Files
test/intern/cycles/scene/mesh.cpp
Brecht Van Lommel 689f182792 Cycles: Make adaptive subdivision a non-experimental feature
* Add adaptive subdivision properties natively on the subdivision surface
  modifier, so that other engines may reuse them in the future. This also
  resolve issues where they would not get copied properly.
* Remove "Feature Set" option in the render properties, this was the last
  experimental one.
* Add space choice between "Pixel" and "Object". The latter is new and can
  be used for object space dicing that works with instances. Instead of
  a pixel size an object space edge length is specified.
* Add object space subdivision test.

Ref #53901

Pull Request: https://projects.blender.org/blender/blender/pulls/146723
2025-09-25 16:18:50 +02:00

936 lines
28 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include <algorithm>
#include "bvh/build.h"
#include "bvh/bvh.h"
#include "device/device.h"
#include "scene/attribute.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/scene.h"
#include "scene/shader_graph.h"
#include "subd/split.h"
#include "util/log.h"
#include "util/set.h"
#include "mikktspace.hh"
CCL_NAMESPACE_BEGIN
/* Tangent Space */
struct MikkMeshWrapper {
MikkMeshWrapper(const Mesh *mesh,
const float3 *normal,
const float2 *uv,
float3 *tangent,
float *tangent_sign)
: mesh(mesh), normal(normal), uv(uv), tangent(tangent), tangent_sign(tangent_sign)
{
}
int GetNumFaces()
{
return mesh->num_triangles();
}
int GetNumVerticesOfFace(const int /*face_num*/)
{
return 3;
}
int CornerIndex(const int face_num, const int vert_num)
{
return face_num * 3 + vert_num;
}
int VertexIndex(const int face_num, const int vert_num)
{
const int corner = CornerIndex(face_num, vert_num);
return mesh->get_triangles()[corner];
}
mikk::float3 GetPosition(const int face_num, const int vert_num)
{
const float3 vP = mesh->get_verts()[VertexIndex(face_num, vert_num)];
return mikk::float3(vP.x, vP.y, vP.z);
}
mikk::float3 GetTexCoord(const int face_num, const int vert_num)
{
/* TODO: Check whether introducing a template boolean in order to
* turn this into a constexpr is worth it. */
if (has_uv()) {
const int corner_index = CornerIndex(face_num, vert_num);
const float2 tfuv = uv[corner_index];
return mikk::float3(tfuv.x, tfuv.y, 1.0f);
}
/* revert to vertex position */
const float3 vP = mesh->get_verts()[VertexIndex(face_num, vert_num)];
const float2 uv = map_to_sphere(vP);
return mikk::float3(uv.x, uv.y, 1.0f);
}
mikk::float3 GetNormal(const int face_num, const int vert_num)
{
float3 vN;
if (mesh->get_smooth()[face_num]) {
const int vertex_index = VertexIndex(face_num, vert_num);
vN = normal[vertex_index];
}
else {
const Mesh::Triangle tri = mesh->get_triangle(face_num);
vN = tri.compute_normal(mesh->get_verts().data());
}
return mikk::float3(vN.x, vN.y, vN.z);
}
void SetTangentSpace(const int face_num, const int vert_num, mikk::float3 T, bool orientation)
{
const int corner_index = CornerIndex(face_num, vert_num);
tangent[corner_index] = make_float3(T.x, T.y, T.z);
if (tangent_sign != nullptr) {
tangent_sign[corner_index] = orientation ? 1.0f : -1.0f;
}
}
bool has_uv() const
{
return uv != nullptr;
}
const Mesh *mesh;
const float3 *normal;
const float2 *uv;
float3 *tangent;
float *tangent_sign;
};
static void mikk_compute_tangents(Attribute *attr_uv,
Mesh *mesh,
const bool need_sign,
const AttributeStandard tangent_std,
const AttributeStandard tangent_sign_std,
const char *tangent_postfix,
const char *tangent_sign_postfix)
{
/* Create tangent attributes. */
AttributeSet &attributes = mesh->attributes;
