Files
test/source/blender/blenlib/BLI_span.hh
Hans Goudey 91803e130f Cleanup: Grammar: Fix uses of "for e.g."
e.g. stands for "exempli gratia" in Latin which means "for example".
The best way to make sure it makes sense when writing is to just expand
it to "for example". In these cases where the text was "for e.g.", that
leaves us with "for for example" which makes no sense. This commit fixes
all 110 cases, mostly just just replacing the words with "for example",
but also restructuring the text a bit more in a few cases, mostly by
moving "e.g." to the beginning of a list in parentheses.

Pull Request: https://projects.blender.org/blender/blender/pulls/139596
2025-05-29 21:21:18 +02:00

758 lines
21 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup bli
*
* An `blender::Span<T>` references an array that is owned by someone else. It is just a
* pointer and a size. Since the memory is not owned, Span should not be used to transfer
* ownership. The array cannot be modified through the Span. However, if T is a non-const
* pointer, the pointed-to elements can be modified.
*
* There is also `blender::MutableSpan<T>`. It is mostly the same as Span, but allows the
* array to be modified.
*
* A (Mutable)Span can refer to data owned by many different data structures including
* blender::Vector, blender::Array, blender::VectorSet, std::vector, std::array, std::string,
* std::initializer_list and c-style array.
*
* `blender::Span` is very similar to `std::span` (C++20). However, there are a few differences:
* - `blender::Span` is const by default. This is to avoid making things mutable when they don't
* have to be. To get a non-const span, you need to use `blender::MutableSpan`. Below is a list
* of const-behavior-equivalent pairs of data structures:
* - std::span<int> <==> blender::MutableSpan<int>
* - std::span<const int> <==> blender::Span<int>
* - std::span<int *> <==> blender::MutableSpan<int *>
* - std::span<const int *> <==> blender::MutableSpan<const int *>
* - std::span<int * const> <==> blender::Span<int *>
* - std::span<const int * const> <==> blender::Span<const int *>
* - `blender::Span` always has a dynamic extent, while `std::span` can have a size that is
* determined at compile time. I did not have a use case for that yet. If we need it, we can
* decide to add this functionality to `blender::Span` or introduce a new type like
* `blender::FixedSpan<T, N>`.
*
* `blender::Span<T>` should be your default choice when you have to pass a read-only array
* into a function. It is better than passing a `const Vector &`, because e.g. then the function
* only works for vectors and not arrays. Using Span as function parameter makes it usable in more
* contexts, better expresses the intent and does not sacrifice performance. It is also better than
* passing a raw pointer and size separately, because it is more convenient and safe.
*
* `blender::MutableSpan<T>` can be used when a function is supposed to return an array, the
* size of which is known before the function is called. One advantage of this approach is that the
* caller is responsible for allocation and deallocation. Furthermore, the function can focus on
* its task, without having to worry about memory allocation. Alternatively, a function could
* return an Array or Vector.
*
* NOTE: When a function has a MutableSpan<T> output parameter and T is not a trivial type,
* then the function has to specify whether the referenced array is expected to be initialized or
* not.
*
* Since the arrays are only referenced, it is generally unsafe to store a Span. When you
* store one, you should know who owns the memory.
*
* Instances of Span and MutableSpan are small and should be passed by value.
*/
#include <algorithm>
#include <array>
#include <vector>
#include "BLI_hash_fwd.hh"
#include "BLI_index_range.hh"
#include "BLI_memory_utils.hh"
#include "BLI_utildefines.h"
namespace blender {
/**
* References an array of type T that is owned by someone else. The data in the array cannot be
* modified.
*/
template<typename T> class Span {
public:
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using iterator = const T *;
using size_type = int64_t;
protected:
const T *data_ = nullptr;
int64_t size_ = 0;
public:
/**
* Create a reference to an empty array.
*/
constexpr Span() = default;
constexpr Span(const T *start, int64_t size) : data_(start), size_(size)
{
BLI_assert(size >= 0);
}
template<typename U, BLI_ENABLE_IF((is_span_convertible_pointer_v<U, T>))>
constexpr Span(const U *start, int64_t size) : data_(static_cast<const T *>(start)), size_(size)
{
BLI_assert(size >= 0);
}
/**
* Reference an initializer_list. Note that the data in the initializer_list is only valid until
* the expression containing it is fully computed.
