/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved. * * SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup bke */ #include #include #include #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_alloca.h" #include "BLI_ghash.h" #include "BLI_listbase.h" #include "BLI_math_geom.h" #include "BLI_math_matrix.h" #include "BLI_math_rotation.h" #include "BLI_math_vector.h" #include "BLI_span.hh" #include "BLI_string.h" #include "BLI_utildefines.h" #include "BLT_translation.h" #include "DNA_defaults.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_listBase.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BKE_action.h" #include "BKE_anim_data.h" #include "BKE_anim_visualization.h" #include "BKE_armature.hh" #include "BKE_constraint.h" #include "BKE_curve.hh" #include "BKE_idprop.h" #include "BKE_idtype.h" #include "BKE_lib_id.hh" #include "BKE_lib_query.hh" #include "BKE_main.hh" #include "BKE_object.hh" #include "BKE_object_types.hh" #include "BKE_scene.h" #include "ANIM_bone_collections.hh" #include "DEG_depsgraph_build.hh" #include "DEG_depsgraph_query.hh" #include "BIK_api.h" #include "BLI_math_base_safe.h" #include "BLO_read_write.hh" #include "CLG_log.h" /* -------------------------------------------------------------------- */ /** \name Prototypes * \{ */ static void copy_bonechildren(Bone *bone_dst, const Bone *bone_src, const Bone *bone_src_act, Bone **r_bone_dst_act, const int flag); static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst); /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Data-block * \{ */ static void armature_init_data(ID *id) { bArmature *armature = (bArmature *)id; BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(armature, id)); MEMCPY_STRUCT_AFTER(armature, DNA_struct_default_get(bArmature), id); } /** * Copies the bone collection in `bcoll_src` to `bcoll_dst`, re-hooking up all * of the bone relationships to the bones in `armature_dst`. * * Note: this function's use case is narrow in scope, intended only for use in * `armature_copy_data()` below. You probably don't want to use this otherwise. * * \param lib_id_flag: Copying options (see BKE_lib_id.hh's LIB_ID_COPY_... flags for more). */ static void copy_bone_collection(bArmature *armature_dst, BoneCollection *&bcoll_dst, const BoneCollection *bcoll_src, const int lib_id_flag) { bcoll_dst = static_cast(MEM_dupallocN(bcoll_src)); /* ID properties. */ if (bcoll_dst->prop) { bcoll_dst->prop = IDP_CopyProperty_ex(bcoll_dst->prop, lib_id_flag); } /* Bone references. */ BLI_duplicatelist(&bcoll_dst->bones, &bcoll_dst->bones); LISTBASE_FOREACH (BoneCollectionMember *, member, &bcoll_dst->bones) { member->bone = BKE_armature_find_bone_name(armature_dst, member->bone->name); } } /** * Only copy internal data of Armature ID from source * to already allocated/initialized destination. * You probably never want to use that directly, * use #BKE_id_copy or #BKE_id_copy_ex for typical needs. * * WARNING! This function will not handle ID user count! * * \param flag: Copying options (see BKE_lib_id.hh's LIB_ID_COPY_... flags for more). */ static void armature_copy_data(Main * /*bmain*/, ID *id_dst, const ID *id_src, const int flag) { bArmature *armature_dst = (bArmature *)id_dst; const bArmature *armature_src = (const bArmature *)id_src; Bone *bone_src, *bone_dst; Bone *bone_dst_act = nullptr; /* We never handle user-count here for own data. */ const int flag_subdata = flag | LIB_ID_CREATE_NO_USER_REFCOUNT; armature_dst->bonehash = nullptr; BLI_duplicatelist(&armature_dst->bonebase, &armature_src->bonebase); /* Duplicate the children's lists. */ bone_dst = static_cast(armature_dst->bonebase.first); for (bone_src = static_cast(armature_src->bonebase.first); bone_src; bone_src = bone_src->next) { bone_dst->parent = nullptr; copy_bonechildren(bone_dst, bone_src, armature_src->act_bone, &bone_dst_act, flag_subdata); bone_dst = bone_dst->next; } armature_dst->act_bone = bone_dst_act; BKE_armature_bone_hash_make(armature_dst); /* Fix custom handle references. */ for (bone_dst = static_cast(armature_dst->bonebase.first); bone_dst; bone_dst = bone_dst->next) { copy_bonechildren_custom_handles(bone_dst, armature_dst); } armature_dst->edbo = nullptr; armature_dst->act_edbone = nullptr; /* Duplicate bone collections & assignments. */ if (armature_src->collection_array) { armature_dst->collection_array = static_cast( MEM_dupallocN(armature_src->collection_array)); armature_dst->collection_array_num = armature_src->collection_array_num; for (int i = 0; i < armature_src->collection_array_num; i++) { copy_bone_collection(armature_dst, armature_dst->collection_array[i], armature_src->collection_array[i], flag); } } else { armature_dst->collection_array = nullptr; armature_dst->collection_array_num = 0; } ANIM_armature_bonecoll_active_index_set(armature_dst, armature_src->runtime.active_collection_index); ANIM_armature_runtime_refresh(armature_dst); } /** Free (or release) any data used by this armature (does not free the armature itself). */ static void armature_free_data(ID *id) { bArmature *armature = (bArmature *)id; ANIM_armature_runtime_free(armature); /* Free all BoneCollectionMembership objects. */ if (armature->collection_array) { for (BoneCollection *bcoll : armature->collections_span()) { BLI_freelistN(&bcoll->bones); ANIM_bonecoll_free(bcoll, false); } MEM_freeN(armature->collection_array); } armature->collection_array = nullptr; armature->collection_array_num = 0; BKE_armature_bone_hash_free(armature); BKE_armature_bonelist_free(&armature->bonebase, false); /* free editmode data */ if (armature->edbo) { BKE_armature_editbonelist_free(armature->edbo, false); MEM_freeN(armature->edbo); armature->edbo = nullptr; } } static void armature_foreach_id_bone(Bone *bone, LibraryForeachIDData *data) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL( data, IDP_foreach_property( bone->prop, IDP_TYPE_FILTER_ID, BKE_lib_query_idpropertiesForeachIDLink_callback, data)); LISTBASE_FOREACH (Bone *, curbone, &bone->childbase) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL(data, armature_foreach_id_bone(curbone, data)); } } static void armature_foreach_id_editbone(EditBone *edit_bone, LibraryForeachIDData *data) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL( data, IDP_foreach_property(edit_bone->prop, IDP_TYPE_FILTER_ID, BKE_lib_query_idpropertiesForeachIDLink_callback, data)); } static void armature_foreach_id_bone_collection(BoneCollection *bcoll, LibraryForeachIDData *data) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL( data, IDP_foreach_property(bcoll->prop, IDP_TYPE_FILTER_ID, BKE_lib_query_idpropertiesForeachIDLink_callback, data)); } static void armature_foreach_id(ID *id, LibraryForeachIDData *data) { bArmature *arm = (bArmature *)id; LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL(data, armature_foreach_id_bone(bone, data)); } if (arm->edbo != nullptr) { LISTBASE_FOREACH (EditBone *, edit_bone, arm->edbo) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL(data, armature_foreach_id_editbone(edit_bone, data)); } } for (BoneCollection *bcoll : arm->collections_span()) { BKE_LIB_FOREACHID_PROCESS_FUNCTION_CALL(data, armature_foreach_id_bone_collection(bcoll, data)); } } static void write_bone(BlendWriter *writer, Bone *bone) { /* PATCH for upward compatibility after 2.37+ armature recode */ bone->size[0] = bone->size[1] = bone->size[2] = 1.0f; /* Write this bone, except for its runtime data. */ const Bone_Runtime runtime_backup = bone->runtime; memset(&bone->runtime, 0, sizeof(bone->runtime)); BLO_write_struct(writer, Bone, bone); bone->runtime = runtime_backup; /* Write ID Properties -- and copy this comment EXACTLY for easy finding * of library blocks that implement this. */ if (bone->prop) { IDP_BlendWrite(writer, bone->prop); } /* Write Children */ LISTBASE_FOREACH (Bone *, cbone, &bone->childbase) { write_bone(writer, cbone); } } static void write_bone_collection(BlendWriter *writer, BoneCollection *bcoll) { /* Write this bone collection. */ BLO_write_struct(writer, BoneCollection, bcoll); /* Write ID Properties -- and copy this comment EXACTLY for easy finding * of library blocks that implement this. */ if (bcoll->prop) { IDP_BlendWrite(writer, bcoll->prop); } BLO_write_struct_list(writer, BoneCollectionMember, &bcoll->bones); } static void armature_blend_write(BlendWriter *writer, ID *id, const void *id_address) { bArmature *arm = (bArmature *)id; /* Clean up, important in undo case to reduce false detection of changed datablocks. */ arm->bonehash = nullptr; arm->edbo = nullptr; /* Must always be cleared (armatures don't have their own edit-data). */ arm->needs_flush_to_id = 0; arm->act_edbone = nullptr; const bArmature_Runtime runtime_backup = arm->runtime; memset(&arm->runtime, 0, sizeof(arm->runtime)); /* Convert BoneCollections over to a listbase for writing. */ BoneCollection **collection_array_backup = arm->collection_array; if (arm->collection_array_num > 0) { for (int i = 0; i < arm->collection_array_num - 1; i++) { arm->collection_array[i]->next = arm->collection_array[i + 1]; arm->collection_array[i + 1]->prev = arm->collection_array[i]; } arm->collections_legacy.first = arm->collection_array[0]; arm->collections_legacy.last = arm->collection_array[arm->collection_array_num - 1]; arm->collection_array = nullptr; } BLO_write_id_struct(writer, bArmature, id_address, &arm->id); BKE_id_blend_write(writer, &arm->id); /* Direct data */ LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { write_bone(writer, bone); } LISTBASE_FOREACH (BoneCollection *, bcoll, &arm->collections_legacy) { write_bone_collection(writer, bcoll); } /* Restore the BoneCollection array and clear the listbase. */ arm->collection_array = collection_array_backup; for (int i = 0; i < arm->collection_array_num - 1; i++) { arm->collection_array[i]->next = nullptr; arm->collection_array[i + 1]->prev = nullptr; } BLI_listbase_clear(&arm->collections_legacy); arm->runtime = runtime_backup; } static void direct_link_bones(BlendDataReader *reader, Bone *bone) { BLO_read_data_address(reader, &bone->parent); BLO_read_data_address(reader, &bone->prop); IDP_BlendDataRead(reader, &bone->prop); BLO_read_data_address(reader, &bone->bbone_next); BLO_read_data_address(reader, &bone->bbone_prev); bone->flag &= ~(BONE_DRAW_ACTIVE | BONE_DRAW_LOCKED_WEIGHT); BLO_read_list(reader, &bone->childbase); LISTBASE_FOREACH (Bone *, child, &bone->childbase) { direct_link_bones(reader, child); } memset(&bone->runtime, 0, sizeof(bone->runtime)); } static void direct_link_bone_collection(BlendDataReader *reader, BoneCollection *bcoll) { BLO_read_data_address(reader, &bcoll->prop); IDP_BlendDataRead(reader, &bcoll->prop); BLO_read_list(reader, &bcoll->bones); LISTBASE_FOREACH (BoneCollectionMember *, member, &bcoll->bones) { BLO_read_data_address(reader, &member->bone); } } static void read_bone_collections(BlendDataReader *reader, bArmature *arm) { /* Read as listbase, but convert to an array on the armature. */ BLO_read_list(reader, &arm->collections_legacy); arm->collection_array_num = BLI_listbase_count(&arm->collections_legacy); arm->collection_array = (BoneCollection **)MEM_malloc_arrayN( arm->collection_array_num, sizeof(BoneCollection *), __func__); { int i; int min_child_index = 0; LISTBASE_FOREACH_INDEX (BoneCollection *, bcoll, &arm->collections_legacy, i) { arm->collection_array[i] = bcoll; if (bcoll->child_index > 0) { min_child_index = min_ii(min_child_index, bcoll->child_index); } } if (arm->collection_root_count == 0 && arm->collection_array_num > 0) { /* There cannot be zero roots when there are any bone collections. This means the root count * likely got lost for some reason, and should be reconstructed to avoid data corruption when * modifying the array. */ if (min_child_index == 0) { /* None of the bone collections had any children, so all are roots. */ arm->collection_root_count = arm->collection_array_num; } else { arm->collection_root_count = min_child_index; } } } /* We don't need the listbase or prev/next pointers because the * collections are stored in an array. */ for (int i = 0; i < arm->collection_array_num - 1; i++) { arm->collection_array[i]->next = nullptr; arm->collection_array[i + 1]->prev = nullptr; } BLI_listbase_clear(&arm->collections_legacy); /* Bone collections added via an override can be edited, but ones that already exist in another * blend file (so on the linked Armature) should not be touched. */ const bool reset_bcoll_override_flag = ID_IS_LINKED(&arm->id); for (BoneCollection *bcoll : arm->collections_span()) { direct_link_bone_collection(reader, bcoll); if (reset_bcoll_override_flag) { /* The linked Armature may have overrides in the library file already, and * those should *not* be editable here. */ bcoll->flags &= ~BONE_COLLECTION_OVERRIDE_LIBRARY_LOCAL; } } } static void armature_blend_read_data(BlendDataReader *reader, ID *id) { bArmature *arm = (bArmature *)id; BLO_read_list(reader, &arm->bonebase); arm->bonehash = nullptr; arm->edbo = nullptr; /* Must always be cleared (armatures don't have their own edit-data). */ arm->needs_flush_to_id = 0; LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { direct_link_bones(reader, bone); } read_bone_collections(reader, arm); BLO_read_data_address(reader, &arm->act_bone); arm->act_edbone = nullptr; BKE_armature_bone_hash_make(arm); memset(&arm->runtime, 0, sizeof(arm->runtime)); ANIM_armature_runtime_refresh(arm); } IDTypeInfo IDType_ID_AR = { /*id_code*/ ID_AR, /*id_filter*/ FILTER_ID_AR, /*main_listbase_index*/ INDEX_ID_AR, /*struct_size*/ sizeof(bArmature), /*name*/ "Armature", /*name_plural*/ N_("armatures"), /*translation_context*/ BLT_I18NCONTEXT_ID_ARMATURE, /*flags*/ IDTYPE_FLAGS_APPEND_IS_REUSABLE, /*asset_type_info*/ nullptr, /*init_data*/ armature_init_data, /*copy_data*/ armature_copy_data, /*free_data*/ armature_free_data, /*make_local*/ nullptr, /*foreach_id*/ armature_foreach_id, /*foreach_cache*/ nullptr, /*foreach_path*/ nullptr, /*owner_pointer_get*/ nullptr, /*blend_write*/ armature_blend_write, /*blend_read_data*/ armature_blend_read_data, /*blend_read_after_liblink*/ nullptr, /*blend_read_undo_preserve*/ nullptr, /*lib_override_apply_post*/ nullptr, }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Generic Data-Level Functions * \{ */ bArmature *BKE_armature_add(Main *bmain, const char *name) { bArmature *arm; arm = static_cast(BKE_id_new(bmain, ID_AR, name)); return arm; } bArmature *BKE_armature_from_object(Object *ob) { if (ob->type == OB_ARMATURE) { return (bArmature *)ob->data; } return nullptr; } int BKE_armature_bonelist_count(const ListBase *lb) { int i = 0; LISTBASE_FOREACH (Bone *, bone, lb) { i += 1 + BKE_armature_bonelist_count(&bone->childbase); } return i; } void BKE_armature_bonelist_free(ListBase *lb, const bool do_id_user) { LISTBASE_FOREACH (Bone *, bone, lb) { if (bone->prop) { IDP_FreeProperty_ex(bone->prop, do_id_user); } BLI_freelistN(&bone->runtime.collections); BKE_armature_bonelist_free(&bone->childbase, do_id_user); } BLI_freelistN(lb); } void BKE_armature_editbonelist_free(ListBase *lb, const bool do_id_user) { LISTBASE_FOREACH_MUTABLE (EditBone *, edit_bone, lb) { if (edit_bone->prop) { IDP_FreeProperty_ex(edit_bone->prop, do_id_user); } BLI_remlink_safe(lb, edit_bone); MEM_freeN(edit_bone); } } static void copy_bonechildren(Bone *bone_dst, const Bone *bone_src, const Bone *bone_src_act, Bone **r_bone_dst_act, const int flag) { Bone *bone_src_child, *bone_dst_child; if (bone_src == bone_src_act) { *r_bone_dst_act = bone_dst; } if (bone_src->prop) { bone_dst->prop = IDP_CopyProperty_ex(bone_src->prop, flag); } /* Clear the runtime cache of the collection relations, these will be * reconstructed after the entire armature duplication is done. Don't free, * just clear, as these pointers refer to the original and not the copy. */ BLI_listbase_clear(&bone_dst->runtime.collections); /* Copy this bone's list */ BLI_duplicatelist(&bone_dst->childbase, &bone_src->childbase); /* For each child in the list, update its children */ for (bone_src_child = static_cast(bone_src->childbase.first), bone_dst_child = static_cast(bone_dst->childbase.first); bone_src_child; bone_src_child = bone_src_child->next, bone_dst_child = bone_dst_child->next) { bone_dst_child->parent = bone_dst; copy_bonechildren(bone_dst_child, bone_src_child, bone_src_act, r_bone_dst_act, flag); } } static void copy_bonechildren_custom_handles(Bone *bone_dst, bArmature *arm_dst) { Bone *bone_dst_child; if (bone_dst->bbone_prev) { bone_dst->bbone_prev = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_prev->name); } if (bone_dst->bbone_next) { bone_dst->bbone_next = BKE_armature_find_bone_name(arm_dst, bone_dst->bbone_next->name); } for (bone_dst_child = static_cast(bone_dst->childbase.first); bone_dst_child; bone_dst_child = bone_dst_child->next) { copy_bonechildren_custom_handles(bone_dst_child, arm_dst); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Transform Copy * \{ */ static void copy_bone_transform(Bone *bone_dst, const Bone *bone_src) { bone_dst->roll = bone_src->roll; copy_v3_v3(bone_dst->head, bone_src->head); copy_v3_v3(bone_dst->tail, bone_src->tail); copy_m3_m3(bone_dst->bone_mat, bone_src->bone_mat); copy_v3_v3(bone_dst->arm_head, bone_src->arm_head); copy_v3_v3(bone_dst->arm_tail, bone_src->arm_tail); copy_m4_m4(bone_dst->arm_mat, bone_src->arm_mat); bone_dst->arm_roll = bone_src->arm_roll; } void BKE_armature_copy_bone_transforms(bArmature *armature_dst, const bArmature *armature_src) { Bone *bone_dst = static_cast(armature_dst->bonebase.first); const Bone *bone_src = static_cast(armature_src->bonebase.first); while (bone_dst != nullptr) { BLI_assert(bone_src != nullptr); copy_bone_transform(bone_dst, bone_src); bone_dst = bone_dst->next; bone_src = bone_src->next; } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Transform by 4x4 Matrix * * \see #ED_armature_edit_transform for the edit-mode version of this function. * \{ */ /** Helper for #ED_armature_transform */ static void armature_transform_recurse(ListBase *bonebase, const float mat[4][4], const bool do_props, /* Cached from 'mat'. */ const float mat3[3][3], const float scale, /* Child bones. */ const Bone *bone_parent, const float arm_mat_parent_inv[4][4]) { LISTBASE_FOREACH (Bone *, bone, bonebase) { /* Store the initial bone roll in a matrix, this is needed even for child bones * so any change in head/tail doesn't cause the roll to change. * * Logic here is different to edit-mode because * this is calculated in relative to the parent. */ float roll_mat3_pre[3][3]; { float delta[3]; sub_v3_v3v3(delta, bone->tail, bone->head); vec_roll_to_mat3(delta, bone->roll, roll_mat3_pre); if (bone->parent == nullptr) { mul_m3_m3m3(roll_mat3_pre, mat3, roll_mat3_pre); } } /* Optional, use this for predictable results since the roll is re-calculated below anyway. */ bone->roll = 0.0f; mul_m4_v3(mat, bone->arm_head); mul_m4_v3(mat, bone->arm_tail); /* Get the new head and tail */ if (bone_parent) { sub_v3_v3v3(bone->head, bone->arm_head, bone_parent->arm_tail); sub_v3_v3v3(bone->tail, bone->arm_tail, bone_parent->arm_tail); mul_mat3_m4_v3(arm_mat_parent_inv, bone->head); mul_mat3_m4_v3(arm_mat_parent_inv, bone->tail); } else { copy_v3_v3(bone->head, bone->arm_head); copy_v3_v3(bone->tail, bone->arm_tail); } /* Now the head/tail have been updated, set the roll back, matching 'roll_mat3_pre'. */ { float roll_mat3_post[3][3], delta_mat3[3][3]; float delta[3]; sub_v3_v3v3(delta, bone->tail, bone->head); vec_roll_to_mat3(delta, 0.0f, roll_mat3_post); invert_m3(roll_mat3_post); mul_m3_m3m3(delta_mat3, roll_mat3_post, roll_mat3_pre); bone->roll = atan2f(delta_mat3[2][0], delta_mat3[2][2]); } BKE_armature_where_is_bone(bone, bone_parent, false); { float arm_mat3[3][3]; copy_m3_m4(arm_mat3, bone->arm_mat); mat3_to_vec_roll(arm_mat3, nullptr, &bone->arm_roll); } if (do_props) { bone->rad_head *= scale; bone->rad_tail *= scale; bone->dist *= scale; /* we could be smarter and scale by the matrix along the x & z axis */ bone->xwidth *= scale; bone->zwidth *= scale; } if (!BLI_listbase_is_empty(&bone->childbase)) { float arm_mat_inv[4][4]; invert_m4_m4(arm_mat_inv, bone->arm_mat); armature_transform_recurse(&bone->childbase, mat, do_props, mat3, scale, bone, arm_mat_inv); } } } void BKE_armature_transform(bArmature *arm, const float mat[4][4], const bool do_props) { /* Store the scale of the matrix here to use on envelopes. */ float scale = mat4_to_scale(mat); float mat3[3][3]; copy_m3_m4(mat3, mat); normalize_m3(mat3); armature_transform_recurse(&arm->bonebase, mat, do_props, mat3, scale, nullptr, nullptr); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Bone Find by Name * * Using fast #GHash lookups when available. * \{ */ static Bone *get_named_bone_bonechildren(ListBase *lb, const char *name) { LISTBASE_FOREACH (Bone *, curBone, lb) { if (STREQ(curBone->name, name)) { return curBone; } Bone *rbone = get_named_bone_bonechildren(&curBone->childbase, name); if (rbone) { return rbone; } } return nullptr; } Bone *BKE_armature_find_bone_name(bArmature *arm, const char *name) { if (!arm) { return nullptr; } if (arm->bonehash) { return static_cast(BLI_ghash_lookup(arm->bonehash, name)); } return get_named_bone_bonechildren(&arm->bonebase, name); } static void armature_bone_from_name_insert_recursive(GHash *bone_hash, ListBase *lb) { LISTBASE_FOREACH (Bone *, bone, lb) { BLI_ghash_insert(bone_hash, bone->name, bone); armature_bone_from_name_insert_recursive(bone_hash, &bone->childbase); } } /** * Create a (name -> bone) map. * * \note typically #bPose.chanhash us used via #BKE_pose_channel_find_name * this is for the cases we can't use pose channels. */ static GHash *armature_bone_from_name_map(bArmature *arm) { const int bones_count = BKE_armature_bonelist_count(&arm->bonebase); GHash *bone_hash = BLI_ghash_str_new_ex(__func__, bones_count); armature_bone_from_name_insert_recursive(bone_hash, &arm->bonebase); return bone_hash; } void BKE_armature_bone_hash_make(bArmature *arm) { if (!arm->bonehash) { arm->bonehash = armature_bone_from_name_map(arm); } } void BKE_armature_bone_hash_free(bArmature *arm) { if (arm->bonehash) { BLI_ghash_free(arm->bonehash, nullptr, nullptr); arm->bonehash = nullptr; } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Bone