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
if (attr_vN == nullptr) {
/* no normals */
return;
}
const float3 *normal = attr_vN->data_float3();
const float2 *uv = (attr_uv) ? attr_uv->data_float2() : nullptr;
const ustring name = ustring((attr_uv) ? attr_uv->name.string() + tangent_postfix :
Attribute::standard_name(tangent_std));
Attribute *attr;
if (attr_uv == nullptr || attr_uv->std == ATTR_STD_UV) {
attr = attributes.add(tangent_std, name);
}
else {
attr = attributes.add(name, TypeVector, ATTR_ELEMENT_CORNER);
}
float3 *tangent = attr->data_float3();
/* Create bitangent sign attribute. */
float *tangent_sign = nullptr;
if (need_sign) {
const ustring name_sign = ustring((attr_uv) ? attr_uv->name.string() + tangent_sign_postfix :
Attribute::standard_name(tangent_sign_std));
Attribute *attr_sign;
if (attr_uv == nullptr || attr_uv->std == ATTR_STD_UV) {
attr_sign = attributes.add(tangent_sign_std, name_sign);
}
else {
attr_sign = attributes.add(name_sign, TypeFloat, ATTR_ELEMENT_CORNER);
}
tangent_sign = attr_sign->data_float();
}
MikkMeshWrapper userdata(mesh, normal, uv, tangent, tangent_sign);
/* Compute tangents. */
mikk::Mikktspace(userdata).genTangSpace();
}
/* Triangle */
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox &bounds) const
{
bounds.grow(verts[v[0]]);
bounds.grow(verts[v[1]]);
bounds.grow(verts[v[2]]);
}
void Mesh::Triangle::motion_verts(const float3 *verts,
const float3 *vert_steps,
const size_t num_verts,
const size_t num_steps,
const float time,
float3 r_verts[3]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((size_t)(time * max_step), max_step - 1);
const float t = time * max_step - step;
/* Fetch vertex coordinates. */
float3 curr_verts[3];
float3 next_verts[3];
verts_for_step(verts, vert_steps, num_verts, num_steps, step, curr_verts);
verts_for_step(verts, vert_steps, num_verts, num_steps, step + 1, next_verts);
/* Interpolate between steps. */
r_verts[0] = (1.0f - t) * curr_verts[0] + t * next_verts[0];
r_verts[1] = (1.0f - t) * curr_verts[1] + t * next_verts[1];
r_verts[2] = (1.0f - t) * curr_verts[2] + t * next_verts[2];
}
void Mesh::Triangle::verts_for_step(const float3 *verts,
const float3 *vert_steps,
const size_t num_verts,
const size_t num_steps,
size_t step,
float3 r_verts[3]) const
{
const size_t center_step = ((num_steps - 1) / 2);
if (step == center_step) {
/* Center step: regular vertex location. */
r_verts[0] = verts[v[0]];
r_verts[1] = verts[v[1]];
r_verts[2] = verts[v[2]];
}
else {
/* Center step not stored in the attribute array. */
if (step > center_step) {
step--;
}
const size_t offset = step * num_verts;
r_verts[0] = vert_steps[offset + v[0]];
r_verts[1] = vert_steps[offset + v[1]];
r_verts[2] = vert_steps[offset + v[2]];
}
}
float3 Mesh::Triangle::compute_normal(const float3 *verts) const
{
const float3 &v0 = verts[v[0]];
const float3 &v1 = verts[v[1]];
const float3 &v2 = verts[v[2]];
const float3 norm = cross(v1 - v0, v2 - v0);
const float normlen = len(norm);
if (normlen == 0.0f) {
return make_float3(1.0f, 0.0f, 0.0f);
}
return norm / normlen;
}
bool Mesh::Triangle::valid(const float3 *verts) const
{
return isfinite_safe(verts[v[0]]) && isfinite_safe(verts[v[1]]) && isfinite_safe(verts[v[2]]);
}
/* SubdFace */
float3 Mesh::SubdFace::normal(const Mesh *mesh) const
{
const float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner + 0]];
const float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner + 1]];
const float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner + 2]];
