Files
test/source/blender/python/mathutils/mathutils_Vector.cc
Andrej730 0d2b44e309 Fix: Vector.to_tuple didn't accept precision of -1
The to_tuple method defaulted to -1 but didn't accept -1 as an argument
(as documented).

Ref !143278
2025-07-27 13:47:13 +10:00

3581 lines
102 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup pymathutils
*/
#include <algorithm>
#include <Python.h>
#include "mathutils.hh"
#include "BLI_math_base_safe.h"
#include "BLI_math_matrix.h"
#include "BLI_math_rotation.h"
#include "BLI_math_vector.h"
#include "BLI_utildefines.h"
#include "../generic/py_capi_utils.hh"
#ifndef MATH_STANDALONE
# include "BLI_dynstr.h"
#endif
/**
* Higher dimensions are supported, for many common operations
* (dealing with vector/matrix multiply or handling as 3D locations)
* stack memory is used with a fixed size - defined here.
*/
#define MAX_DIMENSIONS 4
/**
* Swizzle axes get packed into a single value that is used as a closure. Each
* axis uses SWIZZLE_BITS_PER_AXIS bits. The first bit (SWIZZLE_VALID_AXIS) is
* used as a sentinel: if it is unset, the axis is not valid.
*/
#define SWIZZLE_BITS_PER_AXIS 3
#define SWIZZLE_VALID_AXIS 0x4
#define SWIZZLE_AXIS 0x3
static PyObject *Vector_copy(VectorObject *self);
static PyObject *Vector_deepcopy(VectorObject *self, PyObject *args);
/* -------------------------------------------------------------------- */
/** \name Utilities
* \{ */
/**
* Row vector multiplication - (Vector * Matrix)
* <pre>
* [x][y][z] * [1][4][7]
* [2][5][8]
* [3][6][9]
* </pre>
* \note vector/matrix multiplication is not commutative.
*/
static int row_vector_multiplication(float r_vec[MAX_DIMENSIONS],
VectorObject *vec,
MatrixObject *mat)
{
float vec_cpy[MAX_DIMENSIONS];
int row, col, z = 0, vec_num = vec->vec_num;
if (mat->row_num != vec_num) {
if (mat->row_num == 4 && vec_num == 3) {
vec_cpy[3] = 1.0f;
}
else {
PyErr_SetString(PyExc_ValueError,
"vector * matrix: matrix column size "
"and the vector size must be the same");
return -1;
}
}
if (BaseMath_ReadCallback(vec) == -1 || BaseMath_ReadCallback(mat) == -1) {
return -1;
}
memcpy(vec_cpy, vec->vec, vec_num * sizeof(float));
r_vec[3] = 1.0f;
/* Multiplication. */
for (col = 0; col < mat->col_num; col++) {
double dot = 0.0;
for (row = 0; row < mat->row_num; row++) {
dot += double(MATRIX_ITEM(mat, row, col) * vec_cpy[row]);
}
r_vec[z++] = float(dot);
}
return 0;
}
static PyObject *vec__apply_to_copy(PyObject *(*vec_func)(VectorObject *), VectorObject *self)
{
PyObject *ret = Vector_copy(self);
PyObject *ret_dummy = vec_func((VectorObject *)ret);
if (ret_dummy) {
Py_DECREF(ret_dummy);
return ret;
}
/* error */
Py_DECREF(ret);
return nullptr;
}
/** \note #BaseMath_ReadCallback must be called beforehand. */
static PyObject *Vector_to_tuple_ex(VectorObject *self, int ndigits)
{
PyObject *ret;
int i;
ret = PyTuple_New(self->vec_num);
if (ndigits >= 0) {
for (i = 0; i < self->vec_num; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round(double(self->vec[i]), ndigits)));
}
}
else {
for (i = 0; i < self->vec_num; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->vec[i]));
}
}
return ret;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: `__new__` / `mathutils.Vector()`
* \{ */
/**
* Supports 2D, 3D, and 4D vector objects both int and float values
* accepted. Mixed float and int values accepted. Ints are parsed to float
*/
static PyObject *Vector_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
float *vec = nullptr;
int vec_num = 3; /* default to a 3D vector */
if (kwds && PyDict_Size(kwds)) {
PyErr_SetString(PyExc_TypeError,
"Vector(): "
"takes no keyword args");
return nullptr;
}
switch (PyTuple_GET_SIZE(args)) {
case 0:
vec = static_cast<float *>(PyMem_Malloc(vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector(): "
"problem allocating pointer space");
return nullptr;
}
copy_vn_fl(vec, vec_num, 0.0f);
break;
case 1:
if ((vec_num = mathutils_array_parse_alloc(
&vec, 2, PyTuple_GET_ITEM(args, 0), "mathutils.Vector()")) == -1)
{
return nullptr;
}
break;
default:
PyErr_SetString(PyExc_TypeError,
"mathutils.Vector(): "
"more than a single arg given");
return nullptr;
}
