Files
test/intern/cycles/util/simd.h

485 lines
12 KiB
C++

/* SPDX-FileCopyrightText: 2011-2013 Intel Corporation
* SPDX-FileCopyrightText: 2014-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#pragma once
#include <cstdint>
#include <limits>
#include "util/defines.h"
/* SSE Intrinsics includes
*
* We assume __KERNEL_SSEX__ flags to have been defined at this point.
*
* MinGW64 has conflicting declarations for these SSE headers in <windows.h>.
* Since we can't avoid including <windows.h>, better only include that */
#if defined(FREE_WINDOWS64)
# include "util/windows.h"
#elif defined(_MSC_VER) && !defined(__KERNEL_NEON__)
# include <intrin.h>
#elif (defined(__x86_64__) || defined(__i386__))
# include <x86intrin.h>
#elif defined(__KERNEL_NEON__)
# define SSE2NEON_PRECISE_MINMAX 1
# include <sse2neon.h>
#endif
/* Floating Point Control, for Embree. */
#if defined(__x86_64__) || defined(_M_X64)
# define SIMD_SET_FLUSH_TO_ZERO \
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); \
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
#elif defined(__aarch64__) || defined(_M_ARM64)
/* The get/set denormals to zero was implemented in sse2neon v1.5.0.
* Keep the compatibility code until the minimum library version is increased. */
# if defined(_MM_SET_FLUSH_ZERO_MODE)
# define SIMD_SET_FLUSH_TO_ZERO \
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); \
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
# elif !defined(_M_ARM64)
# define _MM_FLUSH_ZERO_ON 24
# define __get_fpcr(__fpcr) __asm__ __volatile__("mrs %0,fpcr" : "=r"(__fpcr))
# define __set_fpcr(__fpcr) __asm__ __volatile__("msr fpcr,%0" : : "ri"(__fpcr))
# define SIMD_SET_FLUSH_TO_ZERO set_fz(_MM_FLUSH_ZERO_ON);
# define SIMD_GET_FLUSH_TO_ZERO get_fz(_MM_FLUSH_ZERO_ON)
# else
# define _MM_FLUSH_ZERO_ON 24
# define __get_fpcr(__fpcr) _ReadStatusReg(__fpcr)
# define __set_fpcr(__fpcr) _WriteStatusReg(0x5A20, __fpcr)
# define SIMD_SET_FLUSH_TO_ZERO set_fz(_MM_FLUSH_ZERO_ON);
# define SIMD_GET_FLUSH_TO_ZERO get_fz(_MM_FLUSH_ZERO_ON)
# endif
#else
# define SIMD_SET_FLUSH_TO_ZERO
#endif
CCL_NAMESPACE_BEGIN
/* Data structures used by SSE classes. */
#ifdef __KERNEL_SSE2__
extern const __m128 _mm_lookupmask_ps[16];
static struct TrueTy {
__forceinline operator bool() const
{
return true;
}
} True ccl_attr_maybe_unused;
static struct FalseTy {
__forceinline operator bool() const
{
return false;
}
} False ccl_attr_maybe_unused;
static struct ZeroTy {
__forceinline operator float() const
{
return 0;
}
__forceinline operator int() const
{
return 0;
}
} zero ccl_attr_maybe_unused;
static struct OneTy {
__forceinline operator float() const
{
return 1;
}
__forceinline operator int() const
{
return 1;
}
} one ccl_attr_maybe_unused;
static struct NegInfTy {
__forceinline operator float() const
{
return -std::numeric_limits<float>::infinity();
}
__forceinline operator int() const
{
return std::numeric_limits<int>::min();
}
} neg_inf ccl_attr_maybe_unused;
static struct PosInfTy {
__forceinline operator float() const
{
return std::numeric_limits<float>::infinity();
}
__forceinline operator int() const
{
return std::numeric_limits<int>::max();
}
} inf ccl_attr_maybe_unused, pos_inf ccl_attr_maybe_unused;
static struct StepTy {
} step ccl_attr_maybe_unused;
#endif
#if (defined(__aarch64__) || defined(_M_ARM64)) && !defined(_MM_SET_FLUSH_ZERO_MODE)
__forceinline int set_fz(const uint32_t flag)
{