return safe_normalize(cross(v1 - v0, v2 - v0));
}
/* Mesh */
NODE_DEFINE(Mesh)
{
NodeType *type = NodeType::add("mesh", create, NodeType::NONE, Geometry::get_node_base_type());
SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
SOCKET_INT_ARRAY(shader, "Shader", array<int>());
SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
static NodeEnum subdivision_type_enum;
subdivision_type_enum.insert("none", SUBDIVISION_NONE);
subdivision_type_enum.insert("linear", SUBDIVISION_LINEAR);
subdivision_type_enum.insert("catmull_clark", SUBDIVISION_CATMULL_CLARK);
SOCKET_ENUM(subdivision_type, "Subdivision Type", subdivision_type_enum, SUBDIVISION_NONE);
static NodeEnum subdivision_boundary_interpolation_enum;
subdivision_boundary_interpolation_enum.insert("none", SUBDIVISION_BOUNDARY_NONE);
subdivision_boundary_interpolation_enum.insert("edge_only", SUBDIVISION_BOUNDARY_EDGE_ONLY);
subdivision_boundary_interpolation_enum.insert("edge_and_corner",
SUBDIVISION_BOUNDARY_EDGE_AND_CORNER);
SOCKET_ENUM(subdivision_boundary_interpolation,
"Subdivision Boundary Interpolation",
subdivision_boundary_interpolation_enum,
SUBDIVISION_BOUNDARY_EDGE_AND_CORNER);
static NodeEnum subdivision_fvar_interpolation_enum;
subdivision_fvar_interpolation_enum.insert("none", SUBDIVISION_FVAR_LINEAR_NONE);
subdivision_fvar_interpolation_enum.insert("corners_only", SUBDIVISION_FVAR_LINEAR_CORNERS_ONLY);
subdivision_fvar_interpolation_enum.insert("corners_plus1",
SUBDIVISION_FVAR_LINEAR_CORNERS_PLUS1);
subdivision_fvar_interpolation_enum.insert("corners_plus2",
SUBDIVISION_FVAR_LINEAR_CORNERS_PLUS2);
subdivision_fvar_interpolation_enum.insert("boundaries", SUBDIVISION_FVAR_LINEAR_BOUNDARIES);
subdivision_fvar_interpolation_enum.insert("all", SUBDIVISION_FVAR_LINEAR_ALL);
SOCKET_ENUM(subdivision_fvar_interpolation,
"Subdivision Face-Varying Interpolation",
subdivision_fvar_interpolation_enum,
SUBDIVISION_FVAR_LINEAR_BOUNDARIES);
SOCKET_INT_ARRAY(subd_vert_creases, "Subdivision Vertex Crease", array<int>());
SOCKET_FLOAT_ARRAY(
subd_vert_creases_weight, "Subdivision Vertex Crease Weights", array<float>());
SOCKET_INT_ARRAY(subd_creases_edge, "Subdivision Crease Edges", array<int>());
SOCKET_FLOAT_ARRAY(subd_creases_weight, "Subdivision Crease Weights", array<float>());
SOCKET_INT_ARRAY(subd_face_corners, "Subdivision Face Corners", array<int>());
SOCKET_INT_ARRAY(subd_start_corner, "Subdivision Face Start Corner", array<int>());
SOCKET_INT_ARRAY(subd_num_corners, "Subdivision Face Corner Count", array<int>());
SOCKET_INT_ARRAY(subd_shader, "Subdivision Face Shader", array<int>());
SOCKET_BOOLEAN_ARRAY(subd_smooth, "Subdivision Face Smooth", array<bool>());
SOCKET_INT_ARRAY(subd_ptex_offset, "Subdivision Face PTex Offset", array<int>());
/* Subdivisions parameters */
static NodeEnum subd_adaptive_space_enum;
subd_adaptive_space_enum.insert("pixel", SUBDIVISION_ADAPTIVE_SPACE_PIXEL);
subd_adaptive_space_enum.insert("object", SUBDIVISION_ADAPTIVE_SPACE_OBJECT);
SOCKET_ENUM(subd_adaptive_space,
"Subdivision Adaptive Space",
subd_adaptive_space_enum,
SUBDIVISION_ADAPTIVE_SPACE_PIXEL);
SOCKET_FLOAT(subd_dicing_rate, "Subdivision Dicing Rate", 1.0f)
SOCKET_INT(subd_max_level, "Max Subdivision Level", 1);
SOCKET_TRANSFORM(subd_objecttoworld, "Subdivision Object Transform", transform_identity());
return type;
}
bool Mesh::need_tesselation()
{
return (subdivision_type != SUBDIVISION_NONE) &&
(verts_is_modified() || subd_dicing_rate_is_modified() ||
subd_adaptive_space_is_modified() || subd_objecttoworld_is_modified() ||
subd_max_level_is_modified());
}