Flags * \{ */ bool BKE_armature_bone_flag_test_recursive(const Bone *bone, int flag) { if (bone->flag & flag) { return true; } if (bone->parent) { return BKE_armature_bone_flag_test_recursive(bone->parent, flag); } return false; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone auto-side name support * \{ */ bool bone_autoside_name( char name[MAXBONENAME], int /*strip_number*/, short axis, float head, float tail) { uint len; char basename[MAXBONENAME] = ""; const char *extension = nullptr; len = strlen(name); if (len == 0) { return false; } STRNCPY(basename, name); /* Figure out extension to append: * - The extension to append is based upon the axis that we are working on. * - If head happens to be on 0, then we must consider the tail position as well to decide * which side the bone is on * -> If tail is 0, then its bone is considered to be on axis, so no extension should be added * -> Otherwise, extension is added from perspective of object based on which side tail goes to * - If head is non-zero, extension is added from perspective of object based on side head is on */ if (axis == 2) { /* z-axis - vertical (top/bottom) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { extension = "Bot"; } else if (tail > 0) { extension = "Top"; } } else { if (head < 0) { extension = "Bot"; } else { extension = "Top"; } } } else if (axis == 1) { /* y-axis - depth (front/back) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { extension = "Fr"; } else if (tail > 0) { extension = "Bk"; } } else { if (head < 0) { extension = "Fr"; } else { extension = "Bk"; } } } else { /* x-axis - horizontal (left/right) */ if (IS_EQF(head, 0.0f)) { if (tail < 0) { extension = "R"; } else if (tail > 0) { extension = "L"; } } else { if (head < 0) { extension = "R"; /* XXX Shouldn't this be simple else, as for z and y axes? */ } else if (head > 0) { extension = "L"; } } } /* Simple name truncation * - truncate if there is an extension and it wouldn't be able to fit * - otherwise, just append to end */ if (extension) { bool changed = true; while (changed) { /* remove extensions */ changed = false; if (len > 2 && basename[len - 2] == '.') { if (ELEM(basename[len - 1], 'L', 'R')) { /* L R */ basename[len - 2] = '\0'; len -= 2; changed = true; } } else if (len > 3 && basename[len - 3] == '.') { if ((basename[len - 2] == 'F' && basename[len - 1] == 'r') || /* Fr */ (basename[len - 2] == 'B' && basename[len - 1] == 'k')) /* Bk */ { basename[len - 3] = '\0'; len -= 3; changed = true; } } else if (len > 4 && basename[len - 4] == '.') { if ((basename[len - 3] == 'T' && basename[len - 2] == 'o' && basename[len - 1] == 'p') || /* Top */ (basename[len - 3] == 'B' && basename[len - 2] == 'o' && basename[len - 1] == 't')) /* Bot */ { basename[len - 4] = '\0'; len -= 4; changed = true; } } } /* Subtract 1 from #MAXBONENAME for the null byte. Add 1 to the extension for the '.' */ const int basename_maxncpy = (MAXBONENAME - 1) - (1 + strlen(extension)); BLI_snprintf(name, MAXBONENAME, "%.*s.%s", basename_maxncpy, basename, extension); return true; } return false; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature B-Bone Support * \{ */ /* Compute a set of bezier parameter values that produce approximately equally spaced points. */ static void equalize_cubic_bezier(const float control[4][3], int temp_segments, int final_segments, const float *segment_scales, float *r_t_points) { float(*coords)[3] = static_cast(BLI_array_alloca(coords, temp_segments + 1)); float *pdist = static_cast(BLI_array_alloca(pdist, temp_segments + 1)); /* Compute the first pass of bezier point coordinates. */ for (int i = 0; i < 3; i++) { BKE_curve_forward_diff_bezier(control[0][i], control[1][i], control[2][i], control[3][i], &coords[0][i], temp_segments, sizeof(*coords)); } /* Calculate the length of the polyline at each point. */ pdist[0] = 0.0f; for (int i = 0; i < temp_segments; i++) { pdist[i + 1] = pdist[i] + len_v3v3(coords[i], coords[i + 1]); } /* Go over distances and calculate new parameter values. */ float dist_step = pdist[temp_segments]; float dist = 0, sum = 0; for (int i = 0; i < final_segments; i++) { sum += segment_scales[i]; } dist_step /= sum; r_t_points[0] = 0.0f; for (int i = 1, nr = 1; i <= final_segments; i++) { dist += segment_scales[i - 1] * dist_step; /* We're looking for location (distance) 'dist' in the array. */ while ((nr < temp_segments) && (dist >= pdist[nr])) { nr++; } float fac = (pdist[nr] - dist) / (pdist[nr] - pdist[nr - 1]); r_t_points[i] = (nr - fac) / temp_segments; } r_t_points[final_segments] = 1.0f; } /* Evaluate bezier position and tangent at a specific parameter value * using the De Casteljau algorithm. */ static void evaluate_cubic_bezier(const float control[4][3], float t, float r_pos[3], float r_tangent[3]) { float layer1[3][3]; interp_v3_v3v3(layer1[0], control[0], control[1], t); interp_v3_v3v3(layer1[1], control[1], control[2], t); interp_v3_v3v3(layer1[2], control[2], control[3], t); float layer2[2][3]; interp_v3_v3v3(layer2[0], layer1[0], layer1[1], t); interp_v3_v3v3(layer2[1], layer1[1], layer1[2], t); sub_v3_v3v3(r_tangent, layer2[1], layer2[0]); madd_v3_v3v3fl(r_pos, layer2[0], r_tangent, t); } void BKE_pchan_bbone_handles_get(bPoseChannel *pchan, bPoseChannel **r_prev, bPoseChannel **r_next) { if (pchan->bone->bbone_prev_type == BBONE_HANDLE_AUTO) { /* Use connected parent. */ if (pchan->bone->flag & BONE_CONNECTED) { *r_prev = pchan->parent; } else { *r_prev = nullptr; } } else { /* Use the provided bone as prev - leave blank to eliminate this effect altogether. */ *r_prev = pchan->bbone_prev; } if (pchan->bone->bbone_next_type == BBONE_HANDLE_AUTO) { /* Use connected child. */ *r_next = pchan->child; } else { /* Use the provided bone as next - leave blank to eliminate this effect altogether. */ *r_next = pchan->bbone_next; } } void BKE_pchan_bbone_spline_params_get(bPoseChannel *pchan, const bool rest, BBoneSplineParameters *param) { bPoseChannel *next, *prev; Bone *bone = pchan->bone; float imat[4][4], posemat[4][4], tmpmat[4][4]; float delta[3]; memset(param, 0, sizeof(*param)); param->segments = bone->segments; param->length = bone->length; if (!rest) { float scale[3]; /* Check if we need to take non-uniform bone scaling into account. */ mat4_to_size(scale, pchan->pose_mat); if (fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) { param->do_scale = true; copy_v3_v3(param->scale, scale); } } BKE_pchan_bbone_handles_get(pchan, &prev, &next); /* Find the handle points, since this is inside bone space, the * first point = (0, 0, 0) * last point = (0, length, 0) */ if (rest) { invert_m4_m4(imat, pchan->bone->arm_mat); } else if (param->do_scale) { copy_m4_m4(posemat, pchan->pose_mat); normalize_m4(posemat); invert_m4_m4(imat, posemat); } else { invert_m4_m4(imat, pchan->pose_mat); } float prev_scale[3], next_scale[3]; copy_v3_fl(prev_scale, 1.0f); copy_v3_fl(next_scale, 1.0f); if (prev) { float h1[3]; bool done = false; param->use_prev = true; /* Transform previous point inside this bone space. */ if (bone->bbone_prev_type == BBONE_HANDLE_RELATIVE) { /* Use delta movement (from rest-pose), * and apply this relative to the current bone's head. */ if (rest) { /* In rest-pose, arm_head == pose_head */ zero_v3(param->prev_h); done = true; } else { sub_v3_v3v3(delta, prev->pose_head, prev->bone->arm_head); sub_v3_v3v3(h1, pchan->pose_head, delta); } } else if (bone->bbone_prev_type == BBONE_HANDLE_TANGENT) { /* Use bone direction by offsetting so that its tail meets current bone's head */ if (rest) { sub_v3_v3v3(delta, prev->bone->arm_tail, prev->bone->arm_head); sub_v3_v3v3(h1, bone->arm_head, delta); } else { sub_v3_v3v3(delta, prev->pose_tail, prev->pose_head); sub_v3_v3v3(h1, pchan->pose_head, delta); } } else { /* Apply special handling for smoothly joining B-Bone chains */ param->prev_bbone = (prev->bone->segments > 1); /* Use bone head as absolute position. */ copy_v3_v3(h1, rest ? prev->bone->arm_head : prev->pose_head); } if (!done) { mul_v3_m4v3(param->prev_h, imat, h1); } if (!param->prev_bbone) { /* Find the previous roll to interpolate. */ mul_m4_m4m4(param->prev_mat, imat, rest ? prev->bone->arm_mat : prev->pose_mat); /* Retrieve the local scale of the bone if necessary. */ if ((bone->bbone_prev_flag & BBONE_HANDLE_SCALE_ANY) && !rest) { BKE_armature_mat_pose_to_bone(prev, prev->pose_mat, tmpmat); mat4_to_size(prev_scale, tmpmat); } } } if (next) { float h2[3]; bool done = false; param->use_next = true; /* Transform next point inside this bone space. */ if (bone->bbone_next_type == BBONE_HANDLE_RELATIVE) { /* Use delta movement (from rest-pose), * and apply this relative to the current bone's tail. */ if (rest) { /* In rest-pose, arm_head == pose_head */ copy_v3_fl3(param->next_h, 0.0f, param->length, 0.0); done = true; } else { sub_v3_v3v3(delta, next->pose_head, next->bone->arm_head); add_v3_v3v3(h2, pchan->pose_tail, delta); } } else if (bone->bbone_next_type == BBONE_HANDLE_TANGENT) { /* Use bone direction by offsetting so that its head meets current bone's tail */ if (rest) { sub_v3_v3v3(delta, next->bone->arm_tail, next->bone->arm_head); add_v3_v3v3(h2, bone->arm_tail, delta); } else { sub_v3_v3v3(delta, next->pose_tail, next->pose_head); add_v3_v3v3(h2, pchan->pose_tail, delta); } } else { /* Apply special handling for smoothly joining B-Bone chains */ param->next_bbone = (next->bone->segments > 1); /* Use bone tail as absolute position. */ copy_v3_v3(h2, rest ? next->bone->arm_tail : next->pose_tail); } if (!done) { mul_v3_m4v3(param->next_h, imat, h2); } /* Find the next roll to interpolate as well. */ mul_m4_m4m4(param->next_mat, imat, rest ? next->bone->arm_mat : next->pose_mat); /* Retrieve the local scale of the bone if necessary. */ if ((bone->bbone_next_flag & BBONE_HANDLE_SCALE_ANY) && !rest) { BKE_armature_mat_pose_to_bone(next, next->pose_mat, tmpmat); mat4_to_size(next_scale, tmpmat); } } /* Add effects from bbone properties over the top * - These properties allow users to hand-animate the * bone curve/shape, without having to resort to using * extra bones * - The "bone" level offsets are for defining the rest-pose * shape of the bone (e.g. for curved eyebrows for example). * -> In the viewport, it's needed to define what the rest pose * looks like * -> For "rest == 0", we also still need to have it present * so that we can "cancel out" this rest-pose when it comes * time to deform some geometry, it won't cause double transforms. * - The "pchan" level offsets are the ones that animators actually * end up animating */ { param->ease1 = bone->ease1 + (!rest ? pchan->ease1 : 0.0f); param->ease2 = bone->ease2 + (!rest ? pchan->ease2 : 0.0f); param->roll1 = bone->roll1 + (!rest ? pchan->roll1 : 0.0f); param->roll2 = bone->roll2 + (!rest ? pchan->roll2 : 0.0f); if (bone->bbone_flag & BBONE_ADD_PARENT_END_ROLL) { if (prev) { if (prev->bone) { param->roll1 += prev->bone->roll2; } if (!rest) { param->roll1 += prev->roll2; } } } copy_v3_v3(param->scale_in, bone->scale_in); copy_v3_v3(param->scale_out, bone->scale_out); if (!rest) { mul_v3_v3(param->scale_in, pchan->scale_in); mul_v3_v3(param->scale_out, pchan->scale_out); } /* Extra