*
* Do:
* call_function_with_array({1, 2, 3, 4});
*
* Don't:
* Span<int> span = {1, 2, 3, 4};
* call_function_with_array(span);
*/
constexpr Span(const std::initializer_list<T> &list) : Span(list.begin(), int64_t(list.size()))
{
}
constexpr Span(const std::vector<T> &vector) : Span(vector.data(), int64_t(vector.size())) {}
template<std::size_t N> constexpr Span(const std::array<T, N> &array) : Span(array.data(), N) {}
/**
* Support implicit conversions like the one below:
* Span<T *> -> Span<const T *>
*/
template<typename U, BLI_ENABLE_IF((is_span_convertible_pointer_v<U, T>))>
constexpr Span(Span<U> span) : data_(static_cast<const T *>(span.data())), size_(span.size())
{
}
/**
* Returns a contiguous part of the array. This invokes undefined behavior when the start or size
* is negative.
*/
constexpr Span slice(int64_t start, int64_t size) const
{
BLI_assert(start >= 0);
BLI_assert(size >= 0);
BLI_assert(start + size <= size_ || size == 0);
return Span(data_ + start, size);
}
constexpr Span slice(IndexRange range) const
{
return this->slice(range.start(), range.size());
}
/**
* Returns a contiguous part of the array. This invokes undefined behavior when the start or size
* is negative. Clamps the size of the new span so it fits in the current one.
*/
constexpr Span slice_safe(const int64_t start, const int64_t size) const
{
BLI_assert(start >= 0);
BLI_assert(size >= 0);
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
return Span(data_ ? data_ + start : nullptr, new_size);
}
constexpr Span slice_safe(IndexRange range) const
{
return this->slice_safe(range.start(), range.size());
}
/**
* Returns a new Span with n elements removed from the beginning. This invokes undefined
* behavior when n is negative.
*/
constexpr Span drop_front(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return Span(data_ + n, new_size);
}
/**
* Returns a new Span with n elements removed from the end. This invokes undefined behavior when
* n is negative.
*/
constexpr Span drop_back(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return Span(data_, new_size);
}
/**
* Returns a new Span that only contains the first n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr Span take_front(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return Span(data_, new_size);
}
/**
* Returns a new Span that only contains the last n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr Span take_back(int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return Span(data_ + size_ - new_size, new_size);
}
/**
* Returns the pointer to the beginning of the referenced array. This may be nullptr when the
* size is zero.
*/
constexpr const T *data() const
{
return data_;
}
constexpr const T *begin() const
{
return data_;
}
constexpr const T *end() const
{
return data_ + size_;
}
constexpr std::reverse_iterator<const T *> rbegin() const
{
return std::reverse_iterator<const T *>(this->end());
}
constexpr std::reverse_iterator<const T *> rend() const
{
return std::reverse_iterator<const T *>(this->begin());
}
/**
* Access an element in the array. This invokes undefined behavior when the index is out of
* bounds.
*/
constexpr const T &operator[](int64_t index) const
{
BLI_assert(index >= 0);
BLI_assert(index < size_);
return data_[index];
}
/**
* Returns the number of elements in the referenced array.
*/
constexpr int64_t size() const
{
return size_;
}
/**
* Returns true if the size is zero.
*/
constexpr bool is_empty() const
{
return size_ == 0;
}
/**
* Returns the number of bytes referenced by this Span.
*/
constexpr int64_t size_in_bytes() const
{
return sizeof(T) * size_;
}
/**
* Does a linear search to see of the value is in the array.
* Returns true if it is, otherwise false.
*/
constexpr bool contains(const T &value) const
{
for (const T &element : *this) {
if (element == value) {
return true;
}
}
return false;
}
/**
* Does a constant time check to see if the pointer points to a value in the referenced array.
* Return true if it is, otherwise false.
*/
constexpr bool contains_ptr(const T *ptr) const
{
return (this->begin() <= ptr) && (ptr < this->end());
}
/**
* Does a linear search to count how often the value is in the array.
* Returns the number of occurrences.
*/
constexpr int64_t count(const T &value) const
{
int64_t counter = 0;
for (const T &element : *this) {
if (element == value) {
counter++;
}
}
return counter;
}
/**
* Return a reference to the first element in the array. This invokes undefined behavior when the
* array is empty.
*/
constexpr const T &first() const
{
BLI_assert(size_ > 0);
return data_[0];
}
/**
* Returns a reference to the nth last element. This invokes undefined behavior when the span is
* too short.
*/
constexpr const T &last(const int64_t n = 0) const
{
BLI_assert(n >= 0);
BLI_assert(n < size_);
return data_[size_ - 1 - n];
}
/**
* Check if the array contains duplicates. Does a linear search for every element. So the total
* running time is O(n^2). Only use this for small arrays.
*/
constexpr bool has_duplicates__linear_search() const
{
/* The size should really be smaller than that. If it is not, the calling code should be
* changed. */
BLI_assert(size_ < 1000);
for (int64_t i = 0; i < size_; i++) {
const T &value = data_[i];
for (int64_t j = i + 1; j < size_; j++) {
if (value == data_[j]) {
return true;
}
}
}
return false;
}
/**
* Returns true when this and the other array have an element in common. This should only be
* called on small arrays, because it has a running time of O(n*m) where n and m are the sizes of
* the arrays.