Mesh::Mesh(const NodeType *node_type, Type geom_type_)
: Geometry(node_type, geom_type_), subd_attributes(this, ATTR_PRIM_SUBD)
{
vert_offset = 0;
face_offset = 0;
corner_offset = 0;
num_subd_added_verts = 0;
num_subd_faces = 0;
subdivision_type = SUBDIVISION_NONE;
}
Mesh::Mesh() : Mesh(get_node_type(), Geometry::MESH) {}
void Mesh::resize_mesh(const int numverts, const int numtris)
{
verts.resize(numverts);
triangles.resize(numtris * 3);
shader.resize(numtris);
smooth.resize(numtris);
attributes.resize();
}
void Mesh::reserve_mesh(const int numverts, const int numtris)
{
/* reserve space to add verts and triangles later */
verts.reserve(numverts);
triangles.reserve(numtris * 3);
shader.reserve(numtris);
smooth.reserve(numtris);
attributes.resize(true);
}
void Mesh::resize_subd_faces(const int numfaces, const int numcorners)
{
subd_start_corner.resize(numfaces);
subd_num_corners.resize(numfaces);
subd_shader.resize(numfaces);
subd_smooth.resize(numfaces);
subd_ptex_offset.resize(numfaces);
subd_face_corners.resize(numcorners);
num_subd_faces = numfaces;
subd_attributes.resize();
}
void Mesh::reserve_subd_faces(const int numfaces, const int numcorners)
{
subd_start_corner.reserve(numfaces);
subd_num_corners.reserve(numfaces);
subd_shader.reserve(numfaces);
subd_smooth.reserve(numfaces);
subd_ptex_offset.reserve(numfaces);
subd_face_corners.reserve(numcorners);
num_subd_faces = numfaces;
subd_attributes.resize(true);
}
void Mesh::reserve_subd_creases(const size_t num_creases)
{
subd_creases_edge.reserve(num_creases * 2);
subd_creases_weight.reserve(num_creases);
}
void Mesh::clear_non_sockets()
{
Geometry::clear(true);
num_subd_added_verts = 0;
num_subd_faces = 0;
}
void Mesh::clear(bool preserve_shaders, bool preserve_voxel_data)
{
Geometry::clear(preserve_shaders);
/* clear all verts and triangles */
verts.clear();
triangles.clear();
shader.clear();
smooth.clear();
subd_start_corner.clear();
subd_num_corners.clear();
subd_shader.clear();
subd_smooth.clear();
subd_ptex_offset.clear();
subd_face_corners.clear();
subd_creases_edge.clear();
subd_creases_weight.clear();
subd_attributes.clear();
attributes.clear(preserve_voxel_data);
subdivision_type = SubdivisionType::SUBDIVISION_NONE;
clear_non_sockets();
}
void Mesh::clear(bool preserve_shaders)
{
clear(preserve_shaders, false);
}
void Mesh::add_vertex(const float3 P)
{
verts.push_back_reserved(P);
tag_verts_modified();
}
void Mesh::add_vertex_slow(const float3 P)
{
verts.push_back_slow(P);
tag_verts_modified();
}
void Mesh::add_triangle(const int v0, const int v1, const int v2, const int shader_, bool smooth_)
{
triangles.push_back_reserved(v0);
triangles.push_back_reserved(v1);
triangles.push_back_reserved(v2);
shader.push_back_reserved(shader_);
smooth.push_back_reserved(smooth_);
tag_triangles_modified();
tag_shader_modified();
tag_smooth_modified();
}
void Mesh::add_subd_face(const int *corners,
const int num_corners,
const int shader_,
bool smooth_)
{
const int start_corner = subd_face_corners.size();
for (int i = 0; i < num_corners; i++) {
subd_face_corners.push_back_reserved(corners[i]);
}
int ptex_offset = 0;
// cannot use get_num_subd_faces here as it holds the total number of subd_faces, but we do not
// have the total amount of data yet
if (subd_shader.size()) {
const SubdFace s = get_subd_face(subd_shader.size() - 1);
ptex_offset = s.ptex_offset + s.num_ptex_faces();
}
subd_start_corner.push_back_reserved(start_corner);
subd_num_corners.push_back_reserved(num_corners);
subd_shader.push_back_reserved(shader_);
subd_smooth.push_back_reserved(smooth_);