curve x / z */ param->curve_in_x = bone->curve_in_x + (!rest ? pchan->curve_in_x : 0.0f); param->curve_in_z = bone->curve_in_z + (!rest ? pchan->curve_in_z : 0.0f); param->curve_out_x = bone->curve_out_x + (!rest ? pchan->curve_out_x : 0.0f); param->curve_out_z = bone->curve_out_z + (!rest ? pchan->curve_out_z : 0.0f); if (bone->bbone_flag & BBONE_SCALE_EASING) { param->ease1 *= param->scale_in[1]; param->curve_in_x *= param->scale_in[1]; param->curve_in_z *= param->scale_in[1]; param->ease2 *= param->scale_out[1]; param->curve_out_x *= param->scale_out[1]; param->curve_out_z *= param->scale_out[1]; } /* Custom handle scale. */ if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_X) { param->scale_in[0] *= prev_scale[0]; } if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_Y) { param->scale_in[1] *= prev_scale[1]; } if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_Z) { param->scale_in[2] *= prev_scale[2]; } if (bone->bbone_prev_flag & BBONE_HANDLE_SCALE_EASE) { param->ease1 *= prev_scale[1]; param->curve_in_x *= prev_scale[1]; param->curve_in_z *= prev_scale[1]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_X) { param->scale_out[0] *= next_scale[0]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_Y) { param->scale_out[1] *= next_scale[1]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_Z) { param->scale_out[2] *= next_scale[2]; } if (bone->bbone_next_flag & BBONE_HANDLE_SCALE_EASE) { param->ease2 *= next_scale[1]; param->curve_out_x *= next_scale[1]; param->curve_out_z *= next_scale[1]; } } } void BKE_pchan_bbone_spline_setup(bPoseChannel *pchan, const bool rest, const bool for_deform, Mat4 *result_array) { BBoneSplineParameters param; BKE_pchan_bbone_spline_params_get(pchan, rest, ¶m); pchan->bone->segments = BKE_pchan_bbone_spline_compute(¶m, for_deform, result_array); } void BKE_pchan_bbone_handles_compute(const BBoneSplineParameters *param, float h1[3], float *r_roll1, float h2[3], float *r_roll2, bool ease, bool offsets) { float mat3[3][3]; float length = param->length; float epsilon = 1e-5 * length; if (param->do_scale) { length *= param->scale[1]; } *r_roll1 = *r_roll2 = 0.0f; if (param->use_prev) { copy_v3_v3(h1, param->prev_h); if (param->prev_bbone) { /* If previous bone is B-bone too, use average handle direction. */ h1[1] -= length; } if (normalize_v3(h1) < epsilon) { copy_v3_fl3(h1, 0.0f, -1.0f, 0.0f); } negate_v3(h1); if (!param->prev_bbone) { /* Find the previous roll to interpolate. */ copy_m3_m4(mat3, param->prev_mat); mat3_vec_to_roll(mat3, h1, r_roll1); } } else { h1[0] = 0.0f; h1[1] = 1.0; h1[2] = 0.0f; } if (param->use_next) { copy_v3_v3(h2, param->next_h); /* If next bone is B-bone too, use average handle direction. */ if (param->next_bbone) { /* pass */ } else { h2[1] -= length; } if (normalize_v3(h2) < epsilon) { copy_v3_fl3(h2, 0.0f, 1.0f, 0.0f); } /* Find the next roll to interpolate as well. */ copy_m3_m4(mat3, param->next_mat); mat3_vec_to_roll(mat3, h2, r_roll2); } else { h2[0] = 0.0f; h2[1] = 1.0f; h2[2] = 0.0f; } if (ease) { const float circle_factor = length * (cubic_tangent_factor_circle_v3(h1, h2) / 0.75f); const float hlength1 = param->ease1 * circle_factor; const float hlength2 = param->ease2 * circle_factor; /* and only now negate h2 */ mul_v3_fl(h1, hlength1); mul_v3_fl(h2, -hlength2); } /* Add effects from bbone properties over the top * - These properties allow users to hand-animate the * bone curve/shape, without having to resort to using * extra bones * - The "bone" level offsets are for defining the rest-pose * shape of the bone (e.g. for curved eyebrows for example). * -> In the viewport, it's needed to define what the rest pose * looks like * -> For "rest == 0", we also still need to have it present * so that we can "cancel out" this rest-pose when it comes * time to deform some geometry, it won't cause double transforms. * - The "pchan" level offsets are the ones that animators actually * end up animating */ if (offsets) { /* Add extra rolls. */ *r_roll1 += param->roll1; *r_roll2 += param->roll2; /* Extra curve x / y */ /* NOTE: * Scale correction factors here are to compensate for some random floating-point glitches * when scaling up the bone or its parent by a factor of approximately 8.15/6, which results * in the bone length getting scaled up too (from 1 to 8), causing the curve to flatten out. */ const float xscale_correction = (param->do_scale) ? param->scale[0] : 1.0f; const float zscale_correction = (param->do_scale) ? param->scale[2] : 1.0f; h1[0] += param->curve_in_x * xscale_correction; h1[2] += param->curve_in_z * zscale_correction; h2[0] += param->curve_out_x * xscale_correction; h2[2] += param->curve_out_z * zscale_correction; } } static void make_bbone_spline_matrix(BBoneSplineParameters *param, const float scalemats[2][4][4], const float pos[3], const float axis[3], float roll, float scalex, float scalez, float result[4][4]) { float mat3[3][3]; vec_roll_to_mat3(axis, roll, mat3); copy_m4_m3(result, mat3); copy_v3_v3(result[3], pos); if (param->do_scale) { /* Correct for scaling when this matrix is used in scaled space. */ mul_m4_series(result, scalemats[0], result, scalemats[1]); } /* BBone scale... */ mul_v3_fl(result[0], scalex); mul_v3_fl(result[2], scalez); } /* Fade from first to second derivative when the handle is very short. */ static void ease_handle_axis(const float deriv1[3], const float deriv2[3], float r_axis[3]) { const float gap = 0.1f; copy_v3_v3(r_axis, deriv1); const float len2 = len_squared_v3(deriv2); if (UNLIKELY(len2 == 0.0f)) { return; } const float len1 = len_squared_v3(deriv1); const float ratio = len1 / len2; if (ratio < gap * gap) { madd_v3_v3fl(r_axis, deriv2, gap - sqrtf(ratio)); } } int BKE_pchan_bbone_spline_compute(BBoneSplineParameters *param, const bool for_deform, Mat4 *result_array) { float scalemats[2][4][4]; float bezt_controls[4][3]; float h1[3], roll1, h2[3], roll2, prev[3], cur[3], axis[3]; float length = param->length; if (param->do_scale) { size_to_mat4(scalemats[1], param->scale); invert_m4_m4(scalemats[0], scalemats[1]); length *= param->scale[1]; } BKE_pchan_bbone_handles_compute(param, h1, &roll1, h2, &roll2, true, true); /* Make curve. */ CLAMP_MAX(param->segments, MAX_BBONE_SUBDIV); copy_v3_fl3(bezt_controls[3], 0.0f, length, 0.0f); add_v3_v3v3(bezt_controls[2], bezt_controls[3], h2); copy_v3_v3(bezt_controls[1], h1); zero_v3(bezt_controls[0]); /* Compute lengthwise segment scale. */ float segment_scales[MAX_BBONE_SUBDIV]; CLAMP_MIN(param->scale_in[1], 0.0001f); CLAMP_MIN(param->scale_out[1], 0.0001f); const float log_scale_in_len = logf(param->scale_in[1]); const float log_scale_out_len = logf(param->scale_out[1]); for (int i = 0; i < param->segments; i++) { const float fac = float(i) / (param->segments - 1); segment_scales[i] = expf(interpf(log_scale_out_len, log_scale_in_len, fac)); } /* Compute segment vertex offsets along the curve length. */ float bezt_points[MAX_BBONE_SUBDIV + 1]; equalize_cubic_bezier( bezt_controls, MAX_BBONE_SUBDIV, param->segments, segment_scales, bezt_points); /* Deformation uses N+1 matrices computed at points between the segments. */ if (for_deform) { /* Bezier derivatives. */ float bezt_deriv1[3][3], bezt_deriv2[2][3]; for (int i = 0; i < 3; i++) { sub_v3_v3v3(bezt_deriv1[i], bezt_controls[i + 1], bezt_controls[i]); } for (int i = 0; i < 2; i++) { sub_v3_v3v3(bezt_deriv2[i], bezt_deriv1[i + 1], bezt_deriv1[i]); } /* End points require special handling to fix zero length handles. */ ease_handle_axis(bezt_deriv1[0], bezt_deriv2[0], axis); make_bbone_spline_matrix(param, scalemats, bezt_controls[0], axis, roll1, param->scale_in[0], param->scale_in[2], result_array[0].mat); for (int a = 1; a < param->segments; a++) { evaluate_cubic_bezier(bezt_controls, bezt_points[a], cur, axis); float fac = float(a) / param->segments; float roll = interpf(roll2, roll1, fac); float scalex = interpf(param->scale_out[0], param->scale_in[0], fac); float scalez = interpf(param->scale_out[2], param->scale_in[2], fac); make_bbone_spline_matrix( param, scalemats, cur, axis, roll, scalex, scalez, result_array[a].mat); } negate_v3(bezt_deriv2[1]); ease_handle_axis(bezt_deriv1[2], bezt_deriv2[1], axis); make_bbone_spline_matrix(param, scalemats, bezt_controls[3], axis, roll2, param->scale_out[0], param->scale_out[2], result_array[param->segments].mat); } /* Other code (e.g. display) uses matrices for the segments themselves. */ else { zero_v3(prev); for (int a = 0; a < param->segments; a++) { evaluate_cubic_bezier(bezt_controls, bezt_points[a + 1], cur, axis); sub_v3_v3v3(axis, cur, prev); float fac = (a + 0.5f) / param->segments; float roll = interpf(roll2, roll1, fac); float scalex = interpf(param->scale_out[0], param->scale_in[0], fac); float scalez = interpf(param->scale_out[2], param->scale_in[2], fac); make_bbone_spline_matrix( param, scalemats, prev, axis, roll, scalex, scalez, result_array[a].mat); copy_v3_v3(prev, cur); } } return param->segments; } static void allocate_bbone_cache(bPoseChannel *pchan, const int segments, const bool use_boundaries) { bPoseChannel_Runtime *runtime = &pchan->runtime; if (runtime->bbone_segments != segments) { BKE_pose_channel_free_bbone_cache(runtime); runtime->bbone_segments = segments; runtime->bbone_rest_mats = static_cast(MEM_malloc_arrayN( 1 + uint(segments), sizeof(Mat4), "bPoseChannel_Runtime::bbone_rest_mats")); runtime->bbone_pose_mats = static_cast(MEM_malloc_arrayN( 1 + uint(segments), sizeof(Mat4), "bPoseChannel_Runtime::bbone_pose_mats")); runtime->bbone_deform_mats = static_cast(MEM_malloc_arrayN( 2 + uint(segments), sizeof(Mat4), "bPoseChannel_Runtime::bbone_deform_mats")); runtime->bbone_dual_quats = static_cast(MEM_malloc_arrayN( 1 + uint(segments), sizeof(DualQuat), "bPoseChannel_Runtime::bbone_dual_quats")); } /* If the segment count changed, the array was deallocated and nulled above. */ if (use_boundaries && !runtime->bbone_segment_boundaries) { runtime->bbone_segment_boundaries = static_cast( MEM_malloc_arrayN(1 + uint(segments), sizeof(bPoseChannel_BBoneSegmentBoundary), "bPoseChannel_Runtime::bbone_segment_boundaries")); } else if (!use_boundaries) { MEM_SAFE_FREE(runtime->bbone_segment_boundaries); } } /** Computes the B-Bone segment boundary planes for the curved mapping. */ static void compute_bbone_segment_boundaries(bPoseChannel *pchan) { const Bone *bone = pchan->bone; bPoseChannel_Runtime *runtime = &pchan->runtime; const Mat4 *b_bone_rest = runtime->bbone_rest_mats; bPoseChannel_BBoneSegmentBoundary *boundaries = runtime->bbone_segment_boundaries; /* Convert joints to pose space. */ for (int i = 0; i <= bone->segments; i++) { mul_v3_m4v3(boundaries[i].point, bone->arm_mat, b_bone_rest[i].mat[3]); mul_v3_mat3_m4v3(boundaries[i].plane_normal, bone->arm_mat, b_bone_rest[i].mat[1]); normalize_v3(boundaries[i].plane_normal); } /* Precompute coefficients for the mapping calculations. */ for (int i = 0; i <= bone->segments; i++) { boundaries[i].plane_offset = dot_v3v3(boundaries[i].point, boundaries[i].plane_normal); } /* Precompute the inverted length of the curve. */ float arc_length = 0.0f; for (int i = 0; i < bone->segments; i++) { arc_length += len_v3v3(boundaries[i + 1].point, boundaries[i].point); } runtime->bbone_arc_length_reciprocal = 1.0f / arc_length; /* Precompute the BSP depth based widening coefficients. * The actual space partitioning includes two extra virtual segments for the ends. */ const int bsp_depth = int(ceilf(log2f(bone->segments + 2))); BLI_assert(bsp_depth <= bone->segments); /* Maximum half-width of the smoothing band at the bsp tree root plane, in segments. * The tuning coefficient was chosen by trial and error (see PR #110758). */ const float tuning_factor = 0.222f; const float straight_length = len_v3v3(boundaries[0].point, boundaries[bone->segments].point); const float max_depth_scale = bone->segments * (straight_length / arc_length) * tuning_factor; /* Per tree layer scaling factor, aiming to reduce the radius to 1 segment at the leaf level. * Since depth_scale is actually a reciprocal of the width, this factor is >= 1. */ const float scale_factor = powf(max_ff(max_depth_scale, 1.0f), 1.0f / (bsp_depth - 1)); boundaries[0].depth_scale = bone->segments / max_depth_scale; for (int i = 1; i < bsp_depth; i++) { boundaries[i].depth_scale = boundaries[i - 1].depth_scale * scale_factor; } } void BKE_pchan_bbone_segments_cache_compute(bPoseChannel *pchan) { bPoseChannel_Runtime *runtime = &pchan->runtime; Bone *bone = pchan->bone; int segments = bone->segments; BLI_assert(segments > 1); /* Allocate the cache if needed. */ const bool use_curved_mapping = bone->bbone_mapping_mode == BBONE_MAPPING_CURVED; allocate_bbone_cache(pchan, segments, use_curved_mapping); /* Compute the shape. */ Mat4 *b_bone = runtime->bbone_pose_mats; Mat4 *b_bone_rest = runtime->bbone_rest_mats; Mat4 *b_bone_mats = runtime->bbone_deform_mats; DualQuat *b_bone_dual_quats = runtime->bbone_dual_quats; int a; BKE_pchan_bbone_spline_setup(pchan, false, true, b_bone); BKE_pchan_bbone_spline_setup(pchan, true, true, b_bone_rest); /* Compute segment boundaries. */ if (runtime->bbone_segment_boundaries) { BLI_assert(use_curved_mapping); compute_bbone_segment_boundaries(pchan); } /* Compute deform matrices. */ /* first matrix is the inverse arm_mat, to bring points in local bone space * for finding out which segment it belongs to */ invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat); /* then we make the b_bone_mats: * - first transform to local bone space * - translate over the curve to the bbone mat space * - transform with b_bone matrix * - transform back into global space */ for (a = 0; a <= bone->segments; a++) { float tmat[4][4]; invert_m4_m4(tmat, b_bone_rest[a].mat); mul_m4_series(b_bone_mats[a + 1].mat, pchan->chan_mat, bone->arm_mat, b_bone[a].mat, tmat, b_bone_mats[0].mat); /* Compute the orthonormal object space rest matrix of the segment. */ mul_m4_m4m4(tmat, bone->arm_mat, b_bone_rest[a].mat); normalize_m4(tmat); mat4_to_dquat(&b_bone_dual_quats[a], tmat, b_bone_mats[a + 1].mat); } } void BKE_pchan_bbone_segments_cache_copy(bPoseChannel *pchan, bPoseChannel *pchan_from) { bPoseChannel_Runtime *runtime = &pchan->runtime; bPoseChannel_Runtime *runtime_from = &pchan_from->runtime; int segments = runtime_from->bbone_segments; if (segments <= 1) { BKE_pose_channel_free_bbone_cache(&pchan->runtime); } else { const bool use_curved_mapping = runtime_from->bbone_segment_boundaries != nullptr; allocate_bbone_cache(pchan, segments, use_curved_mapping); memcpy(runtime->bbone_rest_mats, runtime_from->bbone_rest_mats, sizeof(Mat4) * (1 + segments)); memcpy(runtime->bbone_pose_mats, runtime_from->bbone_pose_mats, sizeof(Mat4) * (1 + segments)); memcpy(runtime->bbone_deform_mats, runtime_from->bbone_deform_mats, sizeof(Mat4) * (2 + segments)); memcpy(runtime->bbone_dual_quats, runtime_from->bbone_dual_quats, sizeof(DualQuat) * (1 + segments)); if (use_curved_mapping) { runtime->bbone_arc_length_reciprocal = runtime_from->bbone_arc_length_reciprocal; memcpy(runtime->bbone_segment_boundaries, runtime_from->bbone_segment_boundaries, sizeof(bPoseChannel_BBoneSegmentBoundary) * (1 + segments)); } else { BLI_assert(runtime->bbone_segment_boundaries == nullptr); } } } void BKE_pchan_bbone_deform_clamp_segment_index(const bPoseChannel *pchan, float head_tail, int *r_index, float *r_blend_next) { int segments = pchan->bone->segments; CLAMP(head_tail, 0.0f, 1.0f); /* Calculate the indices of the 2 affecting b_bone segments. * Integer part is the first segment's index. * Integer part plus 1 is the second segment's index. * Fractional part is the blend factor. */ float pre_blend = head_tail * float(segments); int index = int(floorf(pre_blend)); CLAMP(index, 0, segments - 1); float blend = pre_blend - index; CLAMP(blend, 0.0f, 1.0f); *r_index = index; *r_blend_next = blend; } /** Implementation of the Straight B-Bone segment mapping. */ static void find_bbone_segment_index_straight(const bPoseChannel *pchan, const float *co, int *r_index, float *r_blend_next) { const Mat4 *mats = pchan->runtime.bbone_deform_mats; const float(*mat)[4] = mats[0].mat; /* Transform co to bone space and get its y component. */ const float y = mat[0][1] * co[0] + mat[1][1] * co[1] + mat[2][1] * co[2] + mat[3][1]; /* Calculate the indices of the 2 affecting b_bone segments. */ BKE_pchan_bbone_deform_clamp_segment_index( pchan, y / pchan->bone->length, r_index, r_blend_next); } /** Computes signed distance to the segment boundary BSP plane. */ inline float bbone_segment_bsp_signed_distance(const bPoseChannel_BBoneSegmentBoundary &boundary, const float *co) { return dot_v3v3(co, boundary.plane_normal) - boundary.plane_offset; } /** Implementation of the Curved B-Bone segment mapping. */ static void find_bbone_segment_index_curved(const bPoseChannel *pchan, const float *co, int *r_index, float *r_blend_next) { const bPoseChannel_BBoneSegmentBoundary *boundaries = pchan->runtime.bbone_segment_boundaries; const int segments = pchan->runtime.bbone_segments; /* Saved signed distances from co to each checked boundary plane. */ float boundary_dist[MAX_BBONE_SUBDIV + 1]; /* Stack of BSP plane indices that were checked in the binary search. */ int boundary_idx_stack[MAX_BBONE_SUBDIV]; int stack_top = -1; /* Perform a BSP binary search to narrow things down to one segment. * Checked BSP planes are stored for the smoothing pass later. */ int start = -1, end = segments + 1, bias = 0; while (end - start > 1) { const int mid = (start + end + bias) / 2; BLI_assert(start < mid && mid < end); const float dist = bbone_segment_bsp_signed_distance(boundaries[mid], co); boundary_idx_stack[++stack_top] = mid; boundary_dist[mid] = dist; if (dist < 0) { end = mid; /* Bias division of odd numbers toward the previous split. This should produce * a slightly smoother and more symmetrical evolute boundary near the ends. */ bias = 1; } else { start = mid; bias = 0; } } /* Compute the mapping from the individual segment, or the curve ends. */ const float segment_size = 1.0f / segments; float head_tail; if (end <= 0) { head_tail = 0; } else if (start >= segments) { head_tail = 1; } else { /* Linear interpolation between the innermost two planes. */ const float d1 = fabsf(boundary_dist[start]); const float d2 = fabsf(boundary_dist[end]); const float t = d1 / (d1 + d2); head_tail = segment_size * (start + t); } /* Smooth the mapping to suppress discontinuities by using BSP boundaries up the stack. * * This works basically by pulling the mapped position towards the boundary in order to * reduce the gradient slope to the ideal value (the one you get for points directly on * the curve), using heuristic blend strength falloff coefficients based on the distances * to the boundary plane before and after mapping. See PR #110758 for more details, or * https://developer.blender.org/docs/features/animation/b-bone_vertex_mapping/#curved-mapping */ const float segment_scale = pchan->runtime.bbone_arc_length_reciprocal; for (int i = stack_top; i >= 0; --i) { const int boundary_idx = boundary_idx_stack[i]; /* Boundary in the head-tail space. */ const float boundary_pos = boundary_idx * segment_size; /* Distance of the original 3d point (co) from the boundary plane, * mapped to the head-tail space using the ideal slope ratio. */ const float point_dist = boundary_dist[boundary_idx] * segment_scale; const float point_dist_abs = fabsf(point_dist); /* Distance of the current mapped position from the boundary in the head-tail space. */ const float mapped_dist = fabsf(head_tail - boundary_pos); /* Only reduce the local gradient slope, don't increase it. This basically limits * smoothing to the inside of the curve, leaving outside as is. */ const float slope_gap = mapped_dist - point_dist_abs; if (slope_gap <= 0) { continue; } /* Only affect points close to the split line; the radius depends on the depth * in the stack using precomputed coefficients. */ const float dist_coeff = 1.0f - point_dist_abs * boundaries[i].depth_scale; if (dist_coeff <= 0) { continue; } /* Asymptotically clamp the slope coefficient to 1. The tune coefficients here and * below control the sharpness of the transition and were chosen by trial and error. */ const float slope_tune_coeff = 3.0f; const float scaled_gap = slope_gap * slope_tune_coeff; const float slope_coeff = scaled_gap / (scaled_gap + point_dist_abs); /* Smooth the distance based coefficient around zero. */ const float dist_tune_coeff = 7.0f; const float dist_coeff_smooth = dist_coeff * dist_coeff * (dist_tune_coeff + 1.0f) / (dist_tune_coeff * dist_coeff + 1.0f); /* Blend towards the point on the ideal slope. */ const float target_pos = boundary_pos + point_dist; head_tail = interpf(target_pos, head_tail, slope_coeff * dist_coeff_smooth); } /* Calculate the indices of the 2 affecting b_bone segments. */ BKE_pchan_bbone_deform_clamp_segment_index(pchan, head_tail, r_index, r_blend_next); } void BKE_pchan_bbone_deform_segment_index(const bPoseChannel *pchan, const float *co, int *r_index, float *r_blend_next) { if (pchan->runtime.bbone_segment_boundaries) { find_bbone_segment_index_curved(pchan, co, r_index, r_blend_next); } else { find_bbone_segment_index_straight(pchan, co, r_index, r_blend_next); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Space to Space Conversion API * \{ */ void BKE_armature_mat_world_to_pose(Object *ob, const float inmat[4][4], float outmat[4][4]) { float obmat[4][4]; /* prevent crashes */ if (ob == nullptr) { return; } /* Get inverse of (armature) object's matrix. */ invert_m4_m4(obmat, ob->object_to_world); /* multiply given matrix by object's-inverse to find pose-space matrix */ mul_m4_m4m4(outmat, inmat, obmat); } void BKE_armature_loc_world_to_pose(Object *ob, const float inloc[3], float outloc[3]) { float xLocMat[4][4]; float nLocMat[4][4]; /* build matrix for location */ unit_m4(xLocMat); copy_v3_v3(xLocMat[3], inloc); /* get bone-space cursor matrix and extract location */ BKE_armature_mat_world_to_pose(ob, xLocMat, nLocMat); copy_v3_v3(outloc, nLocMat[3]); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Matrix Calculation API * \{ */ void BKE_bone_offset_matrix_get(const Bone *bone, float offs_bone[4][4]) { BLI_assert(bone->parent != nullptr); /* Bone transform itself. */ copy_m4_m3(offs_bone, bone->bone_mat); /* The bone's root offset (is in the parent's coordinate system). */ copy_v3_v3(offs_bone[3], bone->head); /* Get the length translation of parent (length along y axis). */ offs_bone[3][1] += bone->parent->length; } void BKE_bone_parent_transform_calc_from_pchan(const bPoseChannel *pchan, BoneParentTransform *r_bpt) { const Bone *bone, *parbone; const bPoseChannel *parchan; /* set up variables for quicker access below */ bone = pchan->bone; parbone = bone->parent; parchan = pchan->parent; if (parchan) { float offs_bone[4][4]; /* yoffs(b-1) + root(b) + bonemat(b). */ BKE_bone_offset_matrix_get(bone, offs_bone); BKE_bone_parent_transform_calc_from_matrices(bone->flag, bone->inherit_scale_mode, offs_bone, parbone->arm_mat, parchan->pose_mat, r_bpt); } else { BKE_bone_parent_transform_calc_from_matrices( bone->flag, bone->inherit_scale_mode, bone->arm_mat, nullptr, nullptr, r_bpt); } } void BKE_bone_parent_transform_calc_from_matrices(int bone_flag, int inherit_scale_mode, const float offs_bone[4][4], const float parent_arm_mat[4][4], const float parent_pose_mat[4][4], BoneParentTransform *r_bpt) { copy_v3_fl(r_bpt->post_scale, 1.0f); if (parent_pose_mat) { const bool use_rotation = (bone_flag & BONE_HINGE) == 0; const bool full_transform = use_rotation && inherit_scale_mode == BONE_INHERIT_SCALE_FULL; /* Compose the rotscale matrix for this bone. */ if (full_transform) { /* Parent pose rotation and scale. */ mul_m4_m4m4(r_bpt->rotscale_mat, parent_pose_mat, offs_bone); } else { float tmat[4][4], tscale[3]; /* If using parent pose rotation: */ if (use_rotation) { copy_m4_m4(tmat, parent_pose_mat); /* Normalize the matrix when needed. */ switch (inherit_scale_mode) { case BONE_INHERIT_SCALE_FULL: case BONE_INHERIT_SCALE_FIX_SHEAR: /* Keep scale and shear. */ break; case BONE_INHERIT_SCALE_NONE: case BONE_INHERIT_SCALE_AVERAGE: /* Remove scale and shear from parent. */ orthogonalize_m4_stable(tmat, 1, true); break; case BONE_INHERIT_SCALE_ALIGNED: /* Remove shear and extract scale. */ orthogonalize_m4_stable(tmat, 1, false); normalize_m4_ex(tmat, r_bpt->post_scale); break; case BONE_INHERIT_SCALE_NONE_LEGACY: /* Remove only scale - bad legacy way. */ normalize_m4(tmat); break; default: BLI_assert_unreachable(); } } /* If removing parent pose rotation: */ else { copy_m4_m4(tmat, parent_arm_mat); /* Copy the parent scale when needed. */ switch (inherit_scale_mode) { case BONE_INHERIT_SCALE_FULL: /* Ignore effects of shear. */ mat4_to_size(tscale, parent_pose_mat); rescale_m4(tmat, tscale); break; case BONE_INHERIT_SCALE_FIX_SHEAR: /* Take the effects of parent shear into account to get exact volume. */ mat4_to_size_fix_shear(tscale, parent_pose_mat); rescale_m4(tmat, tscale); break; case BONE_INHERIT_SCALE_ALIGNED: mat4_to_size_fix_shear(r_bpt->post_scale, parent_pose_mat); break; case BONE_INHERIT_SCALE_NONE: case BONE_INHERIT_SCALE_AVERAGE: case BONE_INHERIT_SCALE_NONE_LEGACY: /* Keep unscaled. */ break; default: BLI_assert_unreachable(); } } /* Apply the average parent scale when needed. */ if (inherit_scale_mode == BONE_INHERIT_SCALE_AVERAGE) { mul_mat3_m4_fl(tmat, cbrtf(fabsf(mat4_to_volume_scale(parent_pose_mat)))); } mul_m4_m4m4(r_bpt->rotscale_mat, tmat, offs_bone); /* Remove remaining shear when needed, preserving volume. */ if (inherit_scale_mode == BONE_INHERIT_SCALE_FIX_SHEAR) { orthogonalize_m4_stable(r_bpt->rotscale_mat, 1, false); } } /* Compose the loc matrix for this bone. */ /* NOTE: That version does not modify bone's loc when HINGE/NO_SCALE options are set. */ /* In this case, use the object's space *orientation*. */ if (bone_flag & BONE_NO_LOCAL_LOCATION) { /* XXX I'm sure that code can be simplified! */ float bone_loc[4][4], bone_rotscale[3][3], tmat4[4][4], tmat3[3][3]; unit_m4(bone_loc); unit_m4(r_bpt->loc_mat); unit_m4(tmat4); mul_v3_m4v3(bone_loc[3], parent_pose_mat, offs_bone[3]); unit_m3(bone_rotscale); copy_m3_m4(tmat3, parent_pose_mat); mul_m3_m3m3(bone_rotscale, tmat3, bone_rotscale); copy_m4_m3(tmat4, bone_rotscale); mul_m4_m4m4(r_bpt->loc_mat, bone_loc, tmat4); } /* Those flags do not affect position, use plain parent transform space! */ else if (!full_transform) { mul_m4_m4m4(r_bpt->loc_mat, parent_pose_mat, offs_bone); } /* Else (i.e. default, usual case), * just use the same matrix for rotation/scaling, and location. */ else { copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat); } } /* Root bones. */ else { /* Rotation/scaling. */ copy_m4_m4(r_bpt->rotscale_mat, offs_bone); /* Translation. */ if (bone_flag & BONE_NO_LOCAL_LOCATION) { /* Translation of arm_mat, without the rotation. */ unit_m4(r_bpt->loc_mat); copy_v3_v3(r_bpt->loc_mat[3], offs_bone[3]); } else { copy_m4_m4(r_bpt->loc_mat, r_bpt->rotscale_mat); } } } void BKE_bone_parent_transform_clear(BoneParentTransform *bpt) { unit_m4(bpt->rotscale_mat); unit_m4(bpt->loc_mat); copy_v3_fl(bpt->post_scale, 1.0f); } void BKE_bone_parent_transform_invert(BoneParentTransform *bpt) { invert_m4(bpt->rotscale_mat); invert_m4(bpt->loc_mat); invert_v3_safe(bpt->post_scale); } void BKE_bone_parent_transform_combine(const BoneParentTransform *in1, const BoneParentTransform *in2, BoneParentTransform *result) { mul_m4_m4m4(result->rotscale_mat, in1->rotscale_mat, in2->rotscale_mat); mul_m4_m4m4(result->loc_mat, in1->loc_mat, in2->loc_mat); mul_v3_v3v3(result->post_scale, in1->post_scale, in2->post_scale); } void BKE_bone_parent_transform_apply(const BoneParentTransform *bpt, const float inmat[4][4], float outmat[4][4]) { /* in case inmat == outmat */ float tmploc[3]; copy_v3_v3(tmploc, inmat[3]); mul_m4_m4m4(outmat, bpt->rotscale_mat, inmat); mul_v3_m4v3(outmat[3], bpt->loc_mat, tmploc); rescale_m4(outmat, bpt->post_scale); } void BKE_armature_mat_pose_to_bone(bPoseChannel *pchan, const float inmat[4][4], float outmat[4][4]) { BoneParentTransform bpt; BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt); BKE_bone_parent_transform_invert(&bpt); BKE_bone_parent_transform_apply(&bpt, inmat, outmat); } void BKE_armature_mat_bone_to_pose(bPoseChannel *pchan, const float inmat[4][4], float outmat[4][4]) { BoneParentTransform bpt; BKE_bone_parent_transform_calc_from_pchan(pchan, &bpt); BKE_bone_parent_transform_apply(&bpt, inmat, outmat); } void BKE_armature_loc_pose_to_bone(bPoseChannel *pchan, const float inloc[3], float outloc[3]) { float xLocMat[4][4]; float nLocMat[4][4]; /* build matrix for location */ unit_m4(xLocMat); copy_v3_v3(xLocMat[3], inloc); /* get bone-space cursor matrix and extract location */ BKE_armature_mat_pose_to_bone(pchan, xLocMat, nLocMat); copy_v3_v3(outloc, nLocMat[3]); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Matrix Read/Write API * * High level functions for transforming bones and reading the transform values. * \{ */ void BKE_armature_mat_pose_to_bone_ex(Depsgraph *depsgraph, Object *ob, bPoseChannel *pchan, const float inmat[4][4], float outmat[4][4]) { bPoseChannel work_pchan = blender::dna::shallow_copy(*pchan); /* Recalculate pose matrix with only parent transformations, * bone location/scale/rotation is ignored, scene and frame are not used. */ BKE_pose_where_is_bone(depsgraph, nullptr, ob, &work_pchan, 0.0f, false); /* Find the matrix, need to remove the bone transforms first so this is calculated * as a matrix to set rather than a difference on top of what's already there. */ unit_m4(outmat); BKE_pchan_apply_mat4(&work_pchan, outmat, false); BKE_armature_mat_pose_to_bone(&work_pchan, inmat, outmat); } void BKE_pchan_mat3_to_rot(bPoseChannel *pchan, const float mat[3][3], bool use_compat) { BLI_ASSERT_UNIT_M3(mat); switch (pchan->rotmode) { case ROT_MODE_QUAT: mat3_normalized_to_quat(pchan->quat, mat); break; case ROT_MODE_AXISANGLE: mat3_normalized_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat); break; default: /* euler */ if (use_compat) { mat3_normalized_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat); } else { mat3_normalized_to_eulO(pchan->eul, pchan->rotmode, mat); } break; } } void BKE_pchan_rot_to_mat3(const bPoseChannel *pchan, float r_mat[3][3]) { /* rotations may either be quats, eulers (with various rotation orders), or axis-angle */ if (pchan->rotmode > 0) { /* Euler rotations (will cause gimbal lock, * but this can be alleviated a bit with rotation orders) */ eulO_to_mat3(r_mat, pchan->eul, pchan->rotmode); } else if (pchan->rotmode == ROT_MODE_AXISANGLE) { /* axis-angle - not really that great for 3D-changing orientations */ axis_angle_to_mat3(r_mat, pchan->rotAxis, pchan->rotAngle); } else { /* quats are normalized before use to eliminate scaling issues */ float quat[4]; /* NOTE: we now don't normalize the stored values anymore, * since this was kind of evil in some cases but if this proves to be too problematic, * switch back to the old system of operating directly on the stored copy. */ normalize_qt_qt(quat, pchan->quat); quat_to_mat3(r_mat, quat); } } void BKE_pchan_apply_mat4(bPoseChannel *pchan, const float mat[4][4], bool use_compat) { float rot[3][3]; mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat); BKE_pchan_mat3_to_rot(pchan, rot, use_compat); } void BKE_armature_mat_pose_to_delta(float delta_mat[4][4], float pose_mat[4][4], float arm_mat[4][4]) { float imat[4][4]; invert_m4_m4(imat, arm_mat); mul_m4_m4m4(delta_mat, imat, pose_mat); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Rotation Mode Conversions * * Used for Objects and Pose Channels, since both can have multiple rotation representations. * \{ */ void BKE_rotMode_change_values( float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode) { /* check if any change - if so, need to convert data */ if (newMode > 0) { /* to euler */ if (oldMode == ROT_MODE_AXISANGLE) { /* axis-angle to euler */ axis_angle_to_eulO(eul, newMode, axis, *angle); } else if (oldMode == ROT_MODE_QUAT) { /* quat to euler */ normalize_qt(quat); quat_to_eulO(eul, newMode, quat); } /* else { no conversion needed } */ } else if (newMode == ROT_MODE_QUAT) { /* to quat */ if (oldMode == ROT_MODE_AXISANGLE) { /* axis angle to quat */ axis_angle_to_quat(quat, axis, *angle); } else if (oldMode > 0) { /* euler to quat */ eulO_to_quat(quat, eul, oldMode); } /* else { no conversion needed } */ } else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */ if (oldMode > 0) { /* euler to axis angle */ eulO_to_axis_angle(axis, angle, eul, oldMode); } else if (oldMode == ROT_MODE_QUAT) { /* quat to axis angle */ normalize_qt(quat); quat_to_axis_angle(axis, angle, quat); } /* When converting to axis-angle, * we need a special exception for the case when there is no axis. */ if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) { /* for now, rotate around y-axis then (so that it simply becomes the roll) */ axis[1] = 1.0f; } } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bone Vector, Roll Conversion * * Used for Objects and Pose Channels, since both can have multiple rotation representations. * * How it Works * ============ * * This is the bone transformation trick; they're hierarchical so each bone(b) * is in the coord system of bone(b-1): * * arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * * -> yoffs is just the y axis translation in parent's coord system * -> d_root is the translation of the bone root, also in parent's coord system * * pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) * * we then - in init deform - store the deform in chan_mat, such that: * * pose_mat(b)= arm_mat(b) * chan_mat(b) * * \{ */ void mat3_to_vec_roll(const float mat[3][3], float r_vec[3], float *r_roll) { if (r_vec) { copy_v3_v3(r_vec, mat[1]); } if (r_roll) { mat3_vec_to_roll(mat, mat[1], r_roll); } } void mat3_vec_to_roll(const float mat[3][3], const float vec[3], float *r_roll) { float vecmat[3][3], vecmatinv[3][3], rollmat[3][3], q[4]; /* Compute the orientation relative to the vector with zero roll. */ vec_roll_to_mat3(vec, 0.0f, vecmat); invert_m3_m3(vecmatinv, vecmat); mul_m3_m3m3(rollmat, vecmatinv, mat); /* Extract the twist angle as the roll value. */ mat3_to_quat(q, rollmat); *r_roll = quat_split_swing_and_twist(q, 1, nullptr, nullptr); } void vec_roll_to_mat3_normalized(const float nor[3], const float roll, float r_mat[3][3]) { /** * Given `v = (v.x, v.y, v.z)` our (normalized) bone vector, we want the rotation matrix M * from the Y axis (so that `M * (0, 1, 0) = v`). * - The rotation axis a lays on XZ plane, and it is orthonormal to v, * hence to the projection of v onto XZ plane. * - `a = (v.z, 0, -v.x)` * * We know a is eigenvector of M (so M * a = a). * Finally, we have w, such that M * w = (0, 1, 0) * (i.e. the vector that will be aligned with Y axis once transformed). * We know w is symmetric to v by the Y axis. * - `w = (-v.x, v.y, -v.z)` * * Solving this, we get (x, y and z being the components of v): *