uint64_t old_fpcr;
uint64_t new_fpcr;
__get_fpcr(old_fpcr);
new_fpcr = old_fpcr | (1ULL << flag);
__set_fpcr(new_fpcr);
__get_fpcr(old_fpcr);
return old_fpcr == new_fpcr;
}
__forceinline int get_fz(const uint32_t flag)
{
uint64_t cur_fpcr;
__get_fpcr(cur_fpcr);
return (cur_fpcr & (1ULL << flag)) > 0 ? 1 : 0;
}
#endif
/* Utilities used by Neon */
#if defined(__KERNEL_NEON__)
template<class type, const int i0, const int i1, const int i2, const int i3>
type shuffle_neon(const type &a)
{
if (i0 == i1 && i0 == i2 && i0 == i3) {
return type(vdupq_laneq_s32(int32x4_t(a), i0));
}
static const uint8_t tbl[16] = {(i0 * 4) + 0,
(i0 * 4) + 1,
(i0 * 4) + 2,
(i0 * 4) + 3,
(i1 * 4) + 0,
(i1 * 4) + 1,
(i1 * 4) + 2,
(i1 * 4) + 3,
(i2 * 4) + 0,
(i2 * 4) + 1,
(i2 * 4) + 2,
(i2 * 4) + 3,
(i3 * 4) + 0,
(i3 * 4) + 1,
(i3 * 4) + 2,
(i3 * 4) + 3};
return type(vqtbl1q_s8(int8x16_t(a), *(uint8x16_t *)tbl));
}
template<class type, const int i0, const int i1, const int i2, const int i3>
type shuffle_neon(const type &a, const type &b)
{
if (&a == &b) {
static const uint8_t tbl[16] = {(i0 * 4) + 0,
(i0 * 4) + 1,
(i0 * 4) + 2,
(i0 * 4) + 3,
(i1 * 4) + 0,
(i1 * 4) + 1,
(i1 * 4) + 2,
(i1 * 4) + 3,
(i2 * 4) + 0,
(i2 * 4) + 1,
(i2 * 4) + 2,
(i2 * 4) + 3,
(i3 * 4) + 0,
(i3 * 4) + 1,
(i3 * 4) + 2,
(i3 * 4) + 3};
return type(vqtbl1q_s8(int8x16_t(b), *(uint8x16_t *)tbl));
}
else {
static const uint8_t tbl[16] = {(i0 * 4) + 0,
(i0 * 4) + 1,
(i0 * 4) + 2,
(i0 * 4) + 3,
(i1 * 4) + 0,
(i1 * 4) + 1,
(i1 * 4) + 2,
(i1 * 4) + 3,
(i2 * 4) + 0 + 16,
(i2 * 4) + 1 + 16,
(i2 * 4) + 2 + 16,
(i2 * 4) + 3 + 16,
(i3 * 4) + 0 + 16,
(i3 * 4) + 1 + 16,
(i3 * 4) + 2 + 16,
(i3 * 4) + 3 + 16};
/* NOTE: This cannot all be put in a single line due to how MSVC ARM64
* implements the function calls as several layers of macros. */
int8x16x2_t t = {int8x16_t(a), int8x16_t(b)};
uint8x16_t idx = *(uint8x16_t *)tbl;
return type(vqtbl2q_s8(t, idx));
}
}
#endif /* __KERNEL_NEON */
/* Intrinsics Functions
*
* For fast bit operations. */
#if defined(__BMI__) && defined(__GNUC__)
# ifndef _tzcnt_u32
# define _tzcnt_u32 __tzcnt_u32
# endif
# ifndef _tzcnt_u64
# define _tzcnt_u64 __tzcnt_u64
# endif
#endif
#if defined(__LZCNT__)
# define _lzcnt_u32 __lzcnt32
# define _lzcnt_u64 __lzcnt64
#endif
#if defined(_WIN32) && !defined(__MINGW32__) && !defined(__clang__)
/* Intrinsic functions on Windows. */
__forceinline uint32_t __bsf(const uint32_t v)
{
# if defined(__KERNEL_AVX2__)
return _tzcnt_u32(v);
# else
unsigned long r = 0;
_BitScanForward(&r, v);
return r;
# endif
}
__forceinline uint32_t __bsr(const uint32_t v)
{
unsigned long r = 0;
_BitScanReverse(&r, v);
return r;
}
__forceinline uint32_t __btc(const uint32_t v, const uint32_t i)
{
long r = v;
_bittestandcomplement(&r, i);
return r;
}
__forceinline uint32_t bitscan(const uint32_t v)
{
# if defined(__KERNEL_AVX2__)
return _tzcnt_u32(v);
# else
return __bsf(v);
# endif
}
# if defined(__KERNEL_64_BIT__)
__forceinline uint64_t __bsf(const uint64_t v)
{
# if defined(__KERNEL_AVX2__)
return _tzcnt_u64(v);
# else
unsigned long r = 0;
_BitScanForward64(&r, v);
return r;
# endif
}
__forceinline uint64_t __bsr(const uint64_t v)
{
unsigned long r = 0;
_BitScanReverse64(&r, v);
return r;
}
__forceinline uint64_t __btc(const uint64_t v, const uint64_t i)
{
uint64_t r = v;
_bittestandcomplement64((__int64 *)&r, i);
return r;
}
__forceinline uint64_t bitscan(const uint64_t v)
{
