Files
test/intern/cycles/blender/object_cull.cpp
Lukas Stockner bf412ed9dd Cycles: Support for custom OSL cameras
This allows users to implement arbitrary camera models using OSL by writing
shaders that take an image position as input and compute ray origin and
direction.

The obvious applications for this are e.g. panorama modes, lens distortion
models and realistic lens simulation, but the possibilities are endless.

Currently, this is only supported on devices with OSL support, so CPU and
OptiX. However, it is independent from the shading model used, so custom
cameras can be used without getting the performance hit of OSL shading.

A few samples are provided as Text Editor templates.

One notable current limitation (in addition to the limited device support)
is that inverse mapping is not supported, so Window texture coordinates and
the Vector pass will not work with custom cameras.

Pull Request: https://projects.blender.org/blender/blender/pulls/129495
2025-04-25 19:27:30 +02:00

132 lines
4.3 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include <cstdlib>
#include "scene/camera.h"
#include "blender/object_cull.h"
#include "blender/util.h"
CCL_NAMESPACE_BEGIN
BlenderObjectCulling::BlenderObjectCulling(Scene *scene, BL::Scene &b_scene)
: use_scene_camera_cull_(false),
use_camera_cull_(false),
camera_cull_margin_(0.0f),
use_scene_distance_cull_(false),
use_distance_cull_(false),
distance_cull_margin_(0.0f)
{
if (b_scene.render().use_simplify()) {
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
const bool cam_supported = (scene->camera->get_camera_type() == CAMERA_PERSPECTIVE) ||
(scene->camera->get_camera_type() == CAMERA_ORTHOGRAPHIC);
use_scene_camera_cull_ = cam_supported && !b_scene.render().use_multiview() &&
get_boolean(cscene, "use_camera_cull");
use_scene_distance_cull_ = cam_supported && !b_scene.render().use_multiview() &&
get_boolean(cscene, "use_distance_cull");
camera_cull_margin_ = get_float(cscene, "camera_cull_margin");
distance_cull_margin_ = get_float(cscene, "distance_cull_margin");
if (distance_cull_margin_ == 0.0f) {
use_scene_distance_cull_ = false;
}
}
}
void BlenderObjectCulling::init_object(Scene *scene, BL::Object &b_ob)
{
if (!use_scene_camera_cull_ && !use_scene_distance_cull_) {
return;
}
PointerRNA cobject = RNA_pointer_get(&b_ob.ptr, "cycles");
use_camera_cull_ = use_scene_camera_cull_ && get_boolean(cobject, "use_camera_cull");
use_distance_cull_ = use_scene_distance_cull_ && get_boolean(cobject, "use_distance_cull");
if (use_camera_cull_ || use_distance_cull_) {
/* Need to have proper projection matrix. */
scene->camera->update(scene);
}
}
bool BlenderObjectCulling::test(Scene *scene, BL::Object &b_ob, Transform &tfm)
{
if (!use_camera_cull_ && !use_distance_cull_) {
return false;
}
/* Compute world space bounding box corners. */
float3 bb[8];
BL::Array<float, 24> boundbox = b_ob.bound_box();
for (int i = 0; i < 8; ++i) {
const float3 p = make_float3(boundbox[3 * i + 0], boundbox[3 * i + 1], boundbox[3 * i + 2]);
bb[i] = transform_point(&tfm, p);
}
const bool camera_culled = use_camera_cull_ && test_camera(scene, bb);
const bool distance_culled = use_distance_cull_ && test_distance(scene, bb);
return ((camera_culled && distance_culled) || (camera_culled && !use_distance_cull_) ||
(distance_culled && !use_camera_cull_));
}
/* TODO(sergey): Not really optimal, consider approaches based on k-DOP in order
* to reduce number of objects which are wrongly considered visible.
*/
bool BlenderObjectCulling::test_camera(Scene *scene, const float3 bb[8])
{
Camera *cam = scene->camera;
const ProjectionTransform &worldtondc = cam->worldtondc;
float3 bb_min = make_float3(FLT_MAX, FLT_MAX, FLT_MAX);
float3 bb_max = make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
bool all_behind = true;
for (int i = 0; i < 8; ++i) {
float3 p = bb[i];
const float4 b = make_float4(p, 1.0f);
const float4 c = make_float4(
dot(worldtondc.x, b), dot(worldtondc.y, b), dot(worldtondc.z, b), dot(worldtondc.w, b));
p = make_float3(c / c.w);
if (c.z < 0.0f) {
p.x = 1.0f - p.x;
p.y = 1.0f - p.y;
}
if (c.z >= -camera_cull_margin_) {
all_behind = false;
}
bb_min = min(bb_min, p);
bb_max = max(bb_max, p);
}
if (all_behind) {
return true;
}
return (bb_min.x >= 1.0f + camera_cull_margin_ || bb_min.y >= 1.0f + camera_cull_margin_ ||
bb_max.x <= -camera_cull_margin_ || bb_max.y <= -camera_cull_margin_);
}
bool BlenderObjectCulling::test_distance(Scene *scene, const float3 bb[8])
{
const float3 camera_position = transform_get_column(&scene->camera->get_matrix(), 3);
float3 bb_min = make_float3(FLT_MAX, FLT_MAX, FLT_MAX);
float3 bb_max = make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
/* Find min & max points for x & y & z on bounding box */
for (int i = 0; i < 8; ++i) {
const float3 p = bb[i];
bb_min = min(bb_min, p);
bb_max = max(bb_max, p);
}
const float3 closest_point = max(min(bb_max, camera_position), bb_min);
return (len_squared(camera_position - closest_point) >
distance_cull_margin_ * distance_cull_margin_);
}
CCL_NAMESPACE_END