*/
constexpr bool intersects__linear_search(Span other) const
{
/* The size should really be smaller than that. If it is not, the calling code should be
* changed. */
BLI_assert(size_ < 1000);
for (int64_t i = 0; i < size_; i++) {
const T &value = data_[i];
if (other.contains(value)) {
return true;
}
}
return false;
}
/**
* Returns the index of the first occurrence of the given value. This invokes undefined behavior
* when the value is not in the array.
*/
constexpr int64_t first_index(const T &search_value) const
{
const int64_t index = this->first_index_try(search_value);
BLI_assert(index >= 0);
return index;
}
/**
* Returns the index of the first occurrence of the given value or -1 if it does not exist.
*/
constexpr int64_t first_index_try(const T &search_value) const
{
for (int64_t i = 0; i < size_; i++) {
if (data_[i] == search_value) {
return i;
}
}
return -1;
}
/**
* Utility to make it more convenient to iterate over all indices that can be used with this
* array.
*/
constexpr IndexRange index_range() const
{
return IndexRange(size_);
}
constexpr uint64_t hash() const
{
uint64_t hash = 0;
for (const T &value : *this) {
hash = hash * 33 ^ get_default_hash(value);
}
return hash;
}
/**
* Returns a new Span to the same underlying memory buffer. No conversions are done.
*/
template<typename NewT> Span<NewT> constexpr cast() const
{
BLI_assert((size_ * sizeof(T)) % sizeof(NewT) == 0);
int64_t new_size = size_ * sizeof(T) / sizeof(NewT);
return Span<NewT>(reinterpret_cast<const NewT *>(data_), new_size);
}
friend bool operator==(const Span<T> a, const Span<T> b)
{
if (a.size() != b.size()) {
return false;
}
return std::equal(a.begin(), a.end(), b.begin());
}
friend bool operator!=(const Span<T> a, const Span<T> b)
{
return !(a == b);
}
};
/**
* Mostly the same as Span, except that one can change the array elements through a
* MutableSpan.
*/
template<typename T> class MutableSpan {
public:
using value_type = T;
using pointer = T *;
using const_pointer = const T *;
using reference = T &;
using const_reference = const T &;
using iterator = T *;
using size_type = int64_t;
protected:
T *data_ = nullptr;
int64_t size_ = 0;
public:
constexpr MutableSpan() = default;
constexpr MutableSpan(T *start, const int64_t size) : data_(start), size_(size) {}
constexpr MutableSpan(std::vector<T> &vector) : MutableSpan(vector.data(), vector.size()) {}
template<std::size_t N>
constexpr MutableSpan(std::array<T, N> &array) : MutableSpan(array.data(), N)
{
}
/**
* Support implicit conversions like the one below:
* MutableSpan<T *> -> MutableSpan<const T *>
*/
template<typename U, BLI_ENABLE_IF((is_span_convertible_pointer_v<U, T>))>
constexpr MutableSpan(MutableSpan<U> span)
: data_(static_cast<T *>(span.data())), size_(span.size())
{
}
constexpr operator Span<T>() const
{
return Span<T>(data_, size_);
}
template<typename U, BLI_ENABLE_IF((is_span_convertible_pointer_v<T, U>))>
constexpr operator Span<U>() const
{
return Span<U>(static_cast<const U *>(data_), size_);
}
/**
* Returns the number of elements in the array.
*/
constexpr int64_t size() const
{
return size_;
}
/**
* Returns the number of bytes referenced by this Span.
*/
constexpr int64_t size_in_bytes() const
{
return sizeof(T) * size_;
}
/**
* Returns true if the size is zero.
*/
constexpr bool is_empty() const
{
return size_ == 0;
}
/**
* Replace all elements in the referenced array with the given value.
*/
constexpr void fill(const T &value) const
{
initialized_fill_n(data_, size_, value);
}
/**
* Replace a subset of all elements with the given value. This invokes undefined behavior when
* one of the indices is out of bounds.
*/
template<typename IndexT> constexpr void fill_indices(Span<IndexT> indices, const T &value) const
{
static_assert(std::is_integral_v<IndexT>);
for (IndexT i : indices) {
BLI_assert(i < size_);
data_[i] = value;
}
}
/**
* Returns a pointer to the beginning of the referenced array. This may be nullptr, when the size
* is zero.
*/
constexpr T *data() const
{
return data_;
}
constexpr T *begin() const
{
return data_;
}
constexpr T *end() const
{
return data_ + size_;
}
constexpr std::reverse_iterator<T *> rbegin() const
{
return std::reverse_iterator<T *>(this->end());
}
constexpr std::reverse_iterator<T *> rend() const
{
return std::reverse_iterator<T *>(this->begin());
}
constexpr T &operator[](const int64_t index) const
{
BLI_assert(index >= 0);
BLI_assert(index < size_);
return data_[index];
}
/**
* Returns a contiguous part of the array. This invokes undefined behavior when the start or size
* is negative.