   *     ┌ (x^2 * y + z^2) / (x^2 + z^2),   x,   x * z * (y - 1) / (x^2 + z^2) ┐
   * M = │  x * (y^2 - 1)  / (x^2 + z^2),   y,    z * (y^2 - 1)  / (x^2 + z^2) │
   *     └ x * z * (y - 1) / (x^2 + z^2),   z,   (x^2 + z^2 * y) / (x^2 + z^2) ┘
   * 
* * This is stable as long as v (the bone) is not too much aligned with +/-Y * (i.e. x and z components are not too close to 0). * * Since v is normalized, we have `x^2 + y^2 + z^2 = 1`, * hence `x^2 + z^2 = 1 - y^2 = (1 - y)(1 + y)`. * * This allows to simplifies M like this: *
   *     ┌ 1 - x^2 / (1 + y),   x,     -x * z / (1 + y) ┐
   * M = │                -x,   y,                   -z │
   *     └  -x * z / (1 + y),   z,    1 - z^2 / (1 + y) ┘
   * 
* * Written this way, we see the case v = +Y is no more a singularity. * The only one * remaining is the bone being aligned with -Y. * * Let's handle * the asymptotic behavior when bone vector is reaching the limit of y = -1. * Each of the four corner elements can vary from -1 to 1, * depending on the axis a chosen for doing the rotation. * And the "rotation" here is in fact established by mirroring XZ plane by that given axis, * then inversing the Y-axis. * For sufficiently small x and z, and with y approaching -1, * all elements but the four corner ones of M will degenerate. * So let's now focus on these corner elements. * * We rewrite M so that it only contains its four corner elements, * and combine the `1 / (1 + y)` factor: *
   *                    ┌ 1 + y - x^2,        -x * z ┐
   * M* = 1 / (1 + y) * │                            │
   *                    └      -x * z,   1 + y - z^2 ┘
   * 
* * When y is close to -1, computing 1 / (1 + y) will cause severe numerical instability, * so we use a different approach based on x and z as inputs. * We know `y^2 = 1 - (x^2 + z^2)`, and `y < 0`, hence `y = -sqrt(1 - (x^2 + z^2))`. * * Since x and z are both close to 0, we apply the binomial expansion to the second order: * `y = -sqrt(1 - (x^2 + z^2)) = -1 + (x^2 + z^2) / 2 + (x^2 + z^2)^2 / 8`, which allows * eliminating the problematic `1` constant. * * A first order expansion allows simplifying to this, but second order is more precise: *
   *                        ┌  z^2 - x^2,  -2 * x * z ┐
   * M* = 1 / (x^2 + z^2) * │                         │
   *                        └ -2 * x * z,   x^2 - z^2 ┘
   * 
* * P.S. In the end, this basically is a heavily optimized version of Damped Track +Y. */ const float SAFE_THRESHOLD = 6.1e-3f; /* Theta above this value has good enough precision. */ const float CRITICAL_THRESHOLD = 2.5e-4f; /* True singularity if XZ distance is below this. */ const float THRESHOLD_SQUARED = CRITICAL_THRESHOLD * CRITICAL_THRESHOLD; const float x = nor[0]; const float y = nor[1]; const float z = nor[2]; float theta = 1.0f + y; /* Remapping Y from [-1,+1] to [0,2]. */ const float theta_alt = x * x + z * z; /* Squared distance from origin in x,z plane. */ float rMatrix[3][3], bMatrix[3][3]; BLI_ASSERT_UNIT_V3(nor); /* Determine if the input is far enough from the true singularity of this type of * transformation at (0,-1,0), where roll becomes 0/0 undefined without a limit. * * When theta is close to zero (nor is aligned close to negative Y Axis), * we have to check we do have non-null X/Z components as well. * Also, due to float precision errors, nor can be (0.0, -0.99999994, 0.0) which results * in theta being close to zero. This will cause problems when theta is used as divisor. */ if (theta > SAFE_THRESHOLD || theta_alt > THRESHOLD_SQUARED) { /* nor is *not* aligned to negative Y-axis (0,-1,0). */ bMatrix[0][1] = -x; bMatrix[1][0] = x; bMatrix[1][1] = y; bMatrix[1][2] = z; bMatrix[2][1] = -z; if (theta <= SAFE_THRESHOLD) { /* When nor is close to negative Y axis (0,-1,0) the theta precision is very bad, * so recompute it from x and z instead, using the series expansion for `sqrt`. */ theta = theta_alt * 0.5f + theta_alt * theta_alt * 0.125f; } bMatrix[0][0] = 1 - x * x / theta; bMatrix[2][2] = 1 - z * z / theta; bMatrix[2][0] = bMatrix[0][2] = -x * z / theta; } else { /* nor is very close to negative Y axis (0,-1,0): use simple symmetry by Z axis. */ unit_m3(bMatrix); bMatrix[0][0] = bMatrix[1][1] = -1.0; } /* Make Roll matrix */ axis_angle_normalized_to_mat3(rMatrix, nor, roll); /* Combine and output result */ mul_m3_m3m3(r_mat, rMatrix, bMatrix); } void vec_roll_to_mat3(const float vec[3], const float roll, float r_mat[3][3]) { float nor[3]; normalize_v3_v3(nor, vec); vec_roll_to_mat3_normalized(nor, roll, r_mat); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Armature Bone Matrix Calculation (Recursive) * \{ */ void BKE_armature_where_is_bone(Bone *bone, const Bone *bone_parent, const bool use_recursion) { float vec[3]; /* Bone Space */ sub_v3_v3v3(vec, bone->tail, bone->head); bone->length = len_v3(vec); vec_roll_to_mat3(vec, bone->roll, bone->bone_mat); /* this is called on old file reading too... */ if (bone->xwidth == 0.0f) { bone->xwidth = 0.1f; bone->zwidth = 0.1f; bone->segments = 1; } if (bone_parent) { float offs_bone[4][4]; /* yoffs(b-1) + root(b) + bonemat(b) */ BKE_bone_offset_matrix_get(bone, offs_bone); /* Compose the matrix for this bone. */ mul_m4_m4m4(bone->arm_mat, bone_parent->arm_mat, offs_bone); } else { copy_m4_m3(bone->arm_mat, bone->bone_mat); copy_v3_v3(bone->arm_mat[3], bone->head); } /* and the kiddies */ if (use_recursion) { bone_parent = bone; for (bone = static_cast(bone->childbase.first); bone; bone = bone->next) { BKE_armature_where_is_bone(bone, bone_parent, use_recursion); } } } void BKE_armature_where_is(bArmature *arm) { /* hierarchical from root to children */ LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { BKE_armature_where_is_bone(bone, nullptr, true); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Pose Rebuild * \{ */ /** * \param r_last_visited_bone_p: The last bone handled by the last call to this function. */ static int rebuild_pose_bone( bPose *pose, Bone *bone, bPoseChannel *parchan, int counter, Bone **r_last_visited_bone_p) { bPoseChannel *pchan = BKE_pose_channel_ensure(pose, bone->name); /* verify checks and/or adds */ pchan->bone = bone; pchan->parent = parchan; /* Prevent custom bone colors from having alpha zero. * Part of the fix for issue #115434. */ pchan->color.custom.solid[3] = 255; pchan->color.custom.select[3] = 255; pchan->color.custom.active[3] = 255; /* We ensure the current pchan is immediately after the one we just generated/updated in the * previous call to `rebuild_pose_bone`. * * It may be either the parent, the previous sibling, or the last * (grand-(grand-(...)))-child (as processed by the recursive, depth-first nature of this * function) of the previous sibling. * * NOTE: In most cases there is nothing to do here, but pose list may get out of order when some * bones are added, removed or moved in the armature data. */ bPoseChannel *pchan_prev = pchan->prev; const Bone *last_visited_bone = *r_last_visited_bone_p; if ((pchan_prev == nullptr && last_visited_bone != nullptr) || (pchan_prev != nullptr && pchan_prev->bone != last_visited_bone)) { pchan_prev = last_visited_bone != nullptr ? BKE_pose_channel_find_name(pose, last_visited_bone->name) : nullptr; BLI_remlink(&pose->chanbase, pchan); BLI_insertlinkafter(&pose->chanbase, pchan_prev, pchan); } *r_last_visited_bone_p = pchan->bone; counter++; for (bone = static_cast(bone->childbase.first); bone; bone = bone->next) { counter = rebuild_pose_bone(pose, bone, pchan, counter, r_last_visited_bone_p); /* for quick detecting of next bone in chain, only b-bone uses it now */ if (bone->flag & BONE_CONNECTED) { pchan->child = BKE_pose_channel_find_name(pose, bone->name); } } return counter; } void BKE_pose_clear_pointers(bPose *pose) { LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) { pchan->bone = nullptr; pchan->child = nullptr; } } void BKE_pose_remap_bone_pointers(bArmature *armature, bPose *pose) { LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) { pchan->bone = BKE_armature_find_bone_name(armature, pchan->name); } } /** Find the matching pose channel using the bone name, if not nullptr. */ static bPoseChannel *pose_channel_find_bone(bPose *pose, Bone *bone) { return (bone != nullptr) ? BKE_pose_channel_find_name(pose, bone->name) : nullptr; } void BKE_pchan_rebuild_bbone_handles(bPose *pose, bPoseChannel *pchan) { pchan->bbone_prev = pose_channel_find_bone(pose, pchan->bone->bbone_prev); pchan->bbone_next = pose_channel_find_bone(pose, pchan->bone->bbone_next); } void BKE_pose_channels_clear_with_null_bone(bPose *pose, const bool do_id_user) { LISTBASE_FOREACH_MUTABLE (bPoseChannel *, pchan, &pose->chanbase) { if (pchan->bone == nullptr) { BKE_pose_channel_free_ex(pchan, do_id_user); BKE_pose_channels_hash_free(pose); BLI_freelinkN(&pose->chanbase, pchan); } } } void BKE_pose_rebuild(Main *bmain, Object *ob, bArmature *arm, const bool do_id_user) { bPose *pose; int counter = 0; /* only done here */ if (ob->pose == nullptr) { /* create new pose */ ob->pose = static_cast(MEM_callocN(sizeof(bPose), "new pose")); /* set default settings for animviz */ animviz_settings_init(&ob->pose->avs); } pose = ob->pose; /* clear */ BKE_pose_clear_pointers(pose); /* first step, check if all channels are there */ Bone *prev_bone = nullptr; LISTBASE_FOREACH (Bone *, bone, &arm->bonebase) { counter = rebuild_pose_bone(pose, bone, nullptr, counter, &prev_bone); } /* and a check for garbage */ BKE_pose_channels_clear_with_null_bone(pose, do_id_user); BKE_pose_channels_hash_ensure(pose); LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) { /* Find