Files
test/source/blender/render/intern/source/initrender.c
Joshua Leung 44e5b7788b 2.5: Blender "Animato" - New Animation System
Finally, here is the basic (functional) prototype of the new animation system which will allow for the infamous "everything is animatable", and which also addresses several of the more serious shortcomings of the old system. Unfortunately, this will break old animation files (especially right now, as I haven't written the version patching code yet), however, this is for the future.

Highlights of the new system:
* Scrapped IPO-Curves/IPO/(Action+Constraint-Channels)/Action system, and replaced it with F-Curve/Action. 
- F-Curves (animators from other packages will feel at home with this name) replace IPO-Curves. 
- The 'new' Actions, act as the containers for F-Curves, so that they can be reused. They are therefore more akin to the old 'IPO' blocks, except they do not have the blocktype restriction, so you can store materials/texture/geometry F-Curves in the same Action as Object transforms, etc.
* F-Curves use RNA-paths for Data Access, hence allowing "every" (where sensible/editable that is) user-accessible setting from RNA to be animated.
* Drivers are no longer mixed with Animation Data, so rigs will not be that easily broken and several dependency problems can be eliminated. (NOTE: drivers haven't been hooked up yet, but the code is in place)
* F-Curve modifier system allows useful 'large-scale' manipulation of F-Curve values, including (I've only included implemented ones here): envelope deform (similar to lattices to allow broad-scale reshaping of curves), curve generator (polynomial or py-expression), cycles (replacing the old cyclic extrapolation modes, giving more control over this). (NOTE: currently this cannot be tested, as there's not access to them, but the code is all in place)
* NLA system with 'tracks' (i.e. layers), and multiple strips per track. (NOTE: NLA system is not yet functional, as it's only partially coded still) 

There are more nice things that I will be preparing some nice docs for soon, but for now, check for more details:
http://lists.blender.org/pipermail/bf-taskforce25/2009-January/000260.html

So, what currently works:
* I've implemented two basic operators for the 3D-view only to Insert and Delete Keyframes. These are tempolary ones only that will be replaced in due course with 'proper' code.
* Object Loc/Rot/Scale can be keyframed. Also, the colour of the 'active' material (Note: this should really be for nth material instead, but that doesn't work yet in RNA) can also be keyframed into the same datablock.
* Standard animation refresh (i.e. animation resulting from NLA and Action evaluation) is now done completely separate from drivers before anything else is done after a frame change. Drivers are handled after this in a separate pass, as dictated by depsgraph flags, etc.

Notes:
* Drivers haven't been hooked up yet
* Only objects and data directly linked to objects can be animated.
* Depsgraph will need further tweaks. Currently, I've only made sure that it will update some things in the most basic cases (i.e. frame change).
* Animation Editors are currently broken (in terms of editing stuff). This will be my next target (priority to get Dopesheet working first, then F-Curve editor - i.e. old IPO Editor)
