The goal is to solve confusion of the "All rights reserved" for licensing
code under an open-source license.
The phrase "All rights reserved" comes from a historical convention that
required this phrase for the copyright protection to apply. This convention
is no longer relevant.
However, even though the phrase has no meaning in establishing the copyright
it has not lost meaning in terms of licensing.
This change makes it so code under the Blender Foundation copyright does
not use "all rights reserved". This is also how the GPL license itself
states how to apply it to the source code:
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software ...
This change does not change copyright notice in cases when the copyright
is dual (BF and an author), or just an author of the code. It also does
mot change copyright which is inherited from NaN Holding BV as it needs
some further investigation about what is the proper way to handle it.
235 lines
5.8 KiB
C
235 lines
5.8 KiB
C
/* SPDX-License-Identifier: GPL-2.0-or-later
|
|
* Copyright 2015 Blender Foundation */
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
#include "eigen_capi.h"
|
|
|
|
/********************************** Eigen Solvers *********************************/
|
|
|
|
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3],
|
|
float r_eigen_values[3],
|
|
float r_eigen_vectors[3][3])
|
|
{
|
|
#ifndef NDEBUG
|
|
/* We must assert given matrix is self-adjoint (i.e. symmetric) */
|
|
if ((m3[0][1] != m3[1][0]) || (m3[0][2] != m3[2][0]) || (m3[1][2] != m3[2][1])) {
|
|
BLI_assert(0);
|
|
}
|
|
#endif
|
|
|
|
return EIG_self_adjoint_eigen_solve(
|
|
3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
|
|
}
|
|
|
|
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
|
|
{
|
|
EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
|
|
}
|
|
|
|
/***************************** Simple Solvers ************************************/
|
|
|
|
bool BLI_tridiagonal_solve(
|
|
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
|
|
{
|
|
if (count < 1) {
|
|
return false;
|
|
}
|
|
|
|
size_t bytes = sizeof(double) * (uint)count;
|
|
double *c1 = (double *)MEM_mallocN(bytes * 2, "tridiagonal_c1d1");
|
|
double *d1 = c1 + count;
|
|
|
|
if (!c1) {
|
|
return false;
|
|
}
|
|
|
|
int i;
|
|
double c_prev, d_prev, x_prev;
|
|
|
|
/* forward pass */
|
|
|
|
c1[0] = c_prev = ((double)c[0]) / b[0];
|
|
d1[0] = d_prev = ((double)d[0]) / b[0];
|
|
|
|
for (i = 1; i < count; i++) {
|
|
double denum = b[i] - a[i] * c_prev;
|
|
|
|
c1[i] = c_prev = c[i] / denum;
|
|
d1[i] = d_prev = (d[i] - a[i] * d_prev) / denum;
|
|
}
|
|
|
|
/* back pass */
|
|
|
|
x_prev = d_prev;
|
|
r_x[--i] = ((float)x_prev);
|
|
|
|
while (--i >= 0) {
|
|
x_prev = d1[i] - c1[i] * x_prev;
|
|
r_x[i] = ((float)x_prev);
|
|
}
|
|
|
|
MEM_freeN(c1);
|
|
|
|
return isfinite(x_prev);
|
|
}
|
|
|
|
bool BLI_tridiagonal_solve_cyclic(
|
|
const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
|
|
{
|
|
if (count < 1) {
|
|
return false;
|
|
}
|
|
|
|
/* Degenerate case not handled correctly by the generic formula. */
|
|
if (count == 1) {
|
|
r_x[0] = d[0] / (a[0] + b[0] + c[0]);
|
|
|
|
return isfinite(r_x[0]);
|
|
}
|
|
|
|
/* Degenerate case that works but can be simplified. */
|
|
if (count == 2) {
|
|
const float a2[2] = {0, a[1] + c[1]};
|
|
const float c2[2] = {a[0] + c[0], 0};
|
|
|
|