# if defined(__KERNEL_AVX2__)
# if defined(__KERNEL_64_BIT__)
return _tzcnt_u64(v);
# else
return _tzcnt_u32(v);
# endif
# else
return __bsf(v);
# endif
}
# endif /* __KERNEL_64_BIT__ */
#elif (defined(__x86_64__) || defined(__i386__)) && defined(__KERNEL_SSE2__)
/* Intrinsic functions with x86 SSE. */
__forceinline uint32_t __bsf(const uint32_t v)
{
uint32_t r = 0;
asm("bsf %1,%0" : "=r"(r) : "r"(v));
return r;
}
__forceinline uint32_t __bsr(const uint32_t v)
{
uint32_t r = 0;
asm("bsr %1,%0" : "=r"(r) : "r"(v));
return r;
}
__forceinline uint32_t __btc(const uint32_t v, const uint32_t i)
{
uint32_t r = 0;
asm("btc %1,%0" : "=r"(r) : "r"(i), "0"(v) : "flags");
return r;
}
# if (defined(__KERNEL_64_BIT__) || defined(__APPLE__)) && \
!(defined(__ILP32__) && defined(__x86_64__))
__forceinline uint64_t __bsf(const uint64_t v)
{
uint64_t r = 0;
asm("bsf %1,%0" : "=r"(r) : "r"(v));
return r;
}
# endif
__forceinline uint64_t __bsr(const uint64_t v)
{
uint64_t r = 0;
asm("bsr %1,%0" : "=r"(r) : "r"(v));
return r;
}
__forceinline uint64_t __btc(const uint64_t v, const uint64_t i)
{
uint64_t r = 0;
asm("btc %1,%0" : "=r"(r) : "r"(i), "0"(v) : "flags");
return r;
}
__forceinline uint32_t bitscan(const uint32_t v)
{
# if defined(__KERNEL_AVX2__)
return _tzcnt_u32(v);
# else
return __bsf(v);
# endif
}
# if (defined(__KERNEL_64_BIT__) || defined(__APPLE__)) && \
!(defined(__ILP32__) && defined(__x86_64__))
__forceinline uint64_t bitscan(const uint64_t v)
{
# if defined(__KERNEL_AVX2__)
# if defined(__KERNEL_64_BIT__)
return _tzcnt_u64(v);
# else
return _tzcnt_u32(v);
# endif
# else
return __bsf(v);
# endif
}
# endif
#else
/* Intrinsic functions fallback for arbitrary processor. */
__forceinline uint32_t __bsf(const uint32_t x)
{
for (int i = 0; i < 32; i++) {
if (x & (1U << i)) {
return i;
}
}
return 32;
}
__forceinline uint32_t __bsr(const uint32_t x)
{
for (int i = 0; i < 32; i++) {
if (x & (1U << (31 - i))) {
return (31 - i);
}
}
return 32;
}
__forceinline uint32_t __btc(const uint32_t x, const uint32_t bit)
{
const uint32_t mask = 1U << bit;
return x & (~mask);
}
__forceinline uint32_t __bsf(const uint64_t x)
{
for (int i = 0; i < 64; i++) {
if (x & (1UL << i)) {
return i;
}
}
return 64;
}
__forceinline uint32_t __bsr(const uint64_t x)
{
for (int i = 0; i < 64; i++) {
if (x & (1UL << (63 - i))) {
return (63 - i);
}
}
return 64;
}
__forceinline uint64_t __btc(const uint64_t x, const uint32_t bit)
{
const uint64_t mask = 1UL << bit;
return x & (~mask);
}
__forceinline uint32_t bitscan(const uint32_t value)
{
assert(value != 0);
uint32_t bit = 0;
while ((value & (1 << bit)) == 0) {
++bit;
}
return bit;
}
__forceinline uint64_t bitscan(const uint64_t value)
{
assert(value != 0);
uint64_t bit = 0;
while ((value & (1 << bit)) == 0) {
++bit;
}
return bit;
}
#endif /* Intrinsics */
/* Older GCC versions do not have _mm256_cvtss_f32 yet, so define it ourselves.
* _mm256_castps256_ps128 generates no instructions so this is just as efficient. */
#if defined(__KERNEL_AVX__) || defined(__KERNEL_AVX2__)
# undef _mm256_cvtss_f32
# define _mm256_cvtss_f32(a) (_mm_cvtss_f32(_mm256_castps256_ps128(a)))
#endif
/* quiet unused define warnings */
#if defined(__KERNEL_SSE2__) || defined(__KERNEL_SSE3__) || defined(__KERNEL_SSSE3__) || \
defined(__KERNEL_SSE42__) || defined(__KERNEL_AVX__) || defined(__KERNEL_AVX2__)
/* do nothing */
#endif
CCL_NAMESPACE_END