* I've had to put in large chunks of XXX sandboxing for old animation system code all around the place. This will be cleaned up in due course, as some places need special review.
In particular, the particles and sequencer code have far too many manual calls to calculate + flush animation info, which is really bad (this is a 'please explain yourselves' call to Physics coders!).
2009-01-17 03:12:50 +00:00

684 lines
15 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributors: 2004/2005/2006 Blender Foundation, full recode
*
* ***** END GPL LICENSE BLOCK *****
*/
/* Global includes */
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "MEM_guardedalloc.h"
#include "PIL_time.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_jitter.h"
#include "MTC_matrixops.h"
#include "DNA_camera_types.h"
#include "DNA_group_types.h"
#include "DNA_image_types.h"
#include "DNA_lamp_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_utildefines.h"
#include "BKE_global.h"
#include "BKE_material.h"
#include "BKE_object.h"
#include "BKE_image.h"
#include "BKE_ipo.h"
#include "BKE_key.h"
#include "BKE_action.h"
#include "BKE_writeavi.h"
#include "BKE_scene.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#ifdef WITH_QUICKTIME
#include "quicktime_export.h"
#endif
/* this module */
#include "renderpipeline.h"
#include "render_types.h"
#include "rendercore.h"
#include "pixelshading.h"
#include "zbuf.h"
/* Own includes */
#include "initrender.h"
/* ********************** */
static void init_render_jit(Render *re)
{
static float jit[32][2]; /* simple caching */
static int lastjit= 0;
if(lastjit!=re->r.osa) {
memset(jit, 0, sizeof(jit));
BLI_initjit(jit[0], re->r.osa);
}
lastjit= re->r.osa;
memcpy(re->jit, jit, sizeof(jit));
}
/* ****************** MASKS and LUTS **************** */
static float filt_quadratic(float x)
{
if (x < 0.0f) x = -x;
if (x < 0.5f) return 0.75f-(x*x);
if (x < 1.5f) return 0.50f*(x-1.5f)*(x-1.5f);
return 0.0f;
}
static float filt_cubic(float x)
{
float x2= x*x;
if (x < 0.0f) x = -x;
if (x < 1.0f) return 0.5*x*x2 - x2 + 2.0f/3.0f;
if (x < 2.0f) return (2.0-x)*(2.0-x)*(2.0-x)/6.0f;
return 0.0f;
}
static float filt_catrom(float x)
{
float x2= x*x;
if (x < 0.0f) x = -x;
if (x < 1.0f) return 1.5f*x2*x - 2.5f*x2 + 1.0f;
if (x < 2.0f) return -0.5f*x2*x + 2.5*x2 - 4.0f*x + 2.0f;
return 0.0f;
}
static float filt_mitchell(float x) /* Mitchell & Netravali's two-param cubic */
{
float b = 1.0f/3.0f, c = 1.0f/3.0f;
float p0 = ( 6.0 - 2.0*b ) / 6.0;
float p2 = (-18.0 + 12.0*b + 6.0*c) / 6.0;
float p3 = ( 12.0 - 9.0*b - 6.0*c) / 6.0;
float q0 = ( 8.0*b + 24.0*c) / 6.0;
float q1 = ( - 12.0*b - 48.0*c) / 6.0;
float q2 = ( 6.0*b + 30.0*c) / 6.0;
float q3 = ( - b - 6.0*c) / 6.0;
if (x<-2.0) return 0.0;
if (x<-1.0) return (q0-x*(q1-x*(q2-x*q3)));
if (x< 0.0) return (p0+x*x*(p2-x*p3));
if (x< 1.0) return (p0+x*x*(p2+x*p3));
if (x< 2.0) return (q0+x*(q1+x*(q2+x*q3)));
return 0.0;
}
/* x ranges from -1 to 1 */
float RE_filter_value(int type, float x)
{
float gaussfac= 1.6f;
x= ABS(x);
switch(type) {
case R_FILTER_BOX:
if(x>1.0) return 0.0f;
return 1.0;
case R_FILTER_TENT:
if(x>1.0) return 0.0f;
return 1.0f-x;
case R_FILTER_GAUSS:
x*= gaussfac;
return (1.0/exp(x*x) - 1.0/exp(gaussfac*gaussfac*2.25));
case R_FILTER_MITCH:
return filt_mitchell(x*gaussfac);
case R_FILTER_QUAD:
return filt_quadratic(x*gaussfac);
case R_FILTER_CUBIC:
return filt_cubic(x*gaussfac);
case R_FILTER_CATROM:
return filt_catrom(x*gaussfac);
}
return 0.0f;
}