return BLI_tridiagonal_solve(a2, b, c2, d, r_x, count);
|
|
}
|
|
|
|
/* If not really cyclic, fall back to the simple solver. */
|
|
float a0 = a[0], cN = c[count - 1];
|
|
|
|
if (a0 == 0.0f && cN == 0.0f) {
|
|
return BLI_tridiagonal_solve(a, b, c, d, r_x, count);
|
|
}
|
|
|
|
size_t bytes = sizeof(float) * (uint)count;
|
|
float *tmp = (float *)MEM_mallocN(bytes * 2, "tridiagonal_ex");
|
|
float *b2 = tmp + count;
|
|
|
|
if (!tmp) {
|
|
return false;
|
|
}
|
|
|
|
/* Prepare the non-cyclic system; relies on tridiagonal_solve ignoring values. */
|
|
memcpy(b2, b, bytes);
|
|
b2[0] -= a0;
|
|
b2[count - 1] -= cN;
|
|
|
|
memset(tmp, 0, bytes);
|
|
tmp[0] = a0;
|
|
tmp[count - 1] = cN;
|
|
|
|
/* solve for partial solution and adjustment vector */
|
|
bool success = BLI_tridiagonal_solve(a, b2, c, tmp, tmp, count) &&
|
|
BLI_tridiagonal_solve(a, b2, c, d, r_x, count);
|
|
|
|
/* apply adjustment */
|
|
if (success) {
|
|
float coeff = (r_x[0] + r_x[count - 1]) / (1.0f + tmp[0] + tmp[count - 1]);
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
r_x[i] -= coeff * tmp[i];
|
|
}
|
|
}
|
|
|
|
MEM_freeN(tmp);
|
|
|
|
return success;
|
|
}
|
|
|
|
bool BLI_newton3d_solve(Newton3D_DeltaFunc func_delta,
|
|
Newton3D_JacobianFunc func_jacobian,
|
|
Newton3D_CorrectionFunc func_correction,
|
|
void *userdata,
|
|
float epsilon,
|
|
int max_iterations,
|
|
bool trace,
|
|
const float x_init[3],
|
|
float result[3])
|
|
{
|
|
float fdelta[3], fdeltav, next_fdeltav;
|
|
float jacobian[3][3], step[3], x[3], x_next[3];
|
|
|
|
epsilon *= epsilon;
|
|
|
|
copy_v3_v3(x, x_init);
|
|
|
|
func_delta(userdata, x, fdelta);
|
|
fdeltav = len_squared_v3(fdelta);
|
|
|
|
if (trace) {
|
|
printf("START (%g, %g, %g) %g %g\n", x[0], x[1], x[2], fdeltav, epsilon);
|
|
}
|
|
|
|
for (int i = 0; i == 0 || (i < max_iterations && fdeltav > epsilon); i++) {
|
|
/* Newton's method step. */
|
|
func_jacobian(userdata, x, jacobian);
|
|
|
|
if (!invert_m3(jacobian)) {
|
|
return false;
|
|
}
|
|
|
|
mul_v3_m3v3(step, jacobian, fdelta);
|
|
sub_v3_v3v3(x_next, x, step);
|
|
|
|
/* Custom out-of-bounds value correction. */
|
|
if (func_correction) {
|
|
if (trace) {
|
|
printf("%3d * (%g, %g, %g)\n", i, x_next[0], x_next[1], x_next[2]);
|
|
}
|
|
|
|
if (!func_correction(userdata, x, step, x_next)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
func_delta(userdata, x_next, fdelta);
|
|
next_fdeltav = len_squared_v3(fdelta);
|
|
|
|
if (trace) {
|
|
printf("%3d ? (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
|
|
}
|
|
|
|
/* Line search correction. */
|
|
while (next_fdeltav > fdeltav && next_fdeltav > epsilon) {
|
|
float g0 = sqrtf(fdeltav), g1 = sqrtf(next_fdeltav);
|
|
float g01 = -g0 / len_v3(step);
|
|
float det = 2.0f * (g1 - g0 - g01);
|
|
float l = (det == 0.0f) ? 0.1f : -g01 / det;
|
|
CLAMP_MIN(l, 0.1f);
|
|
|
|
mul_v3_fl(step, l);
|
|
sub_v3_v3v3(x_next, x, step);
|
|
|
|
func_delta(userdata, x_next, fdelta);
|
|
next_fdeltav = len_squared_v3(fdelta);
|
|
|
|
if (trace) {
|
|
printf("%3d . (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
|
|
}
|
|
}
|
|
|
|
copy_v3_v3(x, x_next);
|
|
fdeltav = next_fdeltav;
|
|
}
|
|
|
|
bool success = (fdeltav <= epsilon);
|
|
|
|
if (trace) {
|
|
printf("%s (%g, %g, %g) %g\n", success ? "OK " : "FAIL", x[0], x[1], x[2], fdeltav);
|
|
}
|
|
|
|
copy_v3_v3(result, x);
|
|
return success;
|
|
}
|