Files
test/intern/cycles/device/memory.h
Nikita Sirgienko 759bb6c768 Cycles: oneAPI: Enable host memory migration
This enables scenes with all textures not fitting in GPU
memory to finally render. For scenes that are fitting,
no functional change or performance change is expected.

Pull Request: https://projects.blender.org/blender/blender/pulls/122385
2024-05-28 19:04:19 +02:00

628 lines
15 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifndef __DEVICE_MEMORY_H__
#define __DEVICE_MEMORY_H__
/* Device Memory
*
* Data types for allocating, copying and freeing device memory. */
#include "util/array.h"
#include "util/half.h"
#include "util/string.h"
#include "util/texture.h"
#include "util/types.h"
#include "util/vector.h"
CCL_NAMESPACE_BEGIN
class Device;
enum MemoryType {
MEM_READ_ONLY,
MEM_READ_WRITE,
MEM_DEVICE_ONLY,
MEM_GLOBAL,
MEM_TEXTURE,
};
/* Supported Data Types */
enum DataType {
TYPE_UNKNOWN,
TYPE_UCHAR,
TYPE_UINT16,
TYPE_UINT,
TYPE_INT,
TYPE_FLOAT,
TYPE_HALF,
TYPE_UINT64,
};
static constexpr size_t datatype_size(DataType datatype)
{
switch (datatype) {
case TYPE_UNKNOWN:
return 1;
case TYPE_UCHAR:
return sizeof(uchar);
case TYPE_FLOAT:
return sizeof(float);
case TYPE_UINT:
return sizeof(uint);
case TYPE_UINT16:
return sizeof(uint16_t);
case TYPE_INT:
return sizeof(int);
case TYPE_HALF:
return sizeof(half);
case TYPE_UINT64:
return sizeof(uint64_t);
default:
return 0;
}
}
/* Traits for data types */
template<typename T> struct device_type_traits {
static const DataType data_type = TYPE_UNKNOWN;
static const size_t num_elements = sizeof(T);
};
template<> struct device_type_traits<uchar> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements = 1;
static_assert(sizeof(uchar) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uchar2> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements = 2;
static_assert(sizeof(uchar2) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uchar3> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements = 3;
static_assert(sizeof(uchar3) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uchar4> {
static const DataType data_type = TYPE_UCHAR;
static const size_t num_elements = 4;
static_assert(sizeof(uchar4) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uint> {
static const DataType data_type = TYPE_UINT;
static const size_t num_elements = 1;
static_assert(sizeof(uint) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uint2> {
static const DataType data_type = TYPE_UINT;
static const size_t num_elements = 2;
static_assert(sizeof(uint2) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uint3> {
/* uint3 has different size depending on the device, can't use it for interchanging
* memory between CPU and GPU.
*
* Leave body empty to trigger a compile error if used. */
};
template<> struct device_type_traits<uint4> {
static const DataType data_type = TYPE_UINT;
static const size_t num_elements = 4;
static_assert(sizeof(uint4) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<int> {
static const DataType data_type = TYPE_INT;
static const size_t num_elements = 1;
static_assert(sizeof(int) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<int2> {
static const DataType data_type = TYPE_INT;
static const size_t num_elements = 2;
static_assert(sizeof(int2) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<int3> {
/* int3 has different size depending on the device, can't use it for interchanging
* memory between CPU and GPU.
*
* Leave body empty to trigger a compile error if used. */
};
template<> struct device_type_traits<int4> {
static const DataType data_type = TYPE_INT;
static const size_t num_elements = 4;
static_assert(sizeof(int4) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<float> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements = 1;
static_assert(sizeof(float) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<float2> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements = 2;
static_assert(sizeof(float2) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<float3> {
/* float3 has different size depending on the device, can't use it for interchanging
* memory between CPU and GPU.