static float calc_weight(Render *re, float *weight, int i, int j)
{
float x, y, dist, totw= 0.0;
int a;
for(a=0; a<re->osa; a++) {
x= re->jit[a][0] + i;
y= re->jit[a][1] + j;
dist= sqrt(x*x+y*y);
weight[a]= 0.0;
/* Weighting choices */
switch(re->r.filtertype) {
case R_FILTER_BOX:
if(i==0 && j==0) weight[a]= 1.0;
break;
case R_FILTER_TENT:
if(dist < re->r.gauss)
weight[a]= re->r.gauss - dist;
break;
case R_FILTER_GAUSS:
x = dist*re->r.gauss;
weight[a]= (1.0/exp(x*x) - 1.0/exp(re->r.gauss*re->r.gauss*2.25));
break;
case R_FILTER_MITCH:
weight[a]= filt_mitchell(dist*re->r.gauss);
break;
case R_FILTER_QUAD:
weight[a]= filt_quadratic(dist*re->r.gauss);
break;
case R_FILTER_CUBIC:
weight[a]= filt_cubic(dist*re->r.gauss);
break;
case R_FILTER_CATROM:
weight[a]= filt_catrom(dist*re->r.gauss);
break;
}
totw+= weight[a];
}
return totw;
}
void free_sample_tables(Render *re)
{
int a;
if(re->samples) {
for(a=0; a<9; a++) {
MEM_freeN(re->samples->fmask1[a]);
MEM_freeN(re->samples->fmask2[a]);
}
MEM_freeN(re->samples->centmask);
MEM_freeN(re->samples);
re->samples= NULL;
}
}
/* based on settings in render, it makes the lookup tables */
void make_sample_tables(Render *re)
{
static int firsttime= 1;
SampleTables *st;
float flweight[32];
float weight[32], totw, val, *fpx1, *fpx2, *fpy1, *fpy2, *m3, *m4;
int i, j, a;
/* optimization tables, only once */
if(firsttime) {
firsttime= 0;
}
free_sample_tables(re);
init_render_jit(re); /* needed for mblur too */
if(re->osa==0) {
/* just prevents cpu cycles for larger render and copying */
re->r.filtertype= 0;
return;
}
st= re->samples= MEM_callocN(sizeof(SampleTables), "sample tables");
for(a=0; a<9;a++) {
st->fmask1[a]= MEM_callocN(256*sizeof(float), "initfilt");
st->fmask2[a]= MEM_callocN(256*sizeof(float), "initfilt");
}
for(a=0; a<256; a++) {
st->cmask[a]= 0;
if(a & 1) st->cmask[a]++;
if(a & 2) st->cmask[a]++;
if(a & 4) st->cmask[a]++;
if(a & 8) st->cmask[a]++;
if(a & 16) st->cmask[a]++;
if(a & 32) st->cmask[a]++;
if(a & 64) st->cmask[a]++;
if(a & 128) st->cmask[a]++;
}
st->centmask= MEM_mallocN((1<<re->osa), "Initfilt3");
for(a=0; a<16; a++) {
st->centLut[a]= -0.45+((float)a)/16.0;
}
/* calculate totw */
totw= 0.0;
for(j= -1; j<2; j++) {
for(i= -1; i<2; i++) {
totw+= calc_weight(re, weight, i, j);
}
}
for(j= -1; j<2; j++) {
for(i= -1; i<2; i++) {
/* calculate using jit, with offset the weights */
memset(weight, 0, sizeof(weight));
calc_weight(re, weight, i, j);
for(a=0; a<16; a++) flweight[a]= weight[a]*(1.0/totw);
m3= st->fmask1[ 3*(j+1)+i+1 ];
m4= st->fmask2[ 3*(j+1)+i+1 ];
for(a=0; a<256; a++) {
if(a & 1) {
m3[a]+= flweight[0];
m4[a]+= flweight[8];
}
if(a & 2) {
m3[a]+= flweight[1];
m4[a]+= flweight[9];
}
if(a & 4) {
m3[a]+= flweight[2];
m4[a]+= flweight[10];
}
if(a & 8) {
m3[a]+= flweight[3];
m4[a]+= flweight[11];
}
if(a & 16) {
m3[a]+= flweight[4];
m4[a]+= flweight[12];
}
if(a & 32) {
m3[a]+= flweight[5];
m4[a]+= flweight[13];
}
if(a & 64) {
m3[a]+= flweight[6];
m4[a]+= flweight[14];
}
if(a & 128) {
m3[a]+= flweight[7];
m4[a]+= flweight[15];
}
}
}
}
/* centmask: the correct subpixel offset per mask */
fpx1= MEM_mallocN(256*sizeof(float), "initgauss4");
fpx2= MEM_mallocN(256*sizeof(float), "initgauss4");
fpy1= MEM_mallocN(256*sizeof(float), "initgauss4");
fpy2= MEM_mallocN(256*sizeof(float), "initgauss4");
for(a=0; a<256; a++) {
fpx1[a]= fpx2[a]= 0.0;
fpy1[a]= fpy2[a]= 0.0;
if(a & 1) {
fpx1[a]+= re->jit[0][0];
fpy1[a]+= re->jit[0][1];