the custom B-Bone handles. */ BKE_pchan_rebuild_bbone_handles(pose, pchan); /* Re-validate that we are still using a valid pchan form custom transform. */ /* Note that we could store pointers of freed pchan in a GSet to speed this up, however this is * supposed to be a rarely used feature, so for now assuming that always building that GSet * would be less optimal. */ if (pchan->custom_tx != nullptr && BLI_findindex(&pose->chanbase, pchan->custom_tx) == -1) { pchan->custom_tx = nullptr; } } // printf("rebuild pose %s, %d bones\n", ob->id.name, counter); BKE_pose_update_constraint_flags(pose); /* for IK detection for example */ pose->flag &= ~POSE_RECALC; pose->flag |= POSE_WAS_REBUILT; /* Rebuilding poses forces us to also rebuild the dependency graph, * since there is one node per pose/bone. */ if (bmain != nullptr) { DEG_relations_tag_update(bmain); } } void BKE_pose_ensure(Main *bmain, Object *ob, bArmature *arm, const bool do_id_user) { BLI_assert(!ELEM(nullptr, arm, ob)); if (ob->type == OB_ARMATURE && ((ob->pose == nullptr) || (ob->pose->flag & POSE_RECALC))) { BLI_assert(GS(arm->id.name) == ID_AR); BKE_pose_rebuild(bmain, ob, arm, do_id_user); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Pose Solver * \{ */ void BKE_pchan_to_mat4(const bPoseChannel *pchan, float r_chanmat[4][4]) { float smat[3][3]; float rmat[3][3]; float tmat[3][3]; /* get scaling matrix */ size_to_mat3(smat, pchan->size); /* get rotation matrix */ BKE_pchan_rot_to_mat3(pchan, rmat); /* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */ mul_m3_m3m3(tmat, rmat, smat); copy_m4_m3(r_chanmat, tmat); /* prevent action channels breaking chains */ /* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */ if ((pchan->bone == nullptr) || !(pchan->bone->flag & BONE_CONNECTED)) { copy_v3_v3(r_chanmat[3], pchan->loc); } } void BKE_pchan_calc_mat(bPoseChannel *pchan) { /* this is just a wrapper around the copy of this function which calculates the matrix * and stores the result in any given channel */ BKE_pchan_to_mat4(pchan, pchan->chan_mat); } void BKE_pose_where_is_bone_tail(bPoseChannel *pchan) { float vec[3]; copy_v3_v3(vec, pchan->pose_mat[1]); mul_v3_fl(vec, pchan->bone->length); add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec); } void BKE_pose_where_is_bone(Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, bool do_extra) { /* This gives a chan_mat with actions (F-Curve) results. */ if (do_extra) { BKE_pchan_calc_mat(pchan); } else { unit_m4(pchan->chan_mat); } /* Construct the posemat based on PoseChannels, that we do before applying constraints. */ /* pose_mat(b) = pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */ BKE_armature_mat_bone_to_pose(pchan, pchan->chan_mat, pchan->pose_mat); /* Only root-bones get the cyclic offset (unless user doesn't want that). */ /* XXX That could be a problem for snapping and other "reverse transform" features... */ if (!pchan->parent) { if ((pchan->bone->flag & BONE_NO_CYCLICOFFSET) == 0) { add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset); } } if (do_extra) { /* Do constraints */ if (pchan->constraints.first) { bConstraintOb *cob; float vec[3]; /* make a copy of location of PoseChannel for later */ copy_v3_v3(vec, pchan->pose_mat[3]); /* prepare PoseChannel for Constraint solving * - makes a copy of matrix, and creates temporary struct to use */ cob = BKE_constraints_make_evalob(depsgraph, scene, ob, pchan, CONSTRAINT_OBTYPE_BONE); /* Solve PoseChannel's Constraints */ /* ctime doesn't alter objects. */ BKE_constraints_solve(depsgraph, &pchan->constraints, cob, ctime); /* cleanup after Constraint Solving * - applies matrix back to pchan, and frees temporary struct used */ BKE_constraints_clear_evalob(cob); /* prevent constraints breaking a chain */ if (pchan->bone->flag & BONE_CONNECTED) { copy_v3_v3(pchan->pose_mat[3], vec); } } } /* calculate head */ copy_v3_v3(pchan->pose_head, pchan->pose_mat[3]); /* calculate tail */ BKE_pose_where_is_bone_tail(pchan); } void BKE_pose_where_is(Depsgraph *depsgraph, Scene *scene, Object *ob) { bArmature *arm; Bone *bone; float imat[4][4]; float ctime; if (ob->type != OB_ARMATURE) { return; } arm = static_cast(ob->data); if (ELEM(nullptr, arm, scene)) { return; } /* WARNING! passing nullptr bmain here means we won't tag depsgraph's as dirty - * hopefully this is OK. */ BKE_pose_ensure(nullptr, ob, arm, true); ctime = BKE_scene_ctime_get(scene); /* not accurate... */ /* In edit-mode or rest-position we read the data from the bones. */ if (arm->edbo || (arm->flag & ARM_RESTPOS)) { LISTBASE_FOREACH (bPoseChannel *, pchan, &ob->pose->chanbase) { bone = pchan->bone; if (bone) { copy_m4_m4(pchan->pose_mat, bone->arm_mat); copy_v3_v3(pchan->pose_head, bone->arm_head); copy_v3_v3(pchan->pose_tail, bone->arm_tail); } } } else { invert_m4_m4(ob->world_to_object, ob->object_to_world); /* world_to_object is needed */ /* 1. clear flags */ LISTBASE_FOREACH (bPoseChannel *, pchan, &ob->pose->chanbase) { pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE); } /* 2a. construct the IK tree (standard IK) */ BIK_init_tree(depsgraph, scene, ob, ctime); /* 2b. construct the Spline IK trees * - this is not integrated as an IK plugin, since it should be able * to function in conjunction with standard IK */ BKE_pose_splineik_init_tree(scene, ob, ctime); /* 3. the main loop, channels are already hierarchical sorted from root to children */ LISTBASE_FOREACH (bPoseChannel *, pchan, &ob->pose->chanbase) { /* 4a. if we find an IK root, we handle it separated */ if (pchan->flag & POSE_IKTREE) { BIK_execute_tree(depsgraph, scene, ob, pchan, ctime); } /* 4b. if we find a Spline IK root, we handle it separated too */ else if (pchan->flag & POSE_IKSPLINE) { BKE_splineik_execute_tree(depsgraph, scene, ob, pchan, ctime); } /* 5. otherwise just call the normal solver */ else if (!(pchan->flag & POSE_DONE)) { BKE_pose_where_is_bone(depsgraph, scene, ob, pchan, ctime, true); } } /* 6. release the IK tree */ BIK_release_tree(scene, ob, ctime); } /* calculating deform matrices */ LISTBASE_FOREACH (bPoseChannel *, pchan, &ob->pose->chanbase) { if (pchan->bone) { invert_m4_m4(imat, pchan->bone->arm_mat); mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat); } } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Calculate Bounding Box (Armature & Pose) * \{ */ std::optional> BKE_armature_min_max(const bPose *pose) { if (BLI_listbase_is_empty(&pose->chanbase)) { return std::nullopt; } blender::float3 min(std::numeric_limits::max()); blender::float3 max(std::numeric_limits::lowest()); /* For now, we assume BKE_pose_where_is has already been called * (hence we have valid data in pachan). */ LISTBASE_FOREACH (bPoseChannel *, pchan, &pose->chanbase) { minmax_v3v3_v3(min, max, pchan->pose_head); minmax_v3v3_v3(min, max, pchan->pose_tail); } return blender::Bounds{min, max}; } void BKE_pchan_minmax(const Object *ob, const bPoseChannel *pchan, const bool use_empty_drawtype, float r_min[3], float r_max[3]) { using namespace blender; const bArmature *arm = static_cast(ob->data); Object *ob_custom = (arm->flag & ARM_NO_CUSTOM) ? nullptr : pchan->custom; const bPoseChannel *pchan_tx = (ob_custom && pchan->custom_tx) ? pchan->custom_tx : pchan; std::optional> bb_custom; if (ob_custom) { float3 min, max; if (use_empty_drawtype && (ob_custom->type == OB_EMPTY) && BKE_object_minmax_empty_drawtype(ob_custom, min, max)) { bb_custom.emplace(Bounds{min, max}); } else { bb_custom = BKE_object_boundbox_get(ob_custom); } } if (bb_custom) { float mat[4][4], smat[4][4], rmat[4][4], tmp[4][4]; scale_m4_fl(smat, PCHAN_CUSTOM_BONE_LENGTH(pchan)); rescale_m4(smat, pchan->custom_scale_xyz); eulO_to_mat4(rmat, pchan->custom_rotation_euler, ROT_MODE_XYZ); copy_m4_m4(tmp, pchan_tx->pose_mat); translate_m4(tmp, pchan->custom_translation[0], pchan->custom_translation[1], pchan->custom_translation[2]); mul_m4_series(mat, ob->object_to_world, tmp, rmat, smat); BoundBox bb; BKE_boundbox_init_from_minmax(&bb, bb_custom->min, bb_custom->max); BKE_boundbox_minmax(&bb, mat, r_min, r_max); } else { float vec[3]; mul_v3_m4v3(vec, ob->object_to_world, pchan_tx->pose_head); minmax_v3v3_v3(r_min, r_max, vec); mul_v3_m4v3(vec, ob->object_to_world, pchan_tx->pose_tail); minmax_v3v3_v3(r_min, r_max, vec); } } bool BKE_pose_minmax(Object *ob, float r_min[3], float r_max[3], bool use_hidden, bool use_select) { bool changed = false; if (ob->pose) { bArmature *arm = static_cast(ob->data); LISTBASE_FOREACH (bPoseChannel *, pchan, &ob->pose->chanbase) { /* XXX pchan->bone may be nullptr for duplicated bones, see duplicateEditBoneObjects() * comment (editarmature.c:2592)... Skip in this case too! */ if (pchan->bone && (!((use_hidden == false) && (PBONE_VISIBLE(arm, pchan->bone) == false)) && !((use_select == true) && ((pchan->bone->flag & BONE_SELECTED) == 0)))) { BKE_pchan_minmax(ob, pchan, false, r_min, r_max); changed = true; } } } return changed; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Graph Evaluation * \{ */ bPoseChannel *BKE_armature_ik_solver_find_root(bPoseChannel *pchan, bKinematicConstraint *data) { bPoseChannel *rootchan = pchan; if (!(data->flag & CONSTRAINT_IK_TIP)) { /* Exclude tip from chain. */ rootchan = rootchan->parent; } if (rootchan != nullptr) { int segcount = 0; while (rootchan->parent) { /* Continue up chain, until we reach target number of items. */ segcount++; if (segcount == data->rootbone) { break; } rootchan = rootchan->parent; } } return rootchan; } bPoseChannel *BKE_armature_splineik_solver_find_root(bPoseChannel *pchan, bSplineIKConstraint *data) { bPoseChannel *rootchan = pchan; int segcount = 0; BLI_assert(rootchan != nullptr); while (rootchan->parent) { /* Continue up chain, until we reach target number of items. */ segcount++; if (segcount == data->chainlen) { break; } rootchan = rootchan->parent; } return rootchan; } /** \} */ /* -------------------------------------------------------------------- */ /** \name implementations of DNA struct C++ methods. * \{ */ blender::Span bArmature::collections_span() const { return blender::Span(collection_array, collection_array_num); } blender::Span bArmature::collections_span() { return blender::Span(collection_array, collection_array_num); } blender::Span bArmature::collections_roots() const { return blender::Span(collection_array, collection_root_count); } blender::Span bArmature::collections_roots() { return blender::Span(collection_array, collection_root_count); } blender::Span bArmature::collection_children( const BoneCollection *parent) const { return blender::Span(&collection_array[parent->child_index], parent->child_count); } blender::Span bArmature::collection_children(BoneCollection *parent) { return blender::Span(&collection_array[parent->child_index], parent->child_count); } bool BoneCollection::is_visible() const { return this->flags & BONE_COLLECTION_VISIBLE; } bool BoneCollection::is_visible_ancestors() const { return this->flags & BONE_COLLECTION_ANCESTORS_VISIBLE; } bool BoneCollection::is_visible_effectively() const { return this->is_visible() && this->is_visible_ancestors(); } /** \} */