; Py_RETURN_NONE; } PyDoc_STRVAR( /* Wrap. */ Vector_resized_doc, ".. method:: resized(size=3)\n" "\n" " Return a resized copy of the vector with size number of elements.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_resized(VectorObject *self, PyObject *value) { int vec_num; float *vec; if ((vec_num = PyLong_AsLong(value)) == -1) { return nullptr; } if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector.resized(): invalid size"); return nullptr; } vec = static_cast(PyMem_Malloc(vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.resized(): " "problem allocating pointer space"); return nullptr; } copy_vn_fl(vec, vec_num, 0.0f); memcpy(vec, self->vec, self->vec_num * sizeof(float)); return Vector_CreatePyObject_alloc(vec, vec_num, nullptr); } PyDoc_STRVAR( /* Wrap. */ Vector_resize_2d_doc, ".. method:: resize_2d()\n" "\n" " Resize the vector to 2D (x, y).\n"); static PyObject *Vector_resize_2d(VectorObject *self) { if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize_2d(): " "cannot resize wrapped data - only Python vectors"); return nullptr; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize_2d(): " "cannot resize a vector that has an owner"); return nullptr; } self->vec = static_cast(PyMem_Realloc(self->vec, sizeof(float[2]))); if (self->vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.resize_2d(): " "problem allocating pointer space"); return nullptr; } self->vec_num = 2; Py_RETURN_NONE; } PyDoc_STRVAR( /* Wrap. */ Vector_resize_3d_doc, ".. method:: resize_3d()\n" "\n" " Resize the vector to 3D (x, y, z).\n"); static PyObject *Vector_resize_3d(VectorObject *self) { if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize_3d(): " "cannot resize wrapped data - only Python vectors"); return nullptr; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize_3d(): " "cannot resize a vector that has an owner"); return nullptr; } self->vec = static_cast(PyMem_Realloc(self->vec, sizeof(float[3]))); if (self->vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.resize_3d(): " "problem allocating pointer space"); return nullptr; } if (self->vec_num == 2) { self->vec[2] = 0.0f; } self->vec_num = 3; Py_RETURN_NONE; } PyDoc_STRVAR( /* Wrap. */ Vector_resize_4d_doc, ".. method:: resize_4d()\n" "\n" " Resize the vector to 4D (x, y, z, w).\n"); static PyObject *Vector_resize_4d(VectorObject *self) { if (self->flag & BASE_MATH_FLAG_IS_WRAP) { PyErr_SetString(PyExc_TypeError, "Vector.resize_4d(): " "cannot resize wrapped data - only Python vectors"); return nullptr; } if (self->cb_user) { PyErr_SetString(PyExc_TypeError, "Vector.resize_4d(): " "cannot resize a vector that has an owner"); return nullptr; } self->vec = static_cast(PyMem_Realloc(self->vec, sizeof(float[4]))); if (self->vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector.resize_4d(): " "problem allocating pointer space"); return nullptr; } if (self->vec_num == 2) { self->vec[2] = 0.0f; self->vec[3] = 1.0f; } else if (self->vec_num == 3) { self->vec[3] = 1.0f; } self->vec_num = 4; Py_RETURN_NONE; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: To N-dimensions * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_to_2d_doc, ".. method:: to_2d()\n" "\n" " Return a 2d copy of the vector.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_to_2d(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return nullptr; } return Vector_CreatePyObject(self->vec, 2, Py_TYPE(self)); } PyDoc_STRVAR( /* Wrap. */ Vector_to_3d_doc, ".. method:: to_3d()\n" "\n" " Return a 3d copy of the vector.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_to_3d(VectorObject *self) { float tvec[3] = {0.0f}; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } memcpy(tvec, self->vec, sizeof(float) * std::min(self->vec_num, 3)); return Vector_CreatePyObject(tvec, 3, Py_TYPE(self)); } PyDoc_STRVAR( /* Wrap. */ Vector_to_4d_doc, ".. method:: to_4d()\n" "\n" " Return a 4d copy of the vector.\n" "\n" " :return: a new vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_to_4d(VectorObject *self) { float tvec[4] = {0.0f, 0.0f, 0.0f, 1.0f}; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } memcpy(tvec, self->vec, sizeof(float) * std::min(self->vec_num, 4)); return Vector_CreatePyObject(tvec, 4, Py_TYPE(self)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: To Tuple * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_to_tuple_doc, ".. method:: to_tuple(precision=-1)\n" "\n" " Return this vector as a tuple with.\n" "\n" " :arg precision: The number to round the value to in [-1, 21].\n" " :type precision: int\n" " :return: the values of the vector rounded by *precision*\n" " :rtype: tuple\n"); static PyObject *Vector_to_tuple(VectorObject *self, PyObject *args) { int ndigits = 0; if (!PyArg_ParseTuple(args, "|i:to_tuple", &ndigits)) { return nullptr; } if (ndigits > 22 || ndigits < 0) { PyErr_SetString(PyExc_ValueError, "Vector.to_tuple(ndigits): " "ndigits must be between 0 and 21"); return nullptr; } if (PyTuple_GET_SIZE(args) == 0) { ndigits = -1; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } return Vector_to_tuple_ex(self, ndigits); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: To Track Quaternion * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_to_track_quat_doc, ".. method:: to_track_quat(track, up)\n" "\n" " Return a quaternion rotation from the vector and the track and up axis.\n" "\n" " :arg track: Track axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z'].\n" " :type track: string\n" " :arg up: Up axis in ['X', 'Y', 'Z'].\n" " :type up: string\n" " :return: rotation from the vector and the track and up axis.\n" " :rtype: :class:`Quaternion`\n"); static PyObject *Vector_to_track_quat(VectorObject *self, PyObject *args) { float vec[3], quat[4]; const char *strack = nullptr; const char *sup = nullptr; short track = 2, up = 1; if (!PyArg_ParseTuple(args, "|ss:to_track_quat", &strack, &sup)) { return nullptr; } if (self->vec_num != 3) { PyErr_SetString(PyExc_TypeError, "Vector.to_track_quat(): " "only for 3D vectors"); return nullptr; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (strack) { const char *axis_err_msg = "only X, -X, Y, -Y, Z or -Z for track axis"; if (strlen(strack) == 2) { if (strack[0] == '-') { switch (strack[1]) { case 'X': track = 3; break; case 'Y': track = 4; break; case 'Z': track = 5; break; default: PyErr_SetString(PyExc_ValueError, axis_err_msg); return nullptr; } } else { PyErr_SetString(PyExc_ValueError, axis_err_msg); return nullptr; } } else if (strlen(strack) == 1) { switch (strack[0]) { case '-': case 'X': track = 0; break; case 'Y': track = 1; break; case 'Z': track = 2; break; default: PyErr_SetString(PyExc_ValueError, axis_err_msg); return nullptr; } } else { PyErr_SetString(PyExc_ValueError, axis_err_msg); return nullptr; } } if (sup) { const char *axis_err_msg = "only X, Y or Z for up axis"; if (strlen(sup) == 1) { switch (*sup) { case 'X': up = 0; break; case 'Y': up = 1; break; case 'Z': up = 2; break; default: PyErr_SetString(PyExc_ValueError, axis_err_msg); return nullptr; } } else { PyErr_SetString(PyExc_ValueError, axis_err_msg); return nullptr; } } if (track == up) { PyErr_SetString(PyExc_ValueError, "Can't have the same axis for track and up"); return nullptr; } /* Flip vector around, since #vec_to_quat expect a vector from target to tracking object * and the python function expects the inverse (a vector to the target). */ negate_v3_v3(vec, self->vec); vec_to_quat(quat, vec, track, up); return Quaternion_CreatePyObject(quat, nullptr); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Orthogonal * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_orthogonal_doc, ".. method:: orthogonal()\n" "\n" " Return a perpendicular vector.\n" "\n" " :return: a new vector 90 degrees from this vector.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: the axis is undefined, only use when any orthogonal vector is acceptable.\n"); static PyObject *Vector_orthogonal(VectorObject *self) { float vec[3]; if (self->vec_num > 3) { PyErr_SetString(PyExc_TypeError, "Vector.orthogonal(): " "Vector must be 3D or 2D"); return nullptr; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (self->vec_num == 3) { ortho_v3_v3(vec, self->vec); } else { ortho_v2_v2(vec, self->vec); } return Vector_CreatePyObject(vec, self->vec_num, Py_TYPE(self)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Reflect * * `Vector.reflect(mirror)`: return a reflected vector on the mirror normal: * `vec - ((2 * dot(vec, mirror)) * mirror)`. * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_reflect_doc, ".. method:: reflect(mirror)\n" "\n" " Return the reflection vector from the *mirror* argument.\n" "\n" " :arg mirror: This vector could be a normal from the reflecting surface.\n" " :type mirror: :class:`Vector`\n" " :return: The reflected vector matching the size of this vector.\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_reflect(VectorObject *self, PyObject *value) { int value_num; float mirror[3], vec[3]; float reflect[3] = {0.0f}; float tvec[MAX_DIMENSIONS]; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if ((value_num = mathutils_array_parse( tvec, 2, 4, value, "Vector.reflect(other), invalid 'other' arg")) == -1) { return nullptr; } if (self->vec_num < 2 || self->vec_num > 4) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D, 3D or 4D"); return nullptr; } mirror[0] = tvec[0]; mirror[1] = tvec[1]; mirror[2] = (value_num > 2) ? tvec[2] : 0.0f; vec[0] = self->vec[0]; vec[1] = self->vec[1]; vec[2] = (value_num > 2) ? self->vec[2] : 0.0f; normalize_v3(mirror); reflect_v3_v3v3(reflect, vec, mirror); return Vector_CreatePyObject(reflect, self->vec_num, Py_TYPE(self)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Cross Product * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_cross_doc, ".. method:: cross(other)\n" "\n" " Return the cross product of this vector and another.