fpx2[a]+= re->jit[8][0];
fpy2[a]+= re->jit[8][1];
}
if(a & 2) {
fpx1[a]+= re->jit[1][0];
fpy1[a]+= re->jit[1][1];
fpx2[a]+= re->jit[9][0];
fpy2[a]+= re->jit[9][1];
}
if(a & 4) {
fpx1[a]+= re->jit[2][0];
fpy1[a]+= re->jit[2][1];
fpx2[a]+= re->jit[10][0];
fpy2[a]+= re->jit[10][1];
}
if(a & 8) {
fpx1[a]+= re->jit[3][0];
fpy1[a]+= re->jit[3][1];
fpx2[a]+= re->jit[11][0];
fpy2[a]+= re->jit[11][1];
}
if(a & 16) {
fpx1[a]+= re->jit[4][0];
fpy1[a]+= re->jit[4][1];
fpx2[a]+= re->jit[12][0];
fpy2[a]+= re->jit[12][1];
}
if(a & 32) {
fpx1[a]+= re->jit[5][0];
fpy1[a]+= re->jit[5][1];
fpx2[a]+= re->jit[13][0];
fpy2[a]+= re->jit[13][1];
}
if(a & 64) {
fpx1[a]+= re->jit[6][0];
fpy1[a]+= re->jit[6][1];
fpx2[a]+= re->jit[14][0];
fpy2[a]+= re->jit[14][1];
}
if(a & 128) {
fpx1[a]+= re->jit[7][0];
fpy1[a]+= re->jit[7][1];
fpx2[a]+= re->jit[15][0];
fpy2[a]+= re->jit[15][1];
}
}
for(a= (1<<re->osa)-1; a>0; a--) {
val= st->cmask[a & 255] + st->cmask[a>>8];
i= 8+(15.9*(fpy1[a & 255]+fpy2[a>>8])/val);
CLAMP(i, 0, 15);
j= 8+(15.9*(fpx1[a & 255]+fpx2[a>>8])/val);
CLAMP(j, 0, 15);
i= j + (i<<4);
st->centmask[a]= i;
}
MEM_freeN(fpx1);
MEM_freeN(fpx2);
MEM_freeN(fpy1);
MEM_freeN(fpy2);
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* call this after InitState() */
/* per render, there's one persistant viewplane. Parts will set their own viewplanes */
void RE_SetCamera(Render *re, Object *camera)
{
Camera *cam=NULL;
rctf viewplane;
float pixsize, clipsta, clipend;
float lens, shiftx=0.0, shifty=0.0, winside;
/* question mark */
re->ycor= ( (float)re->r.yasp)/( (float)re->r.xasp);
if(re->r.mode & R_FIELDS)
re->ycor *= 2.0f;
if(camera->type==OB_CAMERA) {
cam= camera->data;
if(cam->type==CAM_ORTHO) re->r.mode |= R_ORTHO;
/* solve this too... all time depending stuff is in convertblender.c?
* Need to update the camera early because it's used for projection matrices
* and other stuff BEFORE the animation update loop is done
* */
#if 0 // XXX old animation system
if(cam->ipo) {
calc_ipo(cam->ipo, frame_to_float(re->scene, re->r.cfra));
execute_ipo(&cam->id, cam->ipo);
}
#endif // XXX old animation system
lens= cam->lens;
shiftx=cam->shiftx;
shifty=cam->shifty;
clipsta= cam->clipsta;
clipend= cam->clipend;
}
else if(camera->type==OB_LAMP) {
Lamp *la= camera->data;
float fac= cos( M_PI*la->spotsize/360.0 );
float phi= acos(fac);
lens= 16.0*fac/sin(phi);
if(lens==0.0f)
lens= 35.0;
clipsta= la->clipsta;
clipend= la->clipend;
}
else { /* envmap exception... */
lens= re->lens;
if(lens==0.0f)
lens= 16.0;
clipsta= re->clipsta;
clipend= re->clipend;
if(clipsta==0.0f || clipend==0.0f) {
clipsta= 0.1f;
clipend= 1000.0f;
}
}
/* ortho only with camera available */
if(cam && (re->r.mode & R_ORTHO)) {
if( (re->r.xasp*re->winx) >= (re->r.yasp*re->winy) ) {
re->viewfac= re->winx;
}
else {
re->viewfac= re->ycor*re->winy;
}
/* ortho_scale == 1.0 means exact 1 to 1 mapping */
pixsize= cam->ortho_scale/re->viewfac;
}
else {
if( (re->r.xasp*re->winx) >= (re->r.yasp*re->winy) ) {
re->viewfac= (re->winx*lens)/32.0;
}
else {
re->viewfac= re->ycor*(re->winy*lens)/32.0;
}
pixsize= clipsta/re->viewfac;
}
/* viewplane fully centered, zbuffer fills in jittered between -.5 and +.5 */
winside= MAX2(re->winx, re->winy);
viewplane.xmin= -0.5f*(float)re->winx + shiftx*winside;
viewplane.ymin= -0.5f*re->ycor*(float)re->winy + shifty*winside;
viewplane.xmax= 0.5f*(float)re->winx + shiftx*winside;