*
* Leave body empty to trigger a compile error if used. */
};
template<> struct device_type_traits<packed_float3> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements = 3;
static_assert(sizeof(packed_float3) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<float4> {
static const DataType data_type = TYPE_FLOAT;
static const size_t num_elements = 4;
static_assert(sizeof(float4) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<half> {
static const DataType data_type = TYPE_HALF;
static const size_t num_elements = 1;
static_assert(sizeof(half) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<ushort4> {
static const DataType data_type = TYPE_UINT16;
static const size_t num_elements = 4;
static_assert(sizeof(ushort4) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uint16_t> {
static const DataType data_type = TYPE_UINT16;
static const size_t num_elements = 1;
static_assert(sizeof(uint16_t) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<half4> {
static const DataType data_type = TYPE_HALF;
static const size_t num_elements = 4;
static_assert(sizeof(half4) == num_elements * datatype_size(data_type));
};
template<> struct device_type_traits<uint64_t> {
static const DataType data_type = TYPE_UINT64;
static const size_t num_elements = 1;
static_assert(sizeof(uint64_t) == num_elements * datatype_size(data_type));
};
/* Device Memory
*
* Base class for all device memory. This should not be allocated directly,
* instead the appropriate subclass can be used. */
class device_memory {
public:
size_t memory_size()
{
return data_size * data_elements * datatype_size(data_type);
}
size_t memory_elements_size(int elements)
{
return elements * data_elements * datatype_size(data_type);
}
/* Data information. */
DataType data_type;
int data_elements;
size_t data_size;
size_t device_size;
size_t data_width;
size_t data_height;
size_t data_depth;
MemoryType type;
const char *name;
std::string name_storage;
/* Pointers. */
Device *device;
device_ptr device_pointer;
void *host_pointer;
void *shared_pointer;
/* reference counter for shared_pointer */
int shared_counter;
virtual ~device_memory();
void swap_device(Device *new_device, size_t new_device_size, device_ptr new_device_ptr);
void restore_device();
bool is_resident(Device *sub_device) const;
protected:
friend class Device;
friend class GPUDevice;
friend class CUDADevice;
friend class OptiXDevice;
friend class HIPDevice;
friend class MetalDevice;
friend class OneapiDevice;
/* Only create through subclasses. */
device_memory(Device *device, const char *name, MemoryType type);
/* No copying and allowed.
*
* This is because device implementation might need to register device memory in an allocation
* map of some sort and use pointer as a key to identify blocks. Moving data from one place to
* another bypassing device allocation routines will make those maps hard to maintain. */
device_memory(const device_memory &) = delete;
device_memory(device_memory &&other) noexcept = delete;
device_memory &operator=(const device_memory &) = delete;
device_memory &operator=(device_memory &&) = delete;
/* Host allocation on the device. All host_pointer memory should be
* allocated with these functions, for devices that support using
* the same pointer for host and device. */
void *host_alloc(size_t size);
void host_free();
/* Device memory allocation and copying. */
void device_alloc();
void device_free();
void device_copy_to();
void device_copy_from(size_t y, size_t w, size_t h, size_t elem);
void device_zero();
bool device_is_cpu();
device_ptr original_device_ptr;
size_t original_device_size;
Device *original_device;
bool need_realloc_;
bool modified;
};
/* Device Only Memory
*
* Working memory only needed by the device, with no corresponding allocation
* on the host. Only used internally in the device implementations. */
template<typename T> class device_only_memory : public device_memory {
public:
device_only_memory(Device *device, const char *name, bool allow_host_memory_fallback = false)
: device_memory(device, name, allow_host_memory_fallback ? MEM_READ_WRITE : MEM_DEVICE_ONLY)
{
data_type = device_type_traits<T>::data_type;
data_elements = max(device_type_traits<T>::num_elements, size_t(1));
}
device_only_memory(device_only_memory &&other) noexcept : device_memory(std::move(other)) {}
virtual ~device_only_memory()
{
free();
}
void alloc_to_device(size_t num, bool shrink_to_fit = true)
{
size_t new_size = num;
bool reallocate;
if (shrink_to_fit) {
reallocate = (data_size != new_size);
}
else {
reallocate = (data_size < new_size);
}
if (reallocate) {
device_free();
data_size = new_size;
device_alloc();
}
}
void free()
{
device_free();
data_size = 0;
}
void zero_to_device()
{
device_zero();
}
};
/* Device Vector
*
* Data vector to exchange data between host and device. Memory will be
* allocated on the host first with alloc() and resize, and then filled
* in and copied to the device with copy_to_device(). Or alternatively
* allocated and set to zero on the device with zero_to_device().