\n" "\n" " :arg other: The other vector to perform the cross product with.\n" " :type other: :class:`Vector`\n" " :return: The cross product.\n" " :rtype: :class:`Vector` or float when 2D vectors are used\n" "\n" " .. note:: both vectors must be 2D or 3D\n"); static PyObject *Vector_cross(VectorObject *self, PyObject *value) { PyObject *ret; float tvec[3]; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (self->vec_num > 3) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D or 3D"); return nullptr; } if (mathutils_array_parse( tvec, self->vec_num, self->vec_num, value, "Vector.cross(other), invalid 'other' arg") == -1) { return nullptr; } if (self->vec_num == 3) { ret = Vector_CreatePyObject(nullptr, 3, Py_TYPE(self)); cross_v3_v3v3(((VectorObject *)ret)->vec, self->vec, tvec); } else { /* size == 2 */ ret = PyFloat_FromDouble(cross_v2v2(self->vec, tvec)); } return ret; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Dot Product * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_dot_doc, ".. method:: dot(other)\n" "\n" " Return the dot product of this vector and another.\n" "\n" " :arg other: The other vector to perform the dot product with.\n" " :type other: :class:`Vector`\n" " :return: The dot product.\n" " :rtype: float\n"); static PyObject *Vector_dot(VectorObject *self, PyObject *value) { float *tvec; PyObject *ret; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (mathutils_array_parse_alloc( &tvec, self->vec_num, value, "Vector.dot(other), invalid 'other' arg") == -1) { return nullptr; } ret = PyFloat_FromDouble(dot_vn_vn(self->vec, tvec, self->vec_num)); PyMem_Free(tvec); return ret; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Angle * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_angle_doc, ".. function:: angle(other, fallback=None)\n" "\n" " Return the angle between two vectors.\n" "\n" " :arg other: another vector to compare the angle with\n" " :type other: :class:`Vector`\n" " :arg fallback: return this when the angle can't be calculated (zero length vector),\n" " (instead of raising a :exc:`ValueError`).\n" " :type fallback: any\n" " :return: angle in radians or fallback when given\n" " :rtype: float\n"); static PyObject *Vector_angle(VectorObject *self, PyObject *args) { const int vec_num = std::min(self->vec_num, 3); /* 4D angle makes no sense */ float tvec[MAX_DIMENSIONS]; PyObject *value; double dot = 0.0f, dot_self = 0.0f, dot_other = 0.0f; int x; PyObject *fallback = nullptr; if (!PyArg_ParseTuple(args, "O|O:angle", &value, &fallback)) { return nullptr; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } /* don't use clamped size, rule of thumb is vector sizes must match, * even though n this case 'w' is ignored */ if (mathutils_array_parse( tvec, self->vec_num, self->vec_num, value, "Vector.angle(other), invalid 'other' arg") == -1) { return nullptr; } if (self->vec_num > 4) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D, 3D or 4D"); return nullptr; } for (x = 0; x < vec_num; x++) { dot_self += double(self->vec[x]) * double(self->vec[x]); dot_other += double(tvec[x]) * double(tvec[x]); dot += double(self->vec[x]) * double(tvec[x]); } if (!dot_self || !dot_other) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.angle(other): " "zero length vectors have no valid angle"); return nullptr; } return PyFloat_FromDouble(safe_acosf(dot / (sqrt(dot_self) * sqrt(dot_other)))); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Angle Signed * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_angle_signed_doc, ".. function:: angle_signed(other, fallback)\n" "\n" " Return the signed angle between two 2D vectors (clockwise is positive).\n" "\n" " :arg other: another vector to compare the angle with\n" " :type other: :class:`Vector`\n" " :arg fallback: return this when the angle can't be calculated (zero length vector),\n" " (instead of raising a :exc:`ValueError`).\n" " :type fallback: any\n" " :return: angle in radians or fallback when given\n" " :rtype: float\n"); static PyObject *Vector_angle_signed(VectorObject *self, PyObject *args) { float tvec[2]; PyObject *value; PyObject *fallback = nullptr; if (!PyArg_ParseTuple(args, "O|O:angle_signed", &value, &fallback)) { return nullptr; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (mathutils_array_parse( tvec, 2, 2, value, "Vector.angle_signed(other), invalid 'other' arg") == -1) { return nullptr; } if (self->vec_num != 2) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D"); return nullptr; } if (is_zero_v2(self->vec) || is_zero_v2(tvec)) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.angle_signed(other): " "zero length vectors have no valid angle"); return nullptr; } return PyFloat_FromDouble(angle_signed_v2v2(self->vec, tvec)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Rotation Difference * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_rotation_difference_doc, ".. function:: rotation_difference(other)\n" "\n" " Returns a quaternion representing the rotational difference between this\n" " vector and another.\n" "\n" " :arg other: second vector.\n" " :type other: :class:`Vector`\n" " :return: the rotational difference between the two vectors.\n" " :rtype: :class:`Quaternion`\n" "\n" " .. note:: 2D vectors raise an :exc:`AttributeError`.\n"); static PyObject *Vector_rotation_difference(VectorObject *self, PyObject *value) { float quat[4], vec_a[3], vec_b[3]; if (self->vec_num < 3 || self->vec_num > 4) { PyErr_SetString(PyExc_ValueError, "vec.difference(value): " "expects both vectors to be size 3 or 4"); return nullptr; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (mathutils_array_parse( vec_b, 3, MAX_DIMENSIONS, value, "Vector.difference(other), invalid 'other' arg") == -1) { return nullptr; } normalize_v3_v3(vec_a, self->vec); normalize_v3(vec_b); rotation_between_vecs_to_quat(quat, vec_a, vec_b); return Quaternion_CreatePyObject(quat, nullptr); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Project * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_project_doc, ".. function:: project(other)\n" "\n" " Return the projection of this vector onto the *other*.\n" "\n" " :arg other: second vector.\n" " :type other: :class:`Vector`\n" " :return: the parallel projection vector\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_project(VectorObject *self, PyObject *value) { const int vec_num = self->vec_num; float *tvec; double dot = 0.0f, dot2 = 0.0f; int x; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (mathutils_array_parse_alloc( &tvec, vec_num, value, "Vector.project(other), invalid 'other' arg") == -1) { return nullptr; } /* get dot products */ for (x = 0; x < vec_num; x++) { dot += double(self->vec[x] * tvec[x]); dot2 += double(tvec[x] * tvec[x]); } /* projection */ dot /= dot2; for (x = 0; x < vec_num; x++) { tvec[x] *= float(dot); } return Vector_CreatePyObject_alloc(tvec, vec_num, Py_TYPE(self)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Linear Interpolation * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_lerp_doc, ".. function:: lerp(other, factor)\n" "\n" " Returns the interpolation of two vectors.\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Vector`\n" " :arg factor: The interpolation value in [0.0, 1.0].\n" " :type factor: float\n" " :return: The interpolated vector.\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_lerp(VectorObject *self, PyObject *args) { const int vec_num = self->vec_num; PyObject *value = nullptr; float fac; float *tvec; if (!PyArg_ParseTuple(args, "Of:lerp", &value, &fac)) { return nullptr; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (mathutils_array_parse_alloc( &tvec, vec_num, value, "Vector.lerp(other), invalid 'other' arg") == -1) { return nullptr; } interp_vn_vn(tvec, self->vec, 1.0f - fac, vec_num); return Vector_CreatePyObject_alloc(tvec, vec_num, Py_TYPE(self)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Spherical Interpolation * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_slerp_doc, ".. function:: slerp(other, factor, fallback=None)\n" "\n" " Returns the interpolation of two non-zero vectors (spherical coordinates).\n" "\n" " :arg other: value to interpolate with.\n" " :type other: :class:`Vector`\n" " :arg factor: The interpolation value typically in [0.0, 1.0].\n" " :type factor: float\n" " :arg fallback: return this when the vector can't be calculated (zero length " "vector or direct opposites),\n" " (instead of raising a :exc:`ValueError`).\n" " :type fallback: any\n" " :return: The interpolated vector.