viewplane.ymax= 0.5f*re->ycor*(float)re->winy + shifty*winside;
if(re->flag & R_SEC_FIELD) {
if(re->r.mode & R_ODDFIELD) {
viewplane.ymin-= .5*re->ycor;
viewplane.ymax-= .5*re->ycor;
}
else {
viewplane.ymin+= .5*re->ycor;
viewplane.ymax+= .5*re->ycor;
}
}
/* the window matrix is used for clipping, and not changed during OSA steps */
/* using an offset of +0.5 here would give clip errors on edges */
viewplane.xmin= pixsize*(viewplane.xmin);
viewplane.xmax= pixsize*(viewplane.xmax);
viewplane.ymin= pixsize*(viewplane.ymin);
viewplane.ymax= pixsize*(viewplane.ymax);
re->viewdx= pixsize;
re->viewdy= re->ycor*pixsize;
if(re->r.mode & R_ORTHO)
RE_SetOrtho(re, &viewplane, clipsta, clipend);
else
RE_SetWindow(re, &viewplane, clipsta, clipend);
}
void RE_SetPixelSize(Render *re, float pixsize)
{
re->viewdx= pixsize;
re->viewdy= re->ycor*pixsize;
}
void RE_GetCameraWindow(struct Render *re, struct Object *camera, int frame, float mat[][4])
{
re->r.cfra= frame;
RE_SetCamera(re, camera);
Mat4CpyMat4(mat, re->winmat);
}
/* ~~~~~~~~~~~~~~~~ part (tile) calculus ~~~~~~~~~~~~~~~~~~~~~~ */
void freeparts(Render *re)
{
RenderPart *part= re->parts.first;
while(part) {
if(part->rectp) MEM_freeN(part->rectp);
if(part->rectz) MEM_freeN(part->rectz);
part= part->next;
}
BLI_freelistN(&re->parts);
}
void initparts(Render *re)
{
int nr, xd, yd, partx, party, xparts, yparts;
int xminb, xmaxb, yminb, ymaxb;
freeparts(re);
/* this is render info for caller, is not reset when parts are freed! */
re->i.totpart= 0;
re->i.curpart= 0;
re->i.partsdone= 0;
/* just for readable code.. */
xminb= re->disprect.xmin;
yminb= re->disprect.ymin;
xmaxb= re->disprect.xmax;
ymaxb= re->disprect.ymax;
xparts= re->r.xparts;
yparts= re->r.yparts;
/* mininum part size, but for exr tile saving it was checked already */
if(!(re->r.scemode & R_EXR_TILE_FILE)) {
if(re->r.mode & R_PANORAMA) {
if(ceil(re->rectx/(float)xparts) < 8)
xparts= 1 + re->rectx/8;
}
else
if(ceil(re->rectx/(float)xparts) < 64)
xparts= 1 + re->rectx/64;
if(ceil(re->recty/(float)yparts) < 64)
yparts= 1 + re->recty/64;
}
/* part size */
partx= ceil(re->rectx/(float)xparts);
party= ceil(re->recty/(float)yparts);
re->xparts= xparts;
re->yparts= yparts;
re->partx= partx;
re->party= party;
/* calculate rotation factor of 1 pixel */
if(re->r.mode & R_PANORAMA)
re->panophi= panorama_pixel_rot(re);
for(nr=0; nr<xparts*yparts; nr++) {
rcti disprect;
int rectx, recty;
xd= (nr % xparts);
yd= (nr-xd)/xparts;
disprect.xmin= xminb+ xd*partx;
disprect.ymin= yminb+ yd*party;
/* ensure we cover the entire picture, so last parts go to end */
if(xd<xparts-1) {
disprect.xmax= disprect.xmin + partx;
if(disprect.xmax > xmaxb)
disprect.xmax = xmaxb;
}
else disprect.xmax= xmaxb;
if(yd<yparts-1) {
disprect.ymax= disprect.ymin + party;
if(disprect.ymax > ymaxb)
disprect.ymax = ymaxb;
}
else disprect.ymax= ymaxb;
rectx= disprect.xmax - disprect.xmin;
recty= disprect.ymax - disprect.ymin;
/* so, now can we add this part? */
if(rectx>0 && recty>0) {
RenderPart *pa= MEM_callocN(sizeof(RenderPart), "new part");
/* Non-box filters need 2 pixels extra to work */
if((re->r.filtertype || (re->r.mode & R_EDGE))) {
pa->crop= 2;
disprect.xmin -= pa->crop;
disprect.ymin -= pa->crop;
disprect.xmax += pa->crop;
disprect.ymax += pa->crop;
rectx+= 2*pa->crop;
recty+= 2*pa->crop;
}
pa->disprect= disprect;
pa->rectx= rectx;
pa->recty= recty;
BLI_addtail(&re->parts, pa);
re->i.totpart++;
}
}
}