Files
test/source/blender/gpu/vulkan/vk_buffer.cc
Jeroen Bakker f76ceddc98 Vulkan: Workaround for Unsupported R8G8B8 Vertex Buffer Formats
On some platforms `VK_FORMAT_R8G8B8_*` are not supported as vertex buffers. The
obvious workaround for this is to use `VK_FORMAT_R8G8B8A8_*`. Using unsupported
vertex formats would crash Blender as it is not able to compile the graphics
pipelines that use them.

Known platforms are:
- NVIDIA Mobile GPUs (Quadro M1000M)
- AMD Polaris (open source drivers)

This PR adds the initial workings for other unsupported vertex buffer formats we
need to fix in the future.

`VKDevice.workarounds.vertex_formats` contain booleans if the workaround for
a specific format should be turned on (`r8g8b8 = true`). `VertexFormatConverter` can be
used to identify if conversions are needed and perform the conversion.

Pull Request: https://projects.blender.org/blender/blender/pulls/114572
2023-11-08 09:44:22 +01:00

153 lines
4.1 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup gpu
*/
#include "vk_buffer.hh"
#include "vk_backend.hh"
#include "vk_context.hh"
namespace blender::gpu {
VKBuffer::~VKBuffer()
{
if (is_allocated()) {
free();
}
}
bool VKBuffer::is_allocated() const
{
return allocation_ != VK_NULL_HANDLE;
}
static VmaAllocationCreateFlags vma_allocation_flags(GPUUsageType usage)
{
switch (usage) {
case GPU_USAGE_STATIC:
case GPU_USAGE_DYNAMIC:
case GPU_USAGE_STREAM:
return VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
case GPU_USAGE_DEVICE_ONLY:
return VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
case GPU_USAGE_FLAG_BUFFER_TEXTURE_ONLY:
break;
}
BLI_assert_msg(false, "Unimplemented GPUUsageType");
return VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
}
bool VKBuffer::create(int64_t size_in_bytes, GPUUsageType usage, VkBufferUsageFlags buffer_usage)
{
BLI_assert(!is_allocated());
BLI_assert(vk_buffer_ == VK_NULL_HANDLE);
BLI_assert(mapped_memory_ == nullptr);
size_in_bytes_ = size_in_bytes;
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
VkBufferCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
create_info.flags = 0;
/*
* Vulkan doesn't allow empty buffers but some areas (DrawManager Instance data, PyGPU) create
* them.
*/
create_info.size = max_ii(size_in_bytes, 1);
create_info.usage = buffer_usage;
/* We use the same command queue for the compute and graphics pipeline, so it is safe to use
* exclusive resource handling. */
create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
create_info.queueFamilyIndexCount = 1;
create_info.pQueueFamilyIndices = device.queue_family_ptr_get();
VmaAllocationCreateInfo vma_create_info = {};
vma_create_info.flags = vma_allocation_flags(usage);
vma_create_info.priority = 1.0f;
vma_create_info.usage = VMA_MEMORY_USAGE_AUTO;
VkResult result = vmaCreateBuffer(
allocator, &create_info, &vma_create_info, &vk_buffer_, &allocation_, nullptr);
if (result != VK_SUCCESS) {
return false;
}
/* All buffers are mapped to virtual memory. */
return map();
}
void VKBuffer::update(const void *data) const
{
BLI_assert_msg(is_mapped(), "Cannot update a non-mapped buffer.");
memcpy(mapped_memory_, data, size_in_bytes_);
flush();
}
void VKBuffer::flush() const
{
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
vmaFlushAllocation(allocator, allocation_, 0, max_ii(size_in_bytes(), 1));
}
void VKBuffer::clear(VKContext &context, uint32_t clear_value)
{
VKCommandBuffers &command_buffers = context.command_buffers_get();
command_buffers.fill(*this, clear_value);
}
void VKBuffer::read(void *data) const
{
BLI_assert_msg(is_mapped(), "Cannot read a non-mapped buffer.");
memcpy(data, mapped_memory_, size_in_bytes_);
}
void *VKBuffer::mapped_memory_get() const
{
BLI_assert_msg(is_mapped(), "Cannot access a non-mapped buffer.");
return mapped_memory_;
}
bool VKBuffer::is_mapped() const
{
return mapped_memory_ != nullptr;
}
bool VKBuffer::map()
{
BLI_assert(!is_mapped());
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
VkResult result = vmaMapMemory(allocator, allocation_, &mapped_memory_);
return result == VK_SUCCESS;
}
void VKBuffer::unmap()
{
BLI_assert(is_mapped());
const VKDevice &device = VKBackend::get().device_get();
VmaAllocator allocator = device.mem_allocator_get();
vmaUnmapMemory(allocator, allocation_);
mapped_memory_ = nullptr;
}
bool VKBuffer::free()
{
if (is_mapped()) {
unmap();
}
VKDevice &device = VKBackend::get().device_get();
device.discard_buffer(vk_buffer_, allocation_);
allocation_ = VK_NULL_HANDLE;
vk_buffer_ = VK_NULL_HANDLE;
return true;
}
} // namespace blender::gpu