\n" " :rtype: :class:`Vector`\n"); static PyObject *Vector_slerp(VectorObject *self, PyObject *args) { const int vec_num = self->vec_num; PyObject *value = nullptr; float fac, cosom, w[2]; float self_vec[3], other_vec[3], ret_vec[3]; float self_len_sq, other_len_sq; int x; PyObject *fallback = nullptr; if (!PyArg_ParseTuple(args, "Of|O:slerp", &value, &fac, &fallback)) { return nullptr; } if (BaseMath_ReadCallback(self) == -1) { return nullptr; } if (self->vec_num > 3) { PyErr_SetString(PyExc_ValueError, "Vector must be 2D or 3D"); return nullptr; } if (mathutils_array_parse( other_vec, vec_num, vec_num, value, "Vector.slerp(other), invalid 'other' arg") == -1) { return nullptr; } self_len_sq = normalize_vn_vn(self_vec, self->vec, vec_num); other_len_sq = normalize_vn(other_vec, vec_num); /* use fallbacks for zero length vectors */ if (UNLIKELY((self_len_sq < FLT_EPSILON) || (other_len_sq < FLT_EPSILON))) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.slerp(): " "zero length vectors unsupported"); return nullptr; } /* We have sane state, execute slerp */ cosom = float(dot_vn_vn(self_vec, other_vec, vec_num)); /* direct opposite, can't slerp */ if (UNLIKELY(cosom < (-1.0f + FLT_EPSILON))) { /* avoid exception */ if (fallback) { Py_INCREF(fallback); return fallback; } PyErr_SetString(PyExc_ValueError, "Vector.slerp(): " "opposite vectors unsupported"); return nullptr; } interp_dot_slerp(fac, cosom, w); for (x = 0; x < vec_num; x++) { ret_vec[x] = (w[0] * self_vec[x]) + (w[1] * other_vec[x]); } return Vector_CreatePyObject(ret_vec, vec_num, Py_TYPE(self)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Rotate * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_rotate_doc, ".. function:: rotate(other)\n" "\n" " Rotate the vector by a rotation value.\n" "\n" " .. note:: 2D vectors are a special case that can only be rotated by a 2x2 matrix.\n" "\n" " :arg other: rotation component of mathutils value\n" " :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n"); static PyObject *Vector_rotate(VectorObject *self, PyObject *value) { if (BaseMath_ReadCallback_ForWrite(self) == -1) { return nullptr; } if (self->vec_num == 2) { /* Special case for 2D Vector with 2x2 matrix, so we avoid resizing it to a 3x3. */ float other_rmat[2][2]; MatrixObject *pymat; if (!Matrix_Parse2x2(value, &pymat)) { return nullptr; } normalize_m2_m2(other_rmat, (const float(*)[2])pymat->matrix); /* Equivalent to a rotation along the Z axis. */ mul_m2_v2(other_rmat, self->vec); } else { float other_rmat[3][3]; if (mathutils_any_to_rotmat(other_rmat, value, "Vector.rotate(value)") == -1) { return nullptr; } mul_m3_v3(other_rmat, self->vec); } (void)BaseMath_WriteCallback(self); Py_RETURN_NONE; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Negate * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_negate_doc, ".. method:: negate()\n" "\n" " Set all values to their negative.\n"); static PyObject *Vector_negate(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return nullptr; } negate_vn(self->vec, self->vec_num); (void)BaseMath_WriteCallback(self); /* already checked for error */ Py_RETURN_NONE; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Methods: Copy/Deep-Copy * \{ */ PyDoc_STRVAR( /* Wrap. */ Vector_copy_doc, ".. function:: copy()\n" "\n" " Returns a copy of this vector.\n" "\n" " :return: A copy of the vector.\n" " :rtype: :class:`Vector`\n" "\n" " .. note:: use this to get a copy of a wrapped vector with\n" " no reference to the original data.\n"); static PyObject *Vector_copy(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return nullptr; } return Vector_CreatePyObject(self->vec, self->vec_num, Py_TYPE(self)); } static PyObject *Vector_deepcopy(VectorObject *self, PyObject *args) { if (!PyC_CheckArgs_DeepCopy(args)) { return nullptr; } return Vector_copy(self); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: `__repr__` & `__str__` * \{ */ static PyObject *Vector_repr(VectorObject *self) { PyObject *ret, *tuple; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } tuple = Vector_to_tuple_ex(self, -1); ret = PyUnicode_FromFormat("Vector(%R)", tuple); Py_DECREF(tuple); return ret; } #ifndef MATH_STANDALONE static PyObject *Vector_str(VectorObject *self) { int i; DynStr *ds; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } ds = BLI_dynstr_new(); BLI_dynstr_append(ds, "vec_num; i++) { BLI_dynstr_appendf(ds, i ? ", %.4f" : "%.4f", self->vec[i]); } BLI_dynstr_append(ds, ")>"); return mathutils_dynstr_to_py(ds); /* frees ds */ } #endif /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Rich Compare * \{ */ static PyObject *Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type) { VectorObject *vecA = nullptr, *vecB = nullptr; int result = 0; const double epsilon = 0.000001f; double lenA, lenB; if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)) { if (comparison_type == Py_NE) { Py_RETURN_TRUE; } Py_RETURN_FALSE; } vecA = (VectorObject *)objectA; vecB = (VectorObject *)objectB; if (BaseMath_ReadCallback(vecA) == -1 || BaseMath_ReadCallback(vecB) == -1) { return nullptr; } if (vecA->vec_num != vecB->vec_num) { if (comparison_type == Py_NE) { Py_RETURN_TRUE; } Py_RETURN_FALSE; } switch (comparison_type) { case Py_LT: lenA = len_squared_vn(vecA->vec, vecA->vec_num); lenB = len_squared_vn(vecB->vec, vecB->vec_num); if (lenA < lenB) { result = 1; } break; case Py_LE: lenA = len_squared_vn(vecA->vec, vecA->vec_num); lenB = len_squared_vn(vecB->vec, vecB->vec_num); if (lenA < lenB) { result = 1; } else { result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; case Py_EQ: result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->vec_num, 1); break; case Py_NE: result = !EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->vec_num, 1); break; case Py_GT: lenA = len_squared_vn(vecA->vec, vecA->vec_num); lenB = len_squared_vn(vecB->vec, vecB->vec_num); if (lenA > lenB) { result = 1; } break; case Py_GE: lenA = len_squared_vn(vecA->vec, vecA->vec_num); lenB = len_squared_vn(vecB->vec, vecB->vec_num); if (lenA > lenB) { result = 1; } else { result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB)); } break; default: printf("The result of the comparison could not be evaluated"); break; } if (result == 1) { Py_RETURN_TRUE; } Py_RETURN_FALSE; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Hash (`__hash__`) * \{ */ static Py_hash_t Vector_hash(VectorObject *self) { if (BaseMath_ReadCallback(self) == -1) { return -1; } if (BaseMathObject_Prepare_ForHash(self) == -1) { return -1; } return mathutils_array_hash(self->vec, self->vec_num); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Sequence & Mapping Protocols Implementation * \{ */ /** Sequence length: `len(object)`. */ static Py_ssize_t Vector_len(VectorObject *self) { return self->vec_num; } static PyObject *vector_item_internal(VectorObject *self, int i, const bool is_attr) { if (i < 0) { i = self->vec_num - i; } if (i < 0 || i >= self->vec_num) { if (is_attr) { PyErr_Format(PyExc_AttributeError, "Vector.%c: unavailable on %dd vector", *(((const char *)"xyzw") + i), self->vec_num); } else { PyErr_SetString(PyExc_IndexError, "vector[index]: out of range"); } return nullptr; } if (BaseMath_ReadIndexCallback(self, i) == -1) { return nullptr; } return PyFloat_FromDouble(self->vec[i]); } /** Sequence accessor (get): `x = object[i]`. */ static PyObject *Vector_item(VectorObject *self, Py_ssize_t i) { return vector_item_internal(self, i, false); } static int vector_ass_item_internal(VectorObject *self, int i, PyObject *value, const bool is_attr) { float scalar; if (BaseMath_Prepare_ForWrite(self) == -1) { return -1; } if ((scalar = PyFloat_AsDouble(value)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "vector[index] = x: " "assigned value not a number"); return -1; } if (i < 0) { i = self->vec_num - i; } if (i < 0 || i >= self->vec_num) { if (is_attr) { PyErr_Format(PyExc_AttributeError, "Vector.%c = x: unavailable on %dd vector", *(((const char *)"xyzw") + i), self->vec_num); } else { PyErr_SetString(PyExc_IndexError, "vector[index] = x: " "assignment index out of range"); } return -1; } self->vec[i] = scalar; if (BaseMath_WriteIndexCallback(self, i) == -1) { return -1; } return 0; } /** Sequence accessor (set): `object[i] = x`. */ static int Vector_ass_item(VectorObject *self, Py_ssize_t i, PyObject *value) { return vector_ass_item_internal(self, i, value, false); } /** Sequence slice accessor (get): `x = object[i:j]`. */ static PyObject *Vector_slice(VectorObject *self, int begin, int end) { PyObject *tuple; int count; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } CLAMP(begin, 0, self->vec_num); if (end < 0) { end = self->vec_num + end + 1; } CLAMP(end, 0, self->vec_num); begin = std::min(begin, end); tuple = PyTuple_New(end - begin); for (count = begin; count < end; count++) { PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->vec[count])); } return tuple; } /** Sequence slice accessor (set): `object[i:j] = x`. */ static int Vector_ass_slice(VectorObject *self, int begin, int end, PyObject *seq) { int vec_num = 0; float *vec = nullptr; if (BaseMath_ReadCallback_ForWrite(self) == -1) { return -1; } CLAMP(begin, 0, self->vec_num); CLAMP(end, 0, self->vec_num); begin = std::min(begin, end); vec_num = (end - begin); if (mathutils_array_parse_alloc(&vec, vec_num, seq, "vector[begin:end] = [...]") == -1) { return -1; } if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "vec[:] = seq: " "problem allocating pointer space"); return -1; } /* Parsed well - now set in vector. */ memcpy(self->vec + begin, vec, vec_num * sizeof(float)); PyMem_Free(vec); if (BaseMath_WriteCallback(self) == -1) { return -1; } return 0; } /** Sequence generic subscript (get): `x = object[...]