subd_ptex_offset.push_back_reserved(ptex_offset);
tag_subd_face_corners_modified();
tag_subd_start_corner_modified();
tag_subd_num_corners_modified();
tag_subd_shader_modified();
tag_subd_smooth_modified();
tag_subd_ptex_offset_modified();
}
Mesh::SubdFace Mesh::get_subd_face(const size_t index) const
{
Mesh::SubdFace s;
s.shader = subd_shader[index];
s.num_corners = subd_num_corners[index];
s.smooth = subd_smooth[index];
s.ptex_offset = subd_ptex_offset[index];
s.start_corner = subd_start_corner[index];
return s;
}
void Mesh::add_edge_crease(const int v0, const int v1, const float weight)
{
subd_creases_edge.push_back_slow(v0);
subd_creases_edge.push_back_slow(v1);
subd_creases_weight.push_back_slow(weight);
tag_subd_creases_edge_modified();
tag_subd_creases_edge_modified();
tag_subd_creases_weight_modified();
}
void Mesh::add_vertex_crease(const int v, const float weight)
{
subd_vert_creases.push_back_slow(v);
subd_vert_creases_weight.push_back_slow(weight);
tag_subd_vert_creases_modified();
tag_subd_vert_creases_weight_modified();
}
void Mesh::copy_center_to_motion_step(const int motion_step)
{
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr_mP) {
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
Attribute *attr_N = attributes.find(ATTR_STD_VERTEX_NORMAL);
float3 *P = verts.data();
float3 *N = (attr_N) ? attr_N->data_float3() : nullptr;
const size_t numverts = verts.size();
std::copy_n(P, numverts, attr_mP->data_float3() + motion_step * numverts);
if (attr_mN) {
std::copy_n(N, numverts, attr_mN->data_float3() + motion_step * numverts);
}
}
}
void Mesh::get_uv_tiles(ustring map, unordered_set<int> &tiles)
{
Attribute *attr;
Attribute *subd_attr;
if (map.empty()) {
attr = attributes.find(ATTR_STD_UV);
subd_attr = subd_attributes.find(ATTR_STD_UV);
}
else {
attr = attributes.find(map);
subd_attr = subd_attributes.find(map);
}
if (attr) {
attr->get_uv_tiles(this, ATTR_PRIM_GEOMETRY, tiles);
}
if (subd_attr) {
subd_attr->get_uv_tiles(this, ATTR_PRIM_SUBD, tiles);
}
}
void Mesh::compute_bounds()
{
BoundBox bnds = BoundBox::empty;
const size_t verts_size = verts.size();
if (verts_size > 0) {
for (size_t i = 0; i < verts_size; i++) {
bnds.grow(verts[i]);
}
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (use_motion_blur && attr) {
const size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++) {
bnds.grow(vert_steps[i]);
}
}
if (!bnds.valid()) {
bnds = BoundBox::empty;
/* skip nan or inf coordinates */
for (size_t i = 0; i < verts_size; i++) {
bnds.grow_safe(verts[i]);
}
if (use_motion_blur && attr) {
const size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++) {
bnds.grow_safe(vert_steps[i]);
}
}
}
}
if (!bnds.valid()) {
/* empty mesh */
bnds.grow(zero_float3());
}
bounds = bnds;
}
void Mesh::apply_transform(const Transform &tfm, const bool apply_to_motion)
{
transform_normal = transform_transposed_inverse(tfm);
/* apply to mesh vertices */
const size_t num_verts = verts.size();
for (size_t i = 0; i < num_verts; i++) {
verts[i] = transform_point(&tfm, verts[i]);
}
tag_verts_modified();
if (apply_to_motion) {
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (attr) {
const size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++) {
vert_steps[i] = transform_point(&tfm, vert_steps[i]);
}
}
Attribute *attr_N = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if (attr_N) {
const Transform ntfm = transform_normal;
const size_t steps_size = verts.size() * (motion_steps - 1);
float3 *normal_steps = attr_N->data_float3();
for (size_t i = 0; i < steps_size; i++) {