*/
constexpr MutableSpan slice(const int64_t start, const int64_t size) const
{
BLI_assert(start >= 0);
BLI_assert(size >= 0);
BLI_assert(start + size <= size_ || size == 0);
return MutableSpan(data_ + start, size);
}
constexpr MutableSpan slice(IndexRange range) const
{
return this->slice(range.start(), range.size());
}
/**
* Returns a contiguous part of the array. This invokes undefined behavior when the start or size
* is negative. Clamps the size of the new span so it fits in the current one.
*/
constexpr MutableSpan slice_safe(const int64_t start, const int64_t size) const
{
BLI_assert(start >= 0);
BLI_assert(size >= 0);
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
return MutableSpan(data_ + start, new_size);
}
constexpr MutableSpan slice_safe(IndexRange range) const
{
return this->slice_safe(range.start(), range.size());
}
/**
* Returns a new MutableSpan with n elements removed from the beginning. This invokes
* undefined behavior when n is negative.
*/
constexpr MutableSpan drop_front(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return MutableSpan(data_ + n, new_size);
}
/**
* Returns a new MutableSpan with n elements removed from the end. This invokes undefined
* behavior when n is negative.
*/
constexpr MutableSpan drop_back(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::max<int64_t>(0, size_ - n);
return MutableSpan(data_, new_size);
}
/**
* Returns a new MutableSpan that only contains the first n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr MutableSpan take_front(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return MutableSpan(data_, new_size);
}
/**
* Return a new MutableSpan that only contains the last n elements. This invokes undefined
* behavior when n is negative.
*/
constexpr MutableSpan take_back(const int64_t n) const
{
BLI_assert(n >= 0);
const int64_t new_size = std::min<int64_t>(size_, n);
return MutableSpan(data_ + size_ - new_size, new_size);
}
/**
* Reverse the data in the MutableSpan.
*/
constexpr void reverse() const
{
for (const int i : IndexRange(size_ / 2)) {
std::swap(data_[size_ - 1 - i], data_[i]);
}
}
/**
* Returns an (immutable) Span that references the same array. This is usually not needed,
* due to implicit conversions. However, sometimes automatic type deduction needs some help.
*/
constexpr Span<T> as_span() const
{
return Span<T>(data_, size_);
}
/**
* Utility to make it more convenient to iterate over all indices that can be used with this
* array.
*/
constexpr IndexRange index_range() const
{
return IndexRange(size_);
}
/**
* Return a reference to the first element in the array. This invokes undefined behavior when the
* array is empty.
*/
constexpr T &first() const
{
BLI_assert(size_ > 0);
return data_[0];
}
/**
* Returns a reference to the nth last element. This invokes undefined behavior when the span is
* too short.
*/
constexpr T &last(const int64_t n = 0) const
{
BLI_assert(n >= 0);
BLI_assert(n < size_);
return data_[size_ - 1 - n];
}
/**
* Does a linear search to count how often the value is in the array.
* Returns the number of occurrences.
*/
constexpr int64_t count(const T &value) const
{
int64_t counter = 0;
for (const T &element : *this) {
if (element == value) {
counter++;
}
}
return counter;
}
/**
* Does a linear search to see of the value is in the array.
* Returns true if it is, otherwise false.
*/
constexpr bool contains(const T &value) const
{
for (const T &element : *this) {
if (element == value) {
return true;
}
}
return false;
}
/**
* Does a constant time check to see if the pointer points to a value in the referenced array.
* Return true if it is, otherwise false.
*/
constexpr bool contains_ptr(const T *ptr) const
{
return (this->begin() <= ptr) && (ptr < this->end());
}
/**
* Copy all values from another span into this span. This invokes undefined behavior when the
* destination contains uninitialized data and T is not trivially copy constructible.
* The size of both spans is expected to be the same.
*/
constexpr void copy_from(Span<T> values) const
{
BLI_assert(size_ == values.size());
initialized_copy_n(values.data(), size_, data_);
}
/**
* Returns a new span to the same underlying memory buffer. No conversions are done.
* The caller is responsible for making sure that the type cast is valid.
*/
template<typename NewT> constexpr MutableSpan<NewT> cast() const
{
BLI_assert((size_ * sizeof(T)) % sizeof(NewT) == 0);
int64_t new_size = size_ * sizeof(T) / sizeof(NewT);
return MutableSpan<NewT>(reinterpret_cast<NewT *>(data_), new_size);
}
};
} /* namespace blender */