`. */ static PyObject *Vector_subscript(VectorObject *self, PyObject *item) { if (PyIndex_Check(item)) { Py_ssize_t i; i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) { return nullptr; } if (i < 0) { i += self->vec_num; } return Vector_item(self, i); } if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx(item, self->vec_num, &start, &stop, &step, &slicelength) < 0) { return nullptr; } if (slicelength <= 0) { return PyTuple_New(0); } if (step == 1) { return Vector_slice(self, start, stop); } PyErr_SetString(PyExc_IndexError, "slice steps not supported with vectors"); return nullptr; } PyErr_Format( PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return nullptr; } /** Sequence generic subscript (set): `object[...] = x`. */ static int Vector_ass_subscript(VectorObject *self, PyObject *item, PyObject *value) { if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) { return -1; } if (i < 0) { i += self->vec_num; } return Vector_ass_item(self, i, value); } if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength; if (PySlice_GetIndicesEx(item, self->vec_num, &start, &stop, &step, &slicelength) < 0) { return -1; } if (step == 1) { return Vector_ass_slice(self, start, stop, value); } PyErr_SetString(PyExc_IndexError, "slice steps not supported with vectors"); return -1; } PyErr_Format( PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name); return -1; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Numeric Protocol Implementation * \{ */ /** Addition: `object + object`. */ static PyObject *Vector_add(PyObject *v1, PyObject *v2) { VectorObject *vec1 = nullptr, *vec2 = nullptr; float *vec = nullptr; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector addition: (%s + %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return nullptr; } /* VECTOR + VECTOR. */ if (vec1->vec_num != vec2->vec_num) { PyErr_SetString(PyExc_AttributeError, "Vector addition: " "vectors must have the same dimensions for this operation"); return nullptr; } vec = static_cast(PyMem_Malloc(vec1->vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating pointer space"); return nullptr; } add_vn_vnvn(vec, vec1->vec, vec2->vec, vec1->vec_num); return Vector_CreatePyObject_alloc(vec, vec1->vec_num, Py_TYPE(v1)); } /** Addition in-place: `object += object`. */ static PyObject *Vector_iadd(PyObject *v1, PyObject *v2) { VectorObject *vec1 = nullptr, *vec2 = nullptr; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector addition: (%s += %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (vec1->vec_num != vec2->vec_num) { PyErr_SetString(PyExc_AttributeError, "Vector addition: " "vectors must have the same dimensions for this operation"); return nullptr; } if (BaseMath_ReadCallback_ForWrite(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return nullptr; } add_vn_vn(vec1->vec, vec2->vec, vec1->vec_num); (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } /** Subtraction: `object - object`. */ static PyObject *Vector_sub(PyObject *v1, PyObject *v2) { VectorObject *vec1 = nullptr, *vec2 = nullptr; float *vec; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector subtraction: (%s - %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return nullptr; } if (vec1->vec_num != vec2->vec_num) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: " "vectors must have the same dimensions for this operation"); return nullptr; } vec = static_cast(PyMem_Malloc(vec1->vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating pointer space"); return nullptr; } sub_vn_vnvn(vec, vec1->vec, vec2->vec, vec1->vec_num); return Vector_CreatePyObject_alloc(vec, vec1->vec_num, Py_TYPE(v1)); } /** Subtraction in-place: `object -= object`. */ static PyObject *Vector_isub(PyObject *v1, PyObject *v2) { VectorObject *vec1 = nullptr, *vec2 = nullptr; if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) { PyErr_Format(PyExc_AttributeError, "Vector subtraction: (%s -= %s) " "invalid type for this operation", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } vec1 = (VectorObject *)v1; vec2 = (VectorObject *)v2; if (vec1->vec_num != vec2->vec_num) { PyErr_SetString(PyExc_AttributeError, "Vector subtraction: " "vectors must have the same dimensions for this operation"); return nullptr; } if (BaseMath_ReadCallback_ForWrite(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) { return nullptr; } sub_vn_vn(vec1->vec, vec2->vec, vec1->vec_num); (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } /* Multiply internal implementation `object * object`, `object *= object`. */ int column_vector_multiplication(float r_vec[MAX_DIMENSIONS], VectorObject *vec, MatrixObject *mat) { float vec_cpy[MAX_DIMENSIONS]; int row, col, z = 0; if (mat->col_num != vec->vec_num) { if (mat->col_num == 4 && vec->vec_num == 3) { vec_cpy[3] = 1.0f; } else { PyErr_SetString(PyExc_ValueError, "matrix * vector: " "len(matrix.col) and len(vector) must be the same, " "except for 4x4 matrix * 3D vector."); return -1; } } memcpy(vec_cpy, vec->vec, vec->vec_num * sizeof(float)); r_vec[3] = 1.0f; for (row = 0; row < mat->row_num; row++) { double dot = 0.0f; for (col = 0; col < mat->col_num; col++) { dot += double(MATRIX_ITEM(mat, row, col) * vec_cpy[col]); } r_vec[z++] = float(dot); } return 0; } static PyObject *vector_mul_float(VectorObject *vec, const float scalar) { float *tvec = static_cast(PyMem_Malloc(vec->vec_num * sizeof(float))); if (tvec == nullptr) { PyErr_SetString(PyExc_MemoryError, "vec * float: " "problem allocating pointer space"); return nullptr; } mul_vn_vn_fl(tvec, vec->vec, vec->vec_num, scalar); return Vector_CreatePyObject_alloc(tvec, vec->vec_num, Py_TYPE(vec)); } static PyObject *vector_mul_vec(VectorObject *vec1, VectorObject *vec2) { float *tvec = static_cast(PyMem_Malloc(vec1->vec_num * sizeof(float))); if (tvec == nullptr) { PyErr_SetString(PyExc_MemoryError, "vec * vec: " "problem allocating pointer space"); return nullptr; } mul_vn_vnvn(tvec, vec1->vec, vec2->vec, vec1->vec_num); return Vector_CreatePyObject_alloc(tvec, vec1->vec_num, Py_TYPE(vec1)); } /** Multiplication (element-wise or scalar): `object * object`. */ static PyObject *Vector_mul(PyObject *v1, PyObject *v2) { VectorObject *vec1 = nullptr, *vec2 = nullptr; float scalar; if (VectorObject_Check(v1)) { vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback(vec1) == -1) { return nullptr; } } if (VectorObject_Check(v2)) { vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec2) == -1) { return nullptr; } } /* Intentionally don't support (Quaternion) here, uses reverse order instead. */ /* make sure v1 is always the vector */ if (vec1 && vec2) { if (vec1->vec_num != vec2->vec_num) { PyErr_SetString(PyExc_ValueError, "Vector multiplication: " "vectors must have the same dimensions for this operation"); return nullptr; } /* element-wise product */ return vector_mul_vec(vec1, vec2); } if (vec1) { if (((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) == 0) { /* VEC * FLOAT */ return vector_mul_float(vec1, scalar); } } else if (vec2) { if (((scalar = PyFloat_AsDouble(v1)) == -1.0f && PyErr_Occurred()) == 0) { /* FLOAT * VEC */ return vector_mul_float(vec2, scalar); } } PyErr_Format(PyExc_TypeError, "Element-wise multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } /** Multiplication in-place (element-wise or scalar): `object *= object`. */ static PyObject *Vector_imul(PyObject *v1, PyObject *v2) { VectorObject *vec1 = nullptr, *vec2 = nullptr; float scalar; if (VectorObject_Check(v1)) { vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback(vec1) == -1) { return nullptr; } } if (VectorObject_Check(v2)) { vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec2) == -1) { return nullptr; } } if (BaseMath_ReadCallback_ForWrite(vec1) == -1) { return nullptr; } /* Intentionally don't support (Quaternion, Matrix) here, uses reverse order instead. */ if (vec1 && vec2) { if (vec1->vec_num != vec2->vec_num) { PyErr_SetString(PyExc_ValueError, "Vector multiplication: " "vectors must have the same dimensions for this operation"); return nullptr; } /* Element-wise product in-place. */ mul_vn_vn(vec1->vec, vec2->vec, vec1->vec_num); } else if (vec1 && (((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) == 0)) { /* VEC *= FLOAT */ mul_vn_fl(vec1->vec, vec1->vec_num, scalar); } else { PyErr_Format(PyExc_TypeError, "In place element-wise multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } /** Multiplication (matrix multiply): `object @ object`. */ static PyObject *Vector_matmul(PyObject *v1, PyObject *v2) { VectorObject *vec1 = nullptr, *vec2 = nullptr; int vec_num; if (VectorObject_Check(v1)) { vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback(vec1) == -1) { return nullptr; } } if (VectorObject_Check(v2)) { vec2 = (VectorObject *)v2; if (BaseMath_ReadCallback(vec2) == -1) { return nullptr; } } /* Intentionally don't support (Quaternion) here, uses reverse order instead. */ /* make sure v1 is always the vector */ if (vec1 && vec2) { if (vec1->vec_num != vec2->vec_num) { PyErr_SetString(PyExc_ValueError, "Vector multiplication: " "vectors must have the same dimensions for this operation"); return nullptr; } /* Dot product. */ return PyFloat_FromDouble(dot_vn_vn(vec1->vec, vec2->vec, vec1->vec_num)); } if (vec1) { if (MatrixObject_Check(v2)) { /* VEC @ MATRIX */ float tvec[MAX_DIMENSIONS]; if (BaseMath_ReadCallback((MatrixObject *)v2) == -1) { return nullptr; } if (row_vector_multiplication(tvec, vec1, (MatrixObject *)v2) == -1) { return nullptr; } if (((MatrixObject *)v2)->row_num == 4 && vec1->vec_num == 3) { vec_num = 3; } else { vec_num = ((MatrixObject *)v2)->col_num; } return Vector_CreatePyObject(tvec, vec_num, Py_TYPE(vec1)); } } PyErr_Format(PyExc_TypeError, "Vector multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } /** Multiplication in-place (matrix multiply): `object @= object`. */ static PyObject *Vector_imatmul(PyObject *v1, PyObject *v2) { PyErr_Format(PyExc_TypeError, "In place vector multiplication: " "not supported between '%.200s' and '%.200s' types", Py_TYPE(v1)->tp_name, Py_TYPE(v2)->tp_name); return nullptr; } /** Division: `object / object`. */ static PyObject *Vector_div(PyObject *v1, PyObject *v2) { float *vec = nullptr, scalar; VectorObject *vec1 = nullptr; if (!VectorObject_Check(v1)) { /* not a vector */ PyErr_SetString(PyExc_TypeError, "Vector division: " "Vector must be divided by a float"); return nullptr; } vec1 = (VectorObject *)v1; /* vector */ if (BaseMath_ReadCallback(vec1) == -1) { return nullptr; } if ((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "Vector division: " "Vector must be divided by a float"); return nullptr; } if (scalar == 0.0f) { PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: " "divide by zero error"); return nullptr; } vec = static_cast(PyMem_Malloc(vec1->vec_num * sizeof(float))); if (vec == nullptr) { PyErr_SetString(PyExc_MemoryError, "vec / value: " "problem allocating pointer space"); return nullptr; } mul_vn_vn_fl(vec, vec1->vec, vec1->vec_num, 1.0f / scalar); return Vector_CreatePyObject_alloc(vec, vec1->vec_num, Py_TYPE(v1)); } /** Division in-place: `object /= object`. */ static PyObject *Vector_idiv(PyObject *v1, PyObject *v2) { float scalar; VectorObject *vec1 = (VectorObject *)v1; if (BaseMath_ReadCallback_ForWrite(vec1) == -1) { return nullptr; } if ((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */ PyErr_SetString(PyExc_TypeError, "Vector division: " "Vector must be divided by a float"); return nullptr; } if (scalar == 0.0f) { PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: " "divide by zero error"); return nullptr; } mul_vn_fl(vec1->vec, vec1->vec_num, 1.0f / scalar); (void)BaseMath_WriteCallback(vec1); Py_INCREF(v1); return v1; } /** Negative (returns the negative of this object): `-object`. */ static PyObject *Vector_neg(VectorObject *self) { float *tvec; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } tvec = static_cast(PyMem_Malloc(self->vec_num * sizeof(float))); negate_vn_vn(tvec, self->vec, self->vec_num); return Vector_CreatePyObject_alloc(tvec, self->vec_num, Py_TYPE(self)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Protocol Declarations * \{ */ static PySequenceMethods Vector_SeqMethods = { /*sq_length*/ (lenfunc)Vector_len, /*sq_concat*/ nullptr, /*sq_repeat*/ nullptr, /*sq_item*/ (ssizeargfunc)Vector_item, /*was_sq_slice*/ nullptr, /* DEPRECATED. */ /*sq_ass_item*/ (ssizeobjargproc)Vector_ass_item, /*was_sq_ass_slice*/ nullptr, /* DEPRECATED. */ /*sq_contains*/ nullptr, /*sq_inplace_concat*/ nullptr, /*sq_inplace_repeat*/ nullptr, }; static PyMappingMethods Vector_AsMapping = { /*mp_length*/ (lenfunc)Vector_len, /*mp_subscript*/ (binaryfunc)Vector_subscript, /*mp_ass_subscript*/ (objobjargproc)Vector_ass_subscript, }; static PyNumberMethods Vector_NumMethods = { /*nb_add*/ (binaryfunc)Vector_add, /*nb_subtract*/ (binaryfunc)Vector_sub, /*nb_multiply*/ (binaryfunc)Vector_mul, /*nb_remainder*/ nullptr, /*nb_divmod*/ nullptr, /*nb_power*/ nullptr, /*nb_negative*/ (unaryfunc)Vector_neg, /*nb_positive*/ (unaryfunc)Vector_copy, /*nb_absolute*/ nullptr, /*nb_bool*/ nullptr, /*nb_invert*/ nullptr, /*nb_lshift*/ nullptr, /*nb_rshift*/ nullptr, /*nb_and*/ nullptr, /*nb_xor*/ nullptr, /*nb_or*/ nullptr, /*nb_int*/ nullptr, /*nb_reserved*/ nullptr, /*nb_float*/ nullptr, /*nb_inplace_add*/ Vector_iadd, /*nb_inplace_subtract*/ Vector_isub, /*nb_inplace_multiply*/ Vector_imul, /*nb_inplace_remainder*/ nullptr, /*nb_inplace_power*/ nullptr, /*nb_inplace_lshift*/ nullptr, /*nb_inplace_rshift*/ nullptr, /*nb_inplace_and*/ nullptr, /*nb_inplace_xor*/ nullptr, /*nb_inplace_or*/ nullptr, /*nb_floor_divide*/ nullptr, /*nb_true_divide*/ Vector_div, /*nb_inplace_floor_divide*/ nullptr, /*nb_inplace_true_divide*/ Vector_idiv, /*nb_index*/ nullptr, /*nb_matrix_multiply*/ (binaryfunc)Vector_matmul, /*nb_inplace_matrix_multiply*/ (binaryfunc)Vector_imatmul, }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Get/Set Item Implementation * \{ */ /* Vector axis: `vector.x/y/z/w`. */ PyDoc_STRVAR( /* Wrap. */ Vector_axis_x_doc, "Vector X axis.\n" "\n" ":type: float"); PyDoc_STRVAR( /* Wrap. */ Vector_axis_y_doc, "Vector Y axis.\n" "\n" ":type: float"); PyDoc_STRVAR( /* Wrap. */ Vector_axis_z_doc, "Vector Z axis (3D Vectors only).\n" "\n" ":type: float"); PyDoc_STRVAR( /* Wrap. */ Vector_axis_w_doc, "Vector W axis (4D Vectors only).\n" "\n" ":type: float"); static PyObject *Vector_axis_get(VectorObject *self, void *type) { return vector_item_internal(self, POINTER_AS_INT(type), true); } static int Vector_axis_set(VectorObject *self, PyObject *value, void *type) { return vector_ass_item_internal(self, POINTER_AS_INT(type), value, true); } /* `Vector.length`. */ PyDoc_STRVAR( /* Wrap. */ Vector_length_doc, "Vector Length.\n" "\n" ":type: float"); static PyObject *Vector_length_get(VectorObject *self, void * /*closure*/) { if (BaseMath_ReadCallback(self) == -1) { return nullptr; } return PyFloat_FromDouble(sqrt(dot_vn_vn(self->vec, self->vec, self->vec_num))); } static int Vector_length_set(VectorObject *self, PyObject *value) { double dot = 0.0f, param; if (BaseMath_ReadCallback_ForWrite(self) == -1) { return -1; } if ((param = PyFloat_AsDouble(value)) == -1.0 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "length must be set to a number"); return -1; } if (param < 0.0) { PyErr_SetString(PyExc_ValueError, "cannot set a vectors length to a negative value"); return -1; } if (param == 0.0) { copy_vn_fl(self->vec, self->vec_num, 0.0f); return 0; } dot = dot_vn_vn(self->vec, self->vec, self->vec_num); if (!dot) { /* can't sqrt zero */ return 0; } dot = sqrt(dot); if (dot == param) { return 0; } dot = dot / param; mul_vn_fl(self->vec, self->vec_num, 1.0 / dot); (void)BaseMath_WriteCallback(self); /* checked already */ return 0; } /* `Vector.length_squared`. */ PyDoc_STRVAR( /* Wrap. */ Vector_length_squared_doc, "Vector length squared (v.dot(v)).\n" "\n" ":type: float"); static PyObject *Vector_length_squared_get(VectorObject *self, void * /*closure*/) { if (BaseMath_ReadCallback(self) == -1) { return nullptr; } return PyFloat_FromDouble(dot_vn_vn(self->vec, self->vec, self->vec_num)); } /* `Vector.xyzw`, etc.. */ PyDoc_STRVAR( /* Wrap. */ Vector_swizzle_doc, ":type: :class:`Vector`"); /** * Python script used to make swizzle array: * * \code{.py} * SWIZZLE_BITS_PER_AXIS = 3 * SWIZZLE_VALID_AXIS = 0x4 * * axis_dict = {} * axis_pos = {"x": 0, "y": 1, "z": 2, "w": 3} * axis_chars = "xyzw" * while len(axis_chars) >= 2: * for axis_0 in axis_chars: * axis_0_pos = axis_pos[axis_0] * for axis_1 in axis_chars: * axis_1_pos = axis_pos[axis_1] * axis_dict[axis_0 + axis_1] = ( * "(({:d} | SWIZZLE_VALID_AXIS) | " * "(({:d} | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS))" * ).format(axis_0_pos, axis_1_pos) * if len(axis_chars) <= 2: * continue * for axis_2 in axis_chars: * axis_2_pos = axis_pos[axis_2] * axis_dict[axis_0 + axis_1 + axis_2] = ( * "(({:d} | SWIZZLE_VALID_AXIS) | " * "(({:d} | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS) | " * "(({:d} | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2)))" * ).format(axis_0_pos, axis_1_pos, axis_2_pos) * if len(axis_chars) <= 3: * continue * for axis_3 in axis_chars: * axis_3_pos = axis_pos[axis_3] * axis_dict[axis_0 + axis_1 + axis_2 + axis_3] = ( * "(({:d} | SWIZZLE_VALID_AXIS) | " * "(({:d} | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS) | " * "(({:d} | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2)) | " * "(({:d} | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 3)))" * ).format(axis_0_pos, axis_1_pos, axis_2_pos, axis_3_pos) * * axis_chars = axis_chars[:-1] * items = list(axis_dict.items()) * items.sort( * key=lambda a: a[0].replace("x", "0").replace("y", "1").replace("z", "2").replace("w", "3") * ) * * for size in range(2, 5): * for rw_pass in (True, False): * key_args = ", ".join(list("abcd"[:size])) * * print("#define VECTOR_SWIZZLE{:d}_{:s}_DEF(attr, {:s}) \\".format( * size, * "RW" if rw_pass else "RO", * key_args, * )) * print(" {{attr, (getter){:s}, (setter){:s}, {:s}, SWIZZLE{:d}({:s}), }}".format( * "Vector_swizzle_get", * "Vector_swizzle_set" if rw_pass else "nullptr", * "Vector_swizzle_doc", * size, * key_args, * )) * print() * * unique = set() * for key, val in items: * num = eval(val) * key_args = ", ".join(["{:d}".format(axis_pos[c]) for c in key.lower()]) * macro = "VECTOR_SWIZZLE{:d}_{:s}_DEF".format( * len(key), * "RW" if len(set(key)) == len(key) else "RO", * ) * print(" {:s}(\"{:s}\", {:s}),".format( * macro, * key, * key_args, * )) * unique.add(num) * * if len(unique) != len(items): * print("ERROR, duplicate values found") * \endcode */ /** * Get a new Vector according to the provided swizzle bits. */ static PyObject *Vector_swizzle_get(VectorObject *self, void *closure) { size_t axis_to; size_t axis_from; float vec[MAX_DIMENSIONS]; uint swizzleClosure; if (BaseMath_ReadCallback(self) == -1) { return nullptr; } /* Unpack the axes from the closure into an array. */ axis_to = 0; swizzleClosure = POINTER_AS_INT(closure); while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_from = swizzleClosure & SWIZZLE_AXIS; if (axis_from >= self->vec_num) { PyErr_SetString(PyExc_AttributeError, "Vector swizzle: " "specified axis not present"); return nullptr; } vec[axis_to] = self->vec[axis_from]; swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_to++; } return Vector_CreatePyObject(vec, axis_to, Py_TYPE(self)); } /** * Set the items of this vector using a swizzle. * - If value is a vector or list this operates like an array copy, except that * the destination is effectively re-ordered as defined by the swizzle. At * most `min(len(source), len(destination))` values will be copied. * - If the value is scalar, it is copied to all axes listed in the swizzle. * - If an axis appears more than once in the swizzle, the final occurrence is * the one that determines its value. * * \return 0 on success and -1 on failure. On failure, the vector will be unchanged. */ static int Vector_swizzle_set(VectorObject *self, PyObject *value, void *closure) { size_t size_from; float scalarVal; size_t axis_from; size_t axis_to; uint swizzleClosure; float tvec[MAX_DIMENSIONS]; float vec_assign[MAX_DIMENSIONS]; if (BaseMath_ReadCallback_ForWrite(self) == -1) { return -1; } /* Check that the closure can be used with this vector: even 2D vectors have * swizzles defined for axes z and w, but they would be invalid. */ swizzleClosure = POINTER_AS_INT(closure); axis_from = 0; while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_to = swizzleClosure & SWIZZLE_AXIS; if (axis_to >= self->vec_num) { PyErr_SetString(PyExc_AttributeError, "Vector swizzle: " "specified axis not present"); return -1; } swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_from++; } if (((scalarVal = PyFloat_AsDouble(value)) == -1 && PyErr_Occurred()) == 0) { int i; for (i = 0; i < MAX_DIMENSIONS; i++) { vec_assign[i] = scalarVal; } size_from = axis_from; } else if ((void)PyErr_Clear(), /* run but ignore the result */ (size_from = size_t(mathutils_array_parse( vec_assign, 2, 4, value, "Vector.**** = swizzle assignment"))) == size_t(-1)) { return -1; } if (axis_from != size_from) { PyErr_SetString(PyExc_AttributeError, "Vector swizzle: size does not match swizzle"); return -1; } /* Copy vector contents onto swizzled axes. */ axis_from = 0; swizzleClosure = POINTER_AS_INT(closure); /* We must first copy current vec into tvec, else some org values may be lost. * See #31760. * Assuming self->vec_num can't be higher than MAX_DIMENSIONS! */ memcpy(tvec, self->vec, self->vec_num * sizeof(float)); while (swizzleClosure & SWIZZLE_VALID_AXIS) { axis_to = swizzleClosure & SWIZZLE_AXIS; tvec[axis_to] = vec_assign[axis_from]; swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS; axis_from++; } /* We must copy back the whole tvec into vec, else some changes may be lost (e.g. xz...). * See #31760. */ memcpy(self->vec, tvec, self->vec_num * sizeof(float)); /* continue with BaseMathObject_WriteCallback at the end */ if (BaseMath_WriteCallback(self) == -1) { return -1; } return 0; } #define _SWIZZLE1(a) ((a) | SWIZZLE_VALID_AXIS) #define _SWIZZLE2(a, b) (_SWIZZLE1(a) | (((b) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS))) #define _SWIZZLE3(a, b, c) \ (_SWIZZLE2(a, b) | (((c) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2))) #define _SWIZZLE4(a, b, c, d) \ (_SWIZZLE3(a, b, c) | (((d) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 3))) #define SWIZZLE2(a, b) POINTER_FROM_INT(_SWIZZLE2(a, b)) #define SWIZZLE3(a, b, c) POINTER_FROM_INT(_SWIZZLE3(a, b, c)) #define SWIZZLE4(a, b, c, d) POINTER_FROM_INT(_SWIZZLE4(a, b, c, d)) #define VECTOR_SWIZZLE2_RW_DEF(attr, a, b) \ { \ attr, (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, Vector_swizzle_doc, \ SWIZZLE2(a, b), \ } #define VECTOR_SWIZZLE2_RO_DEF(attr, a, b) \ { \ attr, (getter)Vector_swizzle_get, (setter) nullptr, Vector_swizzle_doc, SWIZZLE2(a, b), \ } #define VECTOR_SWIZZLE3_RW_DEF(attr, a, b, c) \ { \ attr, (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, Vector_swizzle_doc, \ SWIZZLE3(a, b, c), \ } #define VECTOR_SWIZZLE3_RO_DEF(attr, a, b, c) \ { \ attr, (getter)Vector_swizzle_get, (setter) nullptr, Vector_swizzle_doc, SWIZZLE3(a, b, c), \ } #define VECTOR_SWIZZLE4_RW_DEF(attr, a, b, c, d) \ { \ attr, (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, Vector_swizzle_doc, \ SWIZZLE4(a, b, c, d), \ } #define VECTOR_SWIZZLE4_RO_DEF(attr, a, b, c, d) \ { \ attr, (getter)Vector_swizzle_get, (setter) nullptr, Vector_swizzle_doc, SWIZZLE4(a, b, c, d) \ } /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Get/Set Item Definitions * \{ */ #if (defined(__GNUC__) && !defined(__clang__)) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wcast-function-type" #endif static PyGetSetDef Vector_getseters[] = { {"x", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_x_doc, POINTER_FROM_INT(0)}, {"y", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_y_doc, POINTER_FROM_INT(1)}, {"z", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_z_doc, POINTER_FROM_INT(2)}, {"w", (getter)Vector_axis_get, (setter)Vector_axis_set, Vector_axis_w_doc, POINTER_FROM_INT(3)}, {"length", (getter)Vector_length_get, (setter)Vector_length_set, Vector_length_doc, nullptr}, {"length_squared", (getter)Vector_length_squared_get, (setter) nullptr, Vector_length_squared_doc, nullptr}, {"magnitude", (getter)Vector_length_get, (setter)Vector_length_set, Vector_length_doc, nullptr}, {"is_wrapped", (getter)BaseMathObject_is_wrapped_get, (setter) nullptr, BaseMathObject_is_wrapped_doc, nullptr}, {"is_frozen", (getter)BaseMathObject_is_frozen_get, (setter) nullptr, BaseMathObject_is_frozen_doc, nullptr}, {"is_valid", (getter)BaseMathObject_is_valid_get, (setter) nullptr, BaseMathObject_is_valid_doc, nullptr}, {"owner", (getter)BaseMathObject_owner_get, (setter) nullptr, BaseMathObject_owner_doc, nullptr}, /* Auto-generated swizzle attributes, see Python script above. */ VECTOR_SWIZZLE2_RO_DEF("xx", 0, 0), VECTOR_SWIZZLE3_RO_DEF("xxx", 0, 0, 0), VECTOR_SWIZZLE4_RO_DEF("xxxx", 0, 0, 0, 0), VECTOR_SWIZZLE4_RO_DEF("xxxy", 0, 0, 0, 1), VECTOR_SWIZZLE4_RO_DEF("xxxz", 0, 0, 0, 2), VECTOR_SWIZZLE4_RO_DEF("xxxw", 0, 0, 0, 3), VECTOR_SWIZZLE3_RO_DEF("xxy", 0, 0, 1), VECTOR_SWIZZLE4_RO_DEF("xxyx", 0, 0, 1, 0), VECTOR_SWIZZLE4_RO_DEF("xxyy", 0, 0, 1, 1), VECTOR_SWIZZLE4_RO_DEF("xxyz", 0, 0, 1, 2), VECTOR_SWIZZLE4_RO_DEF("xxyw", 0, 0, 1, 3), VECTOR_SWIZZLE3_RO_DEF("xxz", 0, 0, 2), VECTOR_SWIZZLE4_RO_DEF("xxzx", 0, 0, 2, 0), VECTOR_SWIZZLE4_RO_DEF("xxzy", 0, 0, 2, 1), VECTOR_SWIZZLE4_RO_DEF("xxzz", 0, 0, 2, 2), VECTOR_SWIZZLE4_RO_DEF("xxzw", 0, 0, 2, 3), VECTOR_SWIZZLE3_RO_DEF("xxw", 0, 0, 3), VECTOR_SWIZZLE4_RO_DEF("xxwx", 0, 0, 3, 0), VECTOR_SWIZZLE4_RO_DEF("xxwy", 0, 0, 3, 1), VECTOR_SWIZZLE4_RO_DEF("xxwz", 0, 0, 3, 2), VECTOR_SWIZZLE4_RO_DEF("xxww", 0, 0, 3, 3), VECTOR_SWIZZLE2_RW_DEF("xy", 0, 1), VECTOR_SWIZZLE3_RO_DEF("xyx", 0, 1, 0), VECTOR_SWIZZLE4_RO_DEF("xyxx", 0, 1, 0, 0), VECTOR_SWIZZLE4_RO_DEF("xyxy", 0, 1, 0, 1), VECTOR_SWIZZLE4_RO_DEF("xyxz", 0, 1, 0, 2), VECTOR_SWIZZLE4_RO_DEF("xyxw", 0, 1, 0, 3), VECTOR_SWIZZLE3_RO_DEF("xyy", 0, 1, 1), VECTOR_SWIZZLE4_RO_DEF("xyyx", 0, 1, 1, 0), VECTOR_SWIZZLE4_RO_DEF("xyyy", 0, 1, 1, 1), VECTOR_SWIZZLE4_RO_DEF("xyyz", 0, 1, 1, 2), VECTOR_SWIZZLE4_RO_DEF("xyyw", 0, 1, 1, 3), VECTOR_SWIZZLE3_RW_DEF("xyz", 0, 1, 2), VECTOR_SWIZZLE4_RO_DEF("xyzx", 0, 1, 2, 0), VECTOR_SWIZZLE4_RO_DEF("xyzy", 0, 1, 2, 1), VECTOR_SWIZZLE4_RO_DEF("xyzz", 0, 1, 2, 2), VECTOR_SWIZZLE4_RW_DEF("xyzw", 0, 1, 2, 3), VECTOR_SWIZZLE3_RW_DEF("xyw", 0, 1, 3), VECTOR_SWIZZLE4_RO_DEF("xywx", 0, 1, 3, 0), VECTOR_SWIZZLE4_RO_DEF("xywy", 0, 1, 3, 1), VECTOR_SWIZZLE4_RW_DEF("xywz", 0, 1, 3, 2), VECTOR_SWIZZLE4_RO_DEF("xyww", 0, 1, 3, 3), VECTOR_SWIZZLE2_RW_DEF("xz", 0, 2), VECTOR_SWIZZLE3_RO_DEF("xzx", 0, 2, 0), VECTOR_SWIZZLE4_RO_DEF("xzxx", 0, 2, 0, 0), VECTOR_SWIZZLE4_RO_DEF("xzxy", 0, 2, 0, 1), VECTOR_SWIZZLE4_RO_DEF("xzxz", 0, 2, 0, 2), VECTOR_SWIZZLE4_RO_DEF("xzxw", 0, 2, 0, 3), VECTOR_SWIZZLE3_RW_DEF("xzy", 0, 2, 1), VECTOR_SWIZZLE4_RO_DEF("xzyx", 0, 2, 1, 0), VECTOR_SWIZZLE4_RO_DEF("xzyy", 0, 2, 1, 1), VECTOR_SWIZZLE4_RO_DEF("xzyz", 0, 2, 1, 2), VECTOR_SWIZZLE4_RW_DEF("xzyw", 0, 2, 1, 3), VECTOR_SWIZZLE3_RO_DEF("xzz", 0, 2, 2), VECTOR_SWIZZLE4_RO_DEF("xzzx", 0, 2, 2, 0), VECTOR_SWIZZLE4_RO_DEF("xzzy", 0, 2, 2, 1), VECTOR_SWIZZLE4_RO_DEF("xzzz", 0, 2, 2, 2), VECTOR_SWIZZLE4_RO_DEF("xzzw", 0, 2, 2, 3), VECTOR_SWIZZLE3_RW_DEF("xzw", 0, 2, 3), VECTOR_SWIZZLE4_RO_DEF("xzwx", 0, 2, 3, 0), VECTOR_SWIZZLE4_RW_DEF("xzwy", 0, 2, 3, 1), VECTOR_SWIZZLE4_RO_DEF("xzwz", 0, 2, 3, 2), VECTOR_SWIZZLE4_RO_DEF("xzww", 0, 2, 3, 3), VECTOR_SWIZZLE2_RW_DEF("xw", 0, 3), VECTOR_SWIZZLE3_RO_DEF("xwx", 0, 3, 0), VECTOR_SWIZZLE4_RO_DEF("xwxx", 0, 3, 0, 0), VECTOR_SWIZZLE4_RO_DEF("xwxy", 0, 3, 0, 1), VECTOR_SWIZZLE4_RO_DEF("xwxz", 0, 3, 0, 2), VECTOR_SWIZZLE4_RO_DEF("xwxw", 0, 3, 0, 3), VECTOR_SWIZZLE3_RW_DEF("xwy", 0, 3, 1), VECTOR_SWIZZLE4_RO_DEF("xwyx", 0, 3, 1, 0), VECTOR_SWIZZLE4_RO_DEF("xwyy", 0, 3, 1, 1), VECTOR_SWIZZLE4_RW_DEF("xwyz", 0, 3, 1, 2), VECTOR_SWIZZLE4_RO_DEF("xwyw", 0, 3, 1, 3), VECTOR_SWIZZLE3_RW_DEF("xwz", 0, 3, 2), VECTOR_SWIZZLE4_RO_DEF("xwzx", 0, 3, 2, 0), VECTOR_SWIZZLE4_RW_DEF("xwzy", 0, 3, 2, 1), VECTOR_SWIZZLE4_RO_DEF("xwzz", 0, 3, 2, 2), VECTOR_SWIZZLE4_RO_DEF("xwzw", 0, 3, 2, 3), VECTOR_SWIZZLE3_RO_DEF("xww", 0, 3, 