*
* When using memory type MEM_GLOBAL, a pointer to this memory will be
* automatically attached to kernel globals, using the provided name
* matching an entry in kernel/data_arrays.h. */
template<typename T> class device_vector : public device_memory {
public:
device_vector(Device *device, const char *name, MemoryType type)
: device_memory(device, name, type)
{
data_type = device_type_traits<T>::data_type;
data_elements = device_type_traits<T>::num_elements;
modified = true;
need_realloc_ = true;
assert(data_elements > 0);
}
virtual ~device_vector()
{
free();
}
/* Host memory allocation. */
T *alloc(size_t width, size_t height = 0, size_t depth = 0)
{
size_t new_size = size(width, height, depth);
if (new_size != data_size) {
device_free();
host_free();
host_pointer = host_alloc(sizeof(T) * new_size);
modified = true;
assert(device_pointer == 0);
}
data_size = new_size;
data_width = width;
data_height = height;
data_depth = depth;
return data();
}
/* Host memory resize. Only use this if the original data needs to be
* preserved, it is faster to call alloc() if it can be discarded. */
T *resize(size_t width, size_t height = 0, size_t depth = 0)
{
size_t new_size = size(width, height, depth);
if (new_size != data_size) {
void *new_ptr = host_alloc(sizeof(T) * new_size);
if (new_size && data_size) {
size_t min_size = ((new_size < data_size) ? new_size : data_size);
memcpy((T *)new_ptr, (T *)host_pointer, sizeof(T) * min_size);
}
device_free();
host_free();
host_pointer = new_ptr;
assert(device_pointer == 0);
}
data_size = new_size;
data_width = width;
data_height = height;
data_depth = depth;
return data();
}
/* Take over data from an existing array. */
void steal_data(array<T> &from)
{
device_free();
host_free();
data_size = from.size();
data_width = 0;
data_height = 0;
data_depth = 0;
host_pointer = from.steal_pointer();
assert(device_pointer == 0);
}
void give_data(array<T> &to)
{
device_free();
to.set_data((T *)host_pointer, data_size);
data_size = 0;
data_width = 0;
data_height = 0;
data_depth = 0;
host_pointer = 0;
assert(device_pointer == 0);
}
/* Free device and host memory. */
void free()
{
device_free();
host_free();
data_size = 0;
data_width = 0;
data_height = 0;
data_depth = 0;
host_pointer = 0;
modified = true;
need_realloc_ = true;
assert(device_pointer == 0);
}
void free_if_need_realloc(bool force_free)
{
if (need_realloc_ || force_free) {
free();
}
}
bool is_modified() const
{
return modified;
}
bool need_realloc()
{
return need_realloc_;
}
void tag_modified()
{
modified = true;
}
void tag_realloc()
{
need_realloc_ = true;
tag_modified();
}
size_t size() const
{
return data_size;
}
T *data()
{
return (T *)host_pointer;
}
const T *data() const
{
return (T *)host_pointer;
}
T &operator[](size_t i)
{
assert(i < data_size);
return data()[i];
}
void copy_to_device()
{
if (data_size != 0) {
device_copy_to();
}
}
void copy_to_device_if_modified()
{
if (!modified) {
return;
}
copy_to_device();
}
void clear_modified()
{
modified = false;
need_realloc_ = false;
}
void copy_from_device()
{
device_copy_from(0, data_width, (data_height == 0) ? 1 : data_height, sizeof(T));
}
void copy_from_device(size_t y, size_t w, size_t h)
{
device_copy_from(y, w, h, sizeof(T));
}
void zero_to_device()
{
device_zero();
}
void move_device(Device *new_device)
{
copy_from_device();
device_free();
device = new_device;
copy_to_device();
}
protected:
size_t size(size_t width, size_t height, size_t depth)
{
return width * ((height == 0) ? 1 : height) * ((depth == 0) ? 1 : depth);
}
};
/* Device Sub Memory
*
* Pointer into existing memory. It is not allocated separately, but created
* from an already allocated base memory. It is freed automatically when it
* goes out of scope, which should happen before base memory is freed.
*
* NOTE: some devices require offset and size of the sub_ptr to be properly
* aligned to device->mem_address_alingment(). */
class device_sub_ptr {
public:
device_sub_ptr(device_memory &mem, size_t offset, size_t size);
~device_sub_ptr();
device_ptr operator*() const
{
return ptr;
}
protected:
/* No copying. */
device_sub_ptr &operator=(const device_sub_ptr &);
Device *device;
device_ptr ptr;
};
/* Device Texture
*
* 2D or 3D image texture memory. */
class device_texture : public device_memory {
public:
device_texture(Device *device,
const char *name,
const uint slot,
ImageDataType image_data_type,
InterpolationType interpolation,
ExtensionType extension);
~device_texture();
void *alloc(const size_t width, const size_t height, const size_t depth = 0);
void copy_to_device();
uint slot;
TextureInfo info;
protected:
size_t size(const size_t width, const size_t height, const size_t depth)
{
return width * ((height == 0) ? 1 : height) * ((depth == 0) ? 1 : depth);
}
};
CCL_NAMESPACE_END
#endif /* __DEVICE_MEMORY_H__ */