normal_steps[i] = normalize(transform_direction(&ntfm, normal_steps[i]));
}
}
}
}
void Mesh::add_vertex_normals()
{
const bool flip = transform_negative_scaled;
const size_t verts_size = verts.size();
const size_t triangles_size = num_triangles();
/* static vertex normals */
if (!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) {
/* get attributes */
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *verts_ptr = verts.data();
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
std::fill_n(vN, verts.size(), zero_float3());
for (size_t i = 0; i < triangles_size; i++) {
const float3 fN = get_triangle(i).compute_normal(verts_ptr);
for (size_t j = 0; j < 3; j++) {
vN[get_triangle(i).v[j]] += fN;
}
}
if (flip) {
for (size_t i = 0; i < verts_size; i++) {
vN[i] = -normalize(vN[i]);
}
}
else {
for (size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
}
}
}
/* motion vertex normals */
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if (has_motion_blur() && attr_mP && !attr_mN && triangles_size) {
/* create attribute */
attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
for (int step = 0; step < motion_steps - 1; step++) {
float3 *mP = attr_mP->data_float3() + step * verts.size();
float3 *mN = attr_mN->data_float3() + step * verts.size();
/* compute */
std::fill_n(mN, verts.size(), zero_float3());
for (size_t i = 0; i < triangles_size; i++) {
const Triangle tri = get_triangle(i);
const float3 fN = tri.compute_normal(mP);
for (size_t j = 0; j < 3; j++) {
mN[tri.v[j]] += fN;
}
}
if (flip) {
for (size_t i = 0; i < verts_size; i++) {
mN[i] = -normalize(mN[i]);
}
}
else {
for (size_t i = 0; i < verts_size; i++) {
mN[i] = normalize(mN[i]);
}
}
}
}
/* subd vertex normals */
if (!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && get_num_subd_faces()) {
/* get attributes */
Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
std::fill_n(vN, verts.size(), zero_float3());
for (size_t i = 0; i < get_num_subd_faces(); i++) {
const SubdFace face = get_subd_face(i);
const float3 fN = face.normal(this);
for (size_t j = 0; j < face.num_corners; j++) {
const size_t corner = subd_face_corners[face.start_corner + j];
vN[corner] += fN;
}
}
if (flip) {
for (size_t i = 0; i < verts_size; i++) {
vN[i] = -normalize(vN[i]);
}
}
else {
for (size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
}
}
}
}
void Mesh::add_undisplaced(Scene *scene)
{
if (need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED) &&
!attributes.find(ATTR_STD_POSITION_UNDISPLACED))
{
/* Copy position to attribute. */
Attribute *attr = attributes.add(ATTR_STD_POSITION_UNDISPLACED);
size_t size = attr->buffer_size(this, ATTR_PRIM_GEOMETRY) / sizeof(float3);
std::copy_n(verts.data(), size, attr->data_float3());
}
if (need_attribute(scene, ATTR_STD_NORMAL_UNDISPLACED) &&
!attributes.find(ATTR_STD_NORMAL_UNDISPLACED))
{
/* Copy vertex normal to attribute */
Attribute *attr_N = attributes.find(ATTR_STD_VERTEX_NORMAL);
if (attr_N) {
Attribute *attr = attributes.add(ATTR_STD_NORMAL_UNDISPLACED);
size_t size = attr->buffer_size(this, ATTR_PRIM_GEOMETRY) / sizeof(float3);
std::copy_n(attr_N->data_float3(), size, attr->data_float3());
}
}
}
void Mesh::update_generated(Scene *scene)
{
if (!num_triangles()) {
return;
}
AttributeSet &attrs = num_subd_faces ? subd_attributes : attributes;
/* apply generated attributes if needed or missing */
if (need_attribute(scene, ATTR_STD_GENERATED) && !attrs.find(ATTR_STD_GENERATED)) {
const size_t verts_size = verts.size();
Attribute *attr_generated = attrs.add(ATTR_STD_GENERATED);