3), VECTOR_SWIZZLE4_RO_DEF("xwwx", 0, 3, 3, 0), VECTOR_SWIZZLE4_RO_DEF("xwwy", 0, 3, 3, 1), VECTOR_SWIZZLE4_RO_DEF("xwwz", 0, 3, 3, 2), VECTOR_SWIZZLE4_RO_DEF("xwww", 0, 3, 3, 3), VECTOR_SWIZZLE2_RW_DEF("yx", 1, 0), VECTOR_SWIZZLE3_RO_DEF("yxx", 1, 0, 0), VECTOR_SWIZZLE4_RO_DEF("yxxx", 1, 0, 0, 0), VECTOR_SWIZZLE4_RO_DEF("yxxy", 1, 0, 0, 1), VECTOR_SWIZZLE4_RO_DEF("yxxz", 1, 0, 0, 2), VECTOR_SWIZZLE4_RO_DEF("yxxw", 1, 0, 0, 3), VECTOR_SWIZZLE3_RO_DEF("yxy", 1, 0, 1), VECTOR_SWIZZLE4_RO_DEF("yxyx", 1, 0, 1, 0), VECTOR_SWIZZLE4_RO_DEF("yxyy", 1, 0, 1, 1), VECTOR_SWIZZLE4_RO_DEF("yxyz", 1, 0, 1, 2), VECTOR_SWIZZLE4_RO_DEF("yxyw", 1, 0, 1, 3), VECTOR_SWIZZLE3_RW_DEF("yxz", 1, 0, 2), VECTOR_SWIZZLE4_RO_DEF("yxzx", 1, 0, 2, 0), VECTOR_SWIZZLE4_RO_DEF("yxzy", 1, 0, 2, 1), VECTOR_SWIZZLE4_RO_DEF("yxzz", 1, 0, 2, 2), VECTOR_SWIZZLE4_RW_DEF("yxzw", 1, 0, 2, 3), VECTOR_SWIZZLE3_RW_DEF("yxw", 1, 0, 3), VECTOR_SWIZZLE4_RO_DEF("yxwx", 1, 0, 3, 0), VECTOR_SWIZZLE4_RO_DEF("yxwy", 1, 0, 3, 1), VECTOR_SWIZZLE4_RW_DEF("yxwz", 1, 0, 3, 2), VECTOR_SWIZZLE4_RO_DEF("yxww", 1, 0, 3, 3), VECTOR_SWIZZLE2_RO_DEF("yy", 1, 1), VECTOR_SWIZZLE3_RO_DEF("yyx", 1, 1, 0), VECTOR_SWIZZLE4_RO_DEF("yyxx", 1, 1, 0, 0), VECTOR_SWIZZLE4_RO_DEF("yyxy", 1, 1, 0, 1), VECTOR_SWIZZLE4_RO_DEF("yyxz", 1, 1, 0, 2), VECTOR_SWIZZLE4_RO_DEF("yyxw", 1, 1, 0, 3), VECTOR_SWIZZLE3_RO_DEF("yyy", 1, 1, 1), VECTOR_SWIZZLE4_RO_DEF("yyyx", 1, 1, 1, 0), VECTOR_SWIZZLE4_RO_DEF("yyyy", 1, 1, 1, 1), VECTOR_SWIZZLE4_RO_DEF("yyyz", 1, 1, 1, 2), VECTOR_SWIZZLE4_RO_DEF("yyyw", 1, 1, 1, 3), VECTOR_SWIZZLE3_RO_DEF("yyz", 1, 1, 2), VECTOR_SWIZZLE4_RO_DEF("yyzx", 1, 1, 2, 0), VECTOR_SWIZZLE4_RO_DEF("yyzy", 1, 1, 2, 1), VECTOR_SWIZZLE4_RO_DEF("yyzz", 1, 1, 2, 2), VECTOR_SWIZZLE4_RO_DEF("yyzw", 1, 1, 2, 3), VECTOR_SWIZZLE3_RO_DEF("yyw", 1, 1, 3), VECTOR_SWIZZLE4_RO_DEF("yywx", 1, 1, 3, 0), VECTOR_SWIZZLE4_RO_DEF("yywy", 1, 1, 3, 1), VECTOR_SWIZZLE4_RO_DEF("yywz", 1, 1, 3, 2), VECTOR_SWIZZLE4_RO_DEF("yyww", 1, 1, 3, 3), VECTOR_SWIZZLE2_RW_DEF("yz", 1, 2), VECTOR_SWIZZLE3_RW_DEF("yzx", 1, 2, 0), VECTOR_SWIZZLE4_RO_DEF("yzxx", 1, 2, 0, 0), VECTOR_SWIZZLE4_RO_DEF("yzxy", 1, 2, 0, 1), VECTOR_SWIZZLE4_RO_DEF("yzxz", 1, 2, 0, 2), VECTOR_SWIZZLE4_RW_DEF("yzxw", 1, 2, 0, 3), VECTOR_SWIZZLE3_RO_DEF("yzy", 1, 2, 1), VECTOR_SWIZZLE4_RO_DEF("yzyx", 1, 2, 1, 0), VECTOR_SWIZZLE4_RO_DEF("yzyy", 1, 2, 1, 1), VECTOR_SWIZZLE4_RO_DEF("yzyz", 1, 2, 1, 2), VECTOR_SWIZZLE4_RO_DEF("yzyw", 1, 2, 1, 3), VECTOR_SWIZZLE3_RO_DEF("yzz", 1, 2, 2), VECTOR_SWIZZLE4_RO_DEF("yzzx", 1, 2, 2, 0), VECTOR_SWIZZLE4_RO_DEF("yzzy", 1, 2, 2, 1), VECTOR_SWIZZLE4_RO_DEF("yzzz", 1, 2, 2, 2), VECTOR_SWIZZLE4_RO_DEF("yzzw", 1, 2, 2, 3), VECTOR_SWIZZLE3_RW_DEF("yzw", 1, 2, 3), VECTOR_SWIZZLE4_RW_DEF("yzwx", 1, 2, 3, 0), VECTOR_SWIZZLE4_RO_DEF("yzwy", 1, 2, 3, 1), VECTOR_SWIZZLE4_RO_DEF("yzwz", 1, 2, 3, 2), VECTOR_SWIZZLE4_RO_DEF("yzww", 1, 2, 3, 3), VECTOR_SWIZZLE2_RW_DEF("yw", 1, 3), VECTOR_SWIZZLE3_RW_DEF("ywx", 1, 3, 0), VECTOR_SWIZZLE4_RO_DEF("ywxx", 1, 3, 0, 0), VECTOR_SWIZZLE4_RO_DEF("ywxy", 1, 3, 0, 1), VECTOR_SWIZZLE4_RW_DEF("ywxz", 1, 3, 0, 2), VECTOR_SWIZZLE4_RO_DEF("ywxw", 1, 3, 0, 3), VECTOR_SWIZZLE3_RO_DEF("ywy", 1, 3, 1), VECTOR_SWIZZLE4_RO_DEF("ywyx", 1, 3, 1, 0), VECTOR_SWIZZLE4_RO_DEF("ywyy", 1, 3, 1, 1), VECTOR_SWIZZLE4_RO_DEF("ywyz", 1, 3, 1, 2), VECTOR_SWIZZLE4_RO_DEF("ywyw", 1, 3, 1, 3), VECTOR_SWIZZLE3_RW_DEF("ywz", 1, 3, 2), VECTOR_SWIZZLE4_RW_DEF("ywzx", 1, 3, 2, 0), VECTOR_SWIZZLE4_RO_DEF("ywzy", 1, 3, 2, 1), VECTOR_SWIZZLE4_RO_DEF("ywzz", 1, 3, 2, 2), VECTOR_SWIZZLE4_RO_DEF("ywzw", 1, 3, 2, 3), VECTOR_SWIZZLE3_RO_DEF("yww", 1, 3, 3), VECTOR_SWIZZLE4_RO_DEF("ywwx", 1, 3, 3, 0), VECTOR_SWIZZLE4_RO_DEF("ywwy", 1, 3, 3, 1), VECTOR_SWIZZLE4_RO_DEF("ywwz", 1, 3, 3, 2), VECTOR_SWIZZLE4_RO_DEF("ywww", 1, 3, 3, 3), VECTOR_SWIZZLE2_RW_DEF("zx", 2, 0), VECTOR_SWIZZLE3_RO_DEF("zxx", 2, 0, 0), VECTOR_SWIZZLE4_RO_DEF("zxxx", 2, 0, 0, 0), VECTOR_SWIZZLE4_RO_DEF("zxxy", 2, 0, 0, 1), VECTOR_SWIZZLE4_RO_DEF("zxxz", 2, 0, 0, 2), VECTOR_SWIZZLE4_RO_DEF("zxxw", 2, 0, 0, 3), VECTOR_SWIZZLE3_RW_DEF("zxy", 2, 0, 1), VECTOR_SWIZZLE4_RO_DEF("zxyx", 2, 0, 1, 0), VECTOR_SWIZZLE4_RO_DEF("zxyy", 2, 0, 1, 1), VECTOR_SWIZZLE4_RO_DEF("zxyz", 2, 0, 1, 2), VECTOR_SWIZZLE4_RW_DEF("zxyw", 2, 0, 1, 3), VECTOR_SWIZZLE3_RO_DEF("zxz", 2, 0, 2), VECTOR_SWIZZLE4_RO_DEF("zxzx", 2, 0, 2, 0), VECTOR_SWIZZLE4_RO_DEF("zxzy", 2, 0, 2, 1), VECTOR_SWIZZLE4_RO_DEF("zxzz", 2, 0, 2, 2), VECTOR_SWIZZLE4_RO_DEF("zxzw", 2, 0, 2, 3), VECTOR_SWIZZLE3_RW_DEF("zxw", 2, 0, 3), VECTOR_SWIZZLE4_RO_DEF("zxwx", 2, 0, 3, 0), VECTOR_SWIZZLE4_RW_DEF("zxwy", 2, 0, 3, 1), VECTOR_SWIZZLE4_RO_DEF("zxwz", 2, 0, 3, 2), VECTOR_SWIZZLE4_RO_DEF("zxww", 2, 0, 3, 3), VECTOR_SWIZZLE2_RW_DEF("zy", 2, 1), VECTOR_SWIZZLE3_RW_DEF("zyx", 2, 1, 0), VECTOR_SWIZZLE4_RO_DEF("zyxx", 2, 1, 0, 0), VECTOR_SWIZZLE4_RO_DEF("zyxy", 2, 1, 0, 1), VECTOR_SWIZZLE4_RO_DEF("zyxz", 2, 1, 0, 2), VECTOR_SWIZZLE4_RW_DEF("zyxw", 2, 1, 0, 3), VECTOR_SWIZZLE3_RO_DEF("zyy", 2, 1, 1), VECTOR_SWIZZLE4_RO_DEF("zyyx", 2, 1, 1, 0), VECTOR_SWIZZLE4_RO_DEF("zyyy", 2, 1, 1, 1), VECTOR_SWIZZLE4_RO_DEF("zyyz", 2, 1, 1, 2), VECTOR_SWIZZLE4_RO_DEF("zyyw", 2, 1, 1, 3), VECTOR_SWIZZLE3_RO_DEF("zyz", 2, 1, 2), VECTOR_SWIZZLE4_RO_DEF("zyzx", 2, 1, 2, 0), VECTOR_SWIZZLE4_RO_DEF("zyzy", 2, 1, 2, 1), VECTOR_SWIZZLE4_RO_DEF("zyzz", 2, 1, 2, 2), VECTOR_SWIZZLE4_RO_DEF("zyzw", 2, 1, 2, 3), VECTOR_SWIZZLE3_RW_DEF("zyw", 2, 1, 3), VECTOR_SWIZZLE4_RW_DEF("zywx", 2, 1, 3, 0), VECTOR_SWIZZLE4_RO_DEF("zywy", 2, 1, 3, 1), VECTOR_SWIZZLE4_RO_DEF("zywz", 2, 1, 3, 2), VECTOR_SWIZZLE4_RO_DEF("zyww", 2, 1, 3, 3), VECTOR_SWIZZLE2_RO_DEF("zz", 2, 2), VECTOR_SWIZZLE3_RO_DEF("zzx", 2, 2, 0), VECTOR_SWIZZLE4_RO_DEF("zzxx", 2, 2, 0, 0), VECTOR_SWIZZLE4_RO_DEF("zzxy", 2, 2, 0, 1), VECTOR_SWIZZLE4_RO_DEF("zzxz", 2, 2, 0, 2), VECTOR_SWIZZLE4_RO_DEF("zzxw", 2, 2, 0, 3), VECTOR_SWIZZLE3_RO_DEF("zzy", 2, 2, 1), VECTOR_SWIZZLE4_RO_DEF("zzyx", 2, 2, 1, 0), VECTOR_SWIZZLE4_RO_DEF("zzyy", 2, 2, 1, 1), VECTOR_SWIZZLE4_RO_DEF("zzyz", 2, 2, 1, 2), VECTOR_SWIZZLE4_RO_DEF("zzyw", 2, 2, 1, 3), VECTOR_SWIZZLE3_RO_DEF("zzz", 2, 2, 2), VECTOR_SWIZZLE4_RO_DEF("zzzx", 2, 2, 2, 0), VECTOR_SWIZZLE4_RO_DEF("zzzy", 2, 2, 2, 1), VECTOR_SWIZZLE4_RO_DEF("zzzz", 2, 2, 2, 2), VECTOR_SWIZZLE4_RO_DEF("zzzw", 2, 2, 2, 3), VECTOR_SWIZZLE3_RO_DEF("zzw", 2, 2, 3), VECTOR_SWIZZLE4_RO_DEF("zzwx", 2, 2, 3, 0), VECTOR_SWIZZLE4_RO_DEF("zzwy", 2, 2, 3, 1), VECTOR_SWIZZLE4_RO_DEF("zzwz", 2, 2, 3, 2), VECTOR_SWIZZLE4_RO_DEF("zzww", 2, 2, 3, 3), VECTOR_SWIZZLE2_RW_DEF("zw", 2, 3), VECTOR_SWIZZLE3_RW_DEF("zwx", 2, 3, 0), VECTOR_SWIZZLE4_RO_DEF("zwxx", 2, 3, 0, 0), VECTOR_SWIZZLE4_RW_DEF("zwxy", 2, 3, 0, 1), VECTOR_SWIZZLE4_RO_DEF("zwxz", 2, 3, 0, 2), VECTOR_SWIZZLE4_RO_DEF("zwxw", 2, 3, 0, 3), VECTOR_SWIZZLE3_RW_DEF("zwy", 2, 3, 1), VECTOR_SWIZZLE4_RW_DEF("zwyx", 2, 3, 1, 0), VECTOR_SWIZZLE4_RO_DEF("zwyy", 2, 3, 1, 1), VECTOR_SWIZZLE4_RO_DEF("zwyz", 2, 3, 1, 2), VECTOR_SWIZZLE4_RO_DEF("zwyw", 2, 3, 1, 3), VECTOR_SWIZZLE3_RO_DEF("zwz", 2, 3, 2), VECTOR_SWIZZLE4_RO_DEF("zwzx", 2, 3, 2, 0), VECTOR_SWIZZLE4_RO_DEF("zwzy", 2, 3, 2, 1), VECTOR_SWIZZLE4_RO_DEF("zwzz", 2, 3, 2, 2), VECTOR_SWIZZLE4_RO_DEF("zwzw", 2, 3, 2, 3), VECTOR_SWIZZLE3_RO_DEF("zww", 2, 3, 3), VECTOR_SWIZZLE4_RO_DEF("zwwx", 2, 3, 3, 0), VECTOR_SWIZZLE4_RO_DEF("zwwy", 2, 3, 3, 1), VECTOR_SWIZZLE4_RO_DEF("zwwz", 2, 3, 3, 2), VECTOR_SWIZZLE4_RO_DEF("zwww", 2, 3, 3, 3), VECTOR_SWIZZLE2_RW_DEF("wx", 3, 0), VECTOR_SWIZZLE3_RO_DEF("wxx", 3, 0, 0), VECTOR_SWIZZLE4_RO_DEF("wxxx", 3, 0, 0, 0), VECTOR_SWIZZLE4_RO_DEF("wxxy", 3, 0, 0, 1), VECTOR_SWIZZLE4_RO_DEF("wxxz", 3, 0, 0, 2), VECTOR_SWIZZLE4_RO_DEF("wxxw", 3, 0, 0, 3), VECTOR_SWIZZLE3_RW_DEF("wxy", 3, 0, 1), VECTOR_SWIZZLE4_RO_DEF("wxyx", 3, 0, 1, 0), VECTOR_SWIZZLE4_RO_DEF("wxyy", 3, 0, 1, 1), VECTOR_SWIZZLE4_RW_DEF("wxyz", 3, 0, 1, 2), VECTOR_SWIZZLE4_RO_DEF("wxyw", 3, 0, 1, 3), VECTOR_SWIZZLE3_RW_DEF("wxz", 3, 0, 2), VECTOR_SWIZZLE4_RO_DEF("wxzx", 3, 0, 2, 0), VECTOR_SWIZZLE4_RW_DEF("wxzy", 3, 0, 2, 1), VECTOR_SWIZZLE4_RO_DEF("wxzz", 3, 0, 2, 2), VECTOR_SWIZZLE4_RO_DEF("wxzw", 3, 0, 2, 3), VECTOR_SWIZZLE3_RO_DEF("wxw", 3, 0, 3), VECTOR_SWIZZLE4_RO_DEF("wxwx", 3, 0, 3, 0), VECTOR_SWIZZLE4_RO_DEF("wxwy", 3, 0, 3, 1), VECTOR_SWIZZLE4_RO_DEF("wxwz", 3, 0, 3, 2), VECTOR_SWIZZLE4_RO_DEF("wxww", 3, 0, 3, 3), VECTOR_SWIZZLE2_RW_DEF("wy", 3, 1), VECTOR_SWIZZLE3_RW_DEF("wyx", 3, 1, 0), VECTOR_SWIZZLE4_RO_DEF("wyxx", 3, 1, 0, 0), VECTOR_SWIZZLE4_RO_DEF("wyxy", 3, 1, 0, 1), VECTOR_SWIZZLE4_RW_DEF("wyxz", 3, 1, 0, 2), VECTOR_SWIZZLE4_RO_DEF("wyxw", 3, 1, 0, 3), VECTOR_SWIZZLE3_RO_DEF("wyy", 3, 1, 1), VECTOR_SWIZZLE4_RO_DEF("wyyx", 3, 1, 1, 0), VECTOR_SWIZZLE4_RO_DEF("wyyy", 3, 1, 1, 1), VECTOR_SWIZZLE4_RO_DEF("wyyz", 3, 1, 1, 2), VECTOR_SWIZZLE4_RO_DEF("wyyw", 3, 1, 1, 3), VECTOR_SWIZZLE3_RW_DEF("wyz", 3, 1, 2), VECTOR_SWIZZLE4_RW_DEF("wyzx", 3, 1, 2, 0), VECTOR_SWIZZLE4_RO_DEF("wyzy", 3, 1, 2, 1), VECTOR_SWIZZLE4_RO_DEF("wyzz", 3, 1, 2, 2), VECTOR_SWIZZLE4_RO_DEF("wyzw", 3, 1, 2, 3), VECTOR_SWIZZLE3_RO_DEF("wyw", 3, 1, 3), VECTOR_SWIZZLE4_RO_DEF("wywx", 3, 1, 3, 0), VECTOR_SWIZZLE4_RO_DEF("wywy", 3, 1, 3, 1), VECTOR_SWIZZLE4_RO_DEF("wywz", 3, 1, 3, 2), VECTOR_SWIZZLE4_RO_DEF("wyww", 3, 1, 3, 3), VECTOR_SWIZZLE2_RW_DEF("wz", 3, 2), VECTOR_SWIZZLE3_RW_DEF("wzx", 3, 2, 0), VECTOR_SWIZZLE4_RO_DEF("wzxx", 3, 2, 0, 0), VECTOR_SWIZZLE4_RW_DEF("wzxy", 3, 2, 0, 1), VECTOR_SWIZZLE4_RO_DEF("wzxz", 3, 2, 0, 2), VECTOR_SWIZZLE4_RO_DEF("wzxw", 3, 2, 0, 