float3 *generated = attr_generated->data_float3();
for (size_t i = 0; i < verts_size; ++i) {
generated[i] = verts[i];
}
}
}
void Mesh::update_tangents(Scene *scene, bool undisplaced)
{
if (!num_triangles()) {
return;
}
assert(attributes.find(ATTR_STD_VERTEX_NORMAL));
ccl::set<ustring> uv_maps;
Attribute *attr_std_uv = attributes.find(ATTR_STD_UV);
AttributeStandard tangent_std = (undisplaced) ? ATTR_STD_UV_TANGENT_UNDISPLACED :
ATTR_STD_UV_TANGENT;
AttributeStandard tangent_sign_std = (undisplaced) ? ATTR_STD_UV_TANGENT_SIGN_UNDISPLACED :
ATTR_STD_UV_TANGENT_SIGN;
const char *tangent_postfix = (undisplaced) ? ".undisplaced_tangent" : ".tangent";
const char *tangent_sign_postfix = (undisplaced) ? ".undisplaced_tangent_sign" : ".tangent_sign";
/* standard UVs */
if (need_attribute(scene, tangent_std) && !attributes.find(tangent_std)) {
mikk_compute_tangents(attr_std_uv,
this,
true,
tangent_std,
tangent_sign_std,
tangent_postfix,
tangent_sign_postfix); /* sign */
}
/* now generate for any other UVs requested */
for (Attribute &attr : attributes.attributes) {
if (!(attr.type == TypeFloat2 && attr.element == ATTR_ELEMENT_CORNER)) {
continue;
}
const ustring tangent_name = ustring(attr.name.string() + tangent_postfix);
if (need_attribute(scene, tangent_name) && !attributes.find(tangent_name)) {
mikk_compute_tangents(&attr,
this,
true,
tangent_std,
tangent_sign_std,
tangent_postfix,
tangent_sign_postfix); /* sign */
}
}
}
void Mesh::pack_shaders(Scene *scene, uint *tri_shader)
{
uint shader_id = 0;
uint last_shader = -1;
bool last_smooth = false;
const size_t triangles_size = num_triangles();
const int *shader_ptr = shader.data();
const bool *smooth_ptr = smooth.data();
for (size_t i = 0; i < triangles_size; i++) {
const int new_shader = shader_ptr ? shader_ptr[i] : INT_MAX;
const bool new_smooth = smooth_ptr ? smooth_ptr[i] : false;
if (new_shader != last_shader || last_smooth != new_smooth) {
last_shader = new_shader;
last_smooth = new_smooth;
Shader *shader = (last_shader < used_shaders.size()) ?
static_cast<Shader *>(used_shaders[last_shader]) :
scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, last_smooth);
}
tri_shader[i] = shader_id;
}
}
void Mesh::pack_normals(packed_float3 *vnormal)
{
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
if (attr_vN == nullptr) {
/* Happens on objects with just hair. */
return;
}
const bool do_transform = transform_applied;
const Transform ntfm = transform_normal;
float3 *vN = attr_vN->data_float3();
const size_t verts_size = verts.size();
if (do_transform) {
for (size_t i = 0; i < verts_size; i++) {
vnormal[i] = safe_normalize(transform_direction(&ntfm, vN[i]));
}
}
else {
for (size_t i = 0; i < verts_size; i++) {
vnormal[i] = vN[i];
}
}
}
void Mesh::pack_verts(packed_float3 *tri_verts, packed_uint3 *tri_vindex)
{
const size_t verts_size = verts.size();
const size_t triangles_size = num_triangles();
const int *p_tris = triangles.data();
int off = 0;
for (size_t i = 0; i < verts_size; i++) {
tri_verts[i] = verts[i];
}
for (size_t i = 0; i < triangles_size; i++) {
tri_vindex[i] = make_packed_uint3(p_tris[off + 0] + vert_offset,
p_tris[off + 1] + vert_offset,
p_tris[off + 2] + vert_offset);
off += 3;
}
}
bool Mesh::has_motion_blur() const
{
return use_motion_blur && (attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
(get_subdivision_type() != Mesh::SUBDIVISION_NONE &&
subd_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
}
PrimitiveType Mesh::primitive_type() const
{
return has_motion_blur() ? PRIMITIVE_MOTION_TRIANGLE : PRIMITIVE_TRIANGLE;
}
CCL_NAMESPACE_END