3), VECTOR_SWIZZLE3_RW_DEF("wzy", 3, 2, 1), VECTOR_SWIZZLE4_RW_DEF("wzyx", 3, 2, 1, 0), VECTOR_SWIZZLE4_RO_DEF("wzyy", 3, 2, 1, 1), VECTOR_SWIZZLE4_RO_DEF("wzyz", 3, 2, 1, 2), VECTOR_SWIZZLE4_RO_DEF("wzyw", 3, 2, 1, 3), VECTOR_SWIZZLE3_RO_DEF("wzz", 3, 2, 2), VECTOR_SWIZZLE4_RO_DEF("wzzx", 3, 2, 2, 0), VECTOR_SWIZZLE4_RO_DEF("wzzy", 3, 2, 2, 1), VECTOR_SWIZZLE4_RO_DEF("wzzz", 3, 2, 2, 2), VECTOR_SWIZZLE4_RO_DEF("wzzw", 3, 2, 2, 3), VECTOR_SWIZZLE3_RO_DEF("wzw", 3, 2, 3), VECTOR_SWIZZLE4_RO_DEF("wzwx", 3, 2, 3, 0), VECTOR_SWIZZLE4_RO_DEF("wzwy", 3, 2, 3, 1), VECTOR_SWIZZLE4_RO_DEF("wzwz", 3, 2, 3, 2), VECTOR_SWIZZLE4_RO_DEF("wzww", 3, 2, 3, 3), VECTOR_SWIZZLE2_RO_DEF("ww", 3, 3), VECTOR_SWIZZLE3_RO_DEF("wwx", 3, 3, 0), VECTOR_SWIZZLE4_RO_DEF("wwxx", 3, 3, 0, 0), VECTOR_SWIZZLE4_RO_DEF("wwxy", 3, 3, 0, 1), VECTOR_SWIZZLE4_RO_DEF("wwxz", 3, 3, 0, 2), VECTOR_SWIZZLE4_RO_DEF("wwxw", 3, 3, 0, 3), VECTOR_SWIZZLE3_RO_DEF("wwy", 3, 3, 1), VECTOR_SWIZZLE4_RO_DEF("wwyx", 3, 3, 1, 0), VECTOR_SWIZZLE4_RO_DEF("wwyy", 3, 3, 1, 1), VECTOR_SWIZZLE4_RO_DEF("wwyz", 3, 3, 1, 2), VECTOR_SWIZZLE4_RO_DEF("wwyw", 3, 3, 1, 3), VECTOR_SWIZZLE3_RO_DEF("wwz", 3, 3, 2), VECTOR_SWIZZLE4_RO_DEF("wwzx", 3, 3, 2, 0), VECTOR_SWIZZLE4_RO_DEF("wwzy", 3, 3, 2, 1), VECTOR_SWIZZLE4_RO_DEF("wwzz", 3, 3, 2, 2), VECTOR_SWIZZLE4_RO_DEF("wwzw", 3, 3, 2, 3), VECTOR_SWIZZLE3_RO_DEF("www", 3, 3, 3), VECTOR_SWIZZLE4_RO_DEF("wwwx", 3, 3, 3, 0), VECTOR_SWIZZLE4_RO_DEF("wwwy", 3, 3, 3, 1), VECTOR_SWIZZLE4_RO_DEF("wwwz", 3, 3, 3, 2), VECTOR_SWIZZLE4_RO_DEF("wwww", 3, 3, 3, 3), #undef AXIS_FROM_CHAR #undef SWIZZLE1 #undef SWIZZLE2 #undef SWIZZLE3 #undef SWIZZLE4 #undef _SWIZZLE1 #undef _SWIZZLE2 #undef _SWIZZLE3 #undef _SWIZZLE4 #undef VECTOR_SWIZZLE2_RW_DEF #undef VECTOR_SWIZZLE2_RO_DEF #undef VECTOR_SWIZZLE3_RW_DEF #undef VECTOR_SWIZZLE3_RO_DEF #undef VECTOR_SWIZZLE4_RW_DEF #undef VECTOR_SWIZZLE4_RO_DEF {nullptr, nullptr, nullptr, nullptr, nullptr} /* Sentinel */ }; #if (defined(__GNUC__) && !defined(__clang__)) # pragma GCC diagnostic pop #endif /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Method Definitions * \{ */ #if (defined(__GNUC__) && !defined(__clang__)) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wcast-function-type" #endif static PyMethodDef Vector_methods[] = { /* Class Methods */ {"Fill", (PyCFunction)C_Vector_Fill, METH_VARARGS | METH_CLASS, C_Vector_Fill_doc}, {"Range", (PyCFunction)C_Vector_Range, METH_VARARGS | METH_CLASS, C_Vector_Range_doc}, {"Linspace", (PyCFunction)C_Vector_Linspace, METH_VARARGS | METH_CLASS, C_Vector_Linspace_doc}, {"Repeat", (PyCFunction)C_Vector_Repeat, METH_VARARGS | METH_CLASS, C_Vector_Repeat_doc}, /* In place only. */ {"zero", (PyCFunction)Vector_zero, METH_NOARGS, Vector_zero_doc}, {"negate", (PyCFunction)Vector_negate, METH_NOARGS, Vector_negate_doc}, /* Operate on original or copy. */ {"normalize", (PyCFunction)Vector_normalize, METH_NOARGS, Vector_normalize_doc}, {"normalized", (PyCFunction)Vector_normalized, METH_NOARGS, Vector_normalized_doc}, {"resize", (PyCFunction)Vector_resize, METH_O, Vector_resize_doc}, {"resized", (PyCFunction)Vector_resized, METH_O, Vector_resized_doc}, {"to_2d", (PyCFunction)Vector_to_2d, METH_NOARGS, Vector_to_2d_doc}, {"resize_2d", (PyCFunction)Vector_resize_2d, METH_NOARGS, Vector_resize_2d_doc}, {"to_3d", (PyCFunction)Vector_to_3d, METH_NOARGS, Vector_to_3d_doc}, {"resize_3d", (PyCFunction)Vector_resize_3d, METH_NOARGS, Vector_resize_3d_doc}, {"to_4d", (PyCFunction)Vector_to_4d, METH_NOARGS, Vector_to_4d_doc}, {"resize_4d", (PyCFunction)Vector_resize_4d, METH_NOARGS, Vector_resize_4d_doc}, {"to_tuple", (PyCFunction)Vector_to_tuple, METH_VARARGS, Vector_to_tuple_doc}, {"to_track_quat", (PyCFunction)Vector_to_track_quat, METH_VARARGS, Vector_to_track_quat_doc}, {"orthogonal", (PyCFunction)Vector_orthogonal, METH_NOARGS, Vector_orthogonal_doc}, /* Operation between 2 or more types. */ {"reflect", (PyCFunction)Vector_reflect, METH_O, Vector_reflect_doc}, {"cross", (PyCFunction)Vector_cross, METH_O, Vector_cross_doc}, {"dot", (PyCFunction)Vector_dot, METH_O, Vector_dot_doc}, {"angle", (PyCFunction)Vector_angle, METH_VARARGS, Vector_angle_doc}, {"angle_signed", (PyCFunction)Vector_angle_signed, METH_VARARGS, Vector_angle_signed_doc}, {"rotation_difference", (PyCFunction)Vector_rotation_difference, METH_O, Vector_rotation_difference_doc}, {"project", (PyCFunction)Vector_project, METH_O, Vector_project_doc}, {"lerp", (PyCFunction)Vector_lerp, METH_VARARGS, Vector_lerp_doc}, {"slerp", (PyCFunction)Vector_slerp, METH_VARARGS, Vector_slerp_doc}, {"rotate", (PyCFunction)Vector_rotate, METH_O, Vector_rotate_doc}, /* Base-math methods. */ {"freeze", (PyCFunction)BaseMathObject_freeze, METH_NOARGS, BaseMathObject_freeze_doc}, {"copy", (PyCFunction)Vector_copy, METH_NOARGS, Vector_copy_doc}, {"__copy__", (PyCFunction)Vector_copy, METH_NOARGS, nullptr}, {"__deepcopy__", (PyCFunction)Vector_deepcopy, METH_VARARGS, nullptr}, {nullptr, nullptr, 0, nullptr}, }; #if (defined(__GNUC__) && !defined(__clang__)) # pragma GCC diagnostic pop #endif /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: Python Object Definition * * \note #Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing * but this means for eg that (vec * mat) and (mat * vec) * both get sent to Vector_mul and it needs to sort out the order * \{ */ #ifdef MATH_STANDALONE # define Vector_str nullptr #endif PyDoc_STRVAR( /* Wrap. */ vector_doc, ".. class:: Vector(seq)\n" "\n" " This object gives access to Vectors in Blender.\n" "\n" " :arg seq: Components of the vector, must be a sequence of at least two\n" " :type seq: sequence of floats\n"); PyTypeObject vector_Type = { /*ob_base*/ PyVarObject_HEAD_INIT(nullptr, 0) /*tp_name*/ "Vector", /*tp_basicsize*/ sizeof(VectorObject), /*tp_itemsize*/ 0, /*tp_dealloc*/ (destructor)BaseMathObject_dealloc, /*tp_vectorcall_offset*/ 0, /*tp_getattr*/ nullptr, /*tp_setattr*/ nullptr, /*tp_as_async*/ nullptr, /*tp_repr*/ (reprfunc)Vector_repr, /*tp_as_number*/ &Vector_NumMethods, /*tp_as_sequence*/ &Vector_SeqMethods, /*tp_as_mapping*/ &Vector_AsMapping, /*tp_hash*/ (hashfunc)Vector_hash, /*tp_call*/ nullptr, /*tp_str*/ (reprfunc)Vector_str, /*tp_getattro*/ nullptr, /*tp_setattro*/ nullptr, /*tp_as_buffer*/ nullptr, /*tp_flags*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_doc*/ vector_doc, /*tp_traverse*/ (traverseproc)BaseMathObject_traverse, /*tp_clear*/ (inquiry)BaseMathObject_clear, /*tp_richcompare*/ (richcmpfunc)Vector_richcmpr, /*tp_weaklistoffset*/ 0, /*tp_iter*/ nullptr, /*tp_iternext*/ nullptr, /*tp_methods*/ Vector_methods, /*tp_members*/ nullptr, /*tp_getset*/ Vector_getseters, /*tp_base*/ nullptr, /*tp_dict*/ nullptr, /*tp_descr_get*/ nullptr, /*tp_descr_set*/ nullptr, /*tp_dictoffset*/ 0, /*tp_init*/ nullptr, /*tp_alloc*/ nullptr, /*tp_new*/ Vector_new, /*tp_free*/ nullptr, /*tp_is_gc*/ (inquiry)BaseMathObject_is_gc, /*tp_bases*/ nullptr, /*tp_mro*/ nullptr, /*tp_cache*/ nullptr, /*tp_subclasses*/ nullptr, /*tp_weaklist*/ nullptr, /*tp_del*/ nullptr, /*tp_version_tag*/ 0, /*tp_finalize*/ nullptr, /*tp_vectorcall*/ nullptr, }; #ifdef MATH_STANDALONE # undef Vector_str nullptr #endif /** \} */ /* -------------------------------------------------------------------- */ /** \name Vector Type: C/API Constructors * \{ */ PyObject *Vector_CreatePyObject(const float *vec, const int vec_num, PyTypeObject *base_type) { VectorObject *self; float *vec_alloc; if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return nullptr; } vec_alloc = static_cast(PyMem_Malloc(vec_num * sizeof(float))); if (UNLIKELY(vec_alloc == nullptr)) { PyErr_SetString(PyExc_MemoryError, "Vector(): " "problem allocating data"); return nullptr; } self = BASE_MATH_NEW(VectorObject, vector_Type, base_type); if (self) { self->vec = vec_alloc; self->vec_num = vec_num; /* Initialize callbacks as nullptr. */ self->cb_user = nullptr; self->cb_type = self->cb_subtype = 0; if (vec) { memcpy(self->vec, vec, vec_num * sizeof(float)); } else { /* new empty */ copy_vn_fl(self->vec, vec_num, 0.0f); if (vec_num == 4) { /* do the homogeneous thing */ self->vec[3] = 1.0f; } } self->flag = BASE_MATH_FLAG_DEFAULT; } else { PyMem_Free(vec_alloc); } return (PyObject *)self; } PyObject *Vector_CreatePyObject_wrap(float *vec, const int vec_num, PyTypeObject *base_type) { VectorObject *self; if (vec_num < 2) { PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size"); return nullptr; } self = BASE_MATH_NEW(VectorObject, vector_Type, base_type); if (self) { self->vec_num = vec_num; /* Initialize callbacks as nullptr. */ self->cb_user = nullptr; self->cb_type = self->cb_subtype = 0; self->vec = vec; self->flag = BASE_MATH_FLAG_DEFAULT | BASE_MATH_FLAG_IS_WRAP; } return (PyObject *)self; } PyObject *Vector_CreatePyObject_cb(PyObject *cb_user, int vec_num, uchar cb_type, uchar cb_subtype) { VectorObject *self = (VectorObject *)Vector_CreatePyObject(nullptr, vec_num, nullptr); if (self) { Py_INCREF(cb_user); self->cb_user = cb_user; self->cb_type = cb_type; self->cb_subtype = cb_subtype; BLI_assert(!PyObject_GC_IsTracked((PyObject *)self)); PyObject_GC_Track(self); } return (PyObject *)self; } PyObject *Vector_CreatePyObject_alloc(float *vec, const int vec_num, PyTypeObject *base_type) { VectorObject *self; self = (VectorObject *)Vector_CreatePyObject_wrap(vec, vec_num, base_type); if (self) { self->flag &= ~BASE_MATH_FLAG_IS_WRAP; } return (PyObject *)self; } /** \} */