return Vector_CreatePyObject_alloc(vec, vec_num, type);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Class Methods
* \{ */
PyDoc_STRVAR(
/* Wrap. */
C_Vector_Fill_doc,
".. classmethod:: Fill(size, fill=0.0)\n"
"\n"
" Create a vector of length size with all values set to fill.\n"
"\n"
" :arg size: The length of the vector to be created.\n"
" :type size: int\n"
" :arg fill: The value used to fill the vector.\n"
" :type fill: float\n");
static PyObject *C_Vector_Fill(PyObject *cls, PyObject *args)
{
float *vec;
int vec_num;
float fill = 0.0f;
if (!PyArg_ParseTuple(args, "i|f:Vector.Fill", &vec_num, &fill)) {
return nullptr;
}
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size");
return nullptr;
}
vec = static_cast<float *>(PyMem_Malloc(vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.Fill(): "
"problem allocating pointer space");
return nullptr;
}
copy_vn_fl(vec, vec_num, fill);
return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls);
}
PyDoc_STRVAR(
/* Wrap. */
C_Vector_Range_doc,
".. classmethod:: Range(start, stop, step=1)\n"
"\n"
" Create a filled with a range of values.\n"
"\n"
" :arg start: The start of the range used to fill the vector.\n"
" :type start: int\n"
" :arg stop: The end of the range used to fill the vector.\n"
" :type stop: int\n"
" :arg step: The step between successive values in the vector.\n"
" :type step: int\n");
static PyObject *C_Vector_Range(PyObject *cls, PyObject *args)
{
float *vec;
int stop, vec_num;
int start = 0;
int step = 1;
if (!PyArg_ParseTuple(args, "i|ii:Vector.Range", &start, &stop, &step)) {
return nullptr;
}
switch (PyTuple_GET_SIZE(args)) {
case 1:
vec_num = start;
start = 0;
break;
case 2:
if (start >= stop) {
PyErr_SetString(PyExc_RuntimeError,
"Start value is larger "
"than the stop value");
return nullptr;
}
vec_num = stop - start;
break;
default:
if (start >= stop) {
PyErr_SetString(PyExc_RuntimeError,
"Start value is larger "
"than the stop value");
return nullptr;
}
vec_num = (stop - start);
if ((vec_num % step) != 0) {
vec_num += step;
}
vec_num /= step;
break;
}
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size");
return nullptr;
}
vec = static_cast<float *>(PyMem_Malloc(vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.Range(): "
"problem allocating pointer space");
return nullptr;
}
range_vn_fl(vec, vec_num, float(start), float(step));
return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls);
}
PyDoc_STRVAR(
/* Wrap. */
C_Vector_Linspace_doc,
".. classmethod:: Linspace(start, stop, size)\n"
"\n"
" Create a vector of the specified size which is filled with linearly spaced "
"values between start and stop values.\n"
"\n"
" :arg start: The start of the range used to fill the vector.\n"
" :type start: int\n"
" :arg stop: The end of the range used to fill the vector.\n"
" :type stop: int\n"
" :arg size: The size of the vector to be created.\n"
" :type size: int\n");
static PyObject *C_Vector_Linspace(PyObject *cls, PyObject *args)
{
float *vec;
int vec_num;
float start, end, step;
if (!PyArg_ParseTuple(args, "ffi:Vector.Linspace", &start, &end, &vec_num)) {
return nullptr;
}
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector.Linspace(): invalid size");
return nullptr;
}
step = (end - start) / float(vec_num - 1);
vec = static_cast<float *>(PyMem_Malloc(vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.Linspace(): "
"problem allocating pointer space");
return nullptr;
}
range_vn_fl(vec, vec_num, start, step);
return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls);
}
PyDoc_STRVAR(
/* Wrap. */
C_Vector_Repeat_doc,
".. classmethod:: Repeat(vector, size)\n"
"\n"
" Create a vector by repeating the values in vector until the required size is reached.\n"
"\n"
" :arg vector: The vector to draw values from.\n"
" :type vector: :class:`mathutils.Vector`\n"
" :arg size: The size of the vector to be created.\n"
" :type size: int\n");
static PyObject *C_Vector_Repeat(PyObject *cls, PyObject *args)
{
float *vec;
float *iter_vec = nullptr;
int i, vec_num, value_num;
PyObject *value;
if (!PyArg_ParseTuple(args, "Oi:Vector.Repeat", &value, &vec_num)) {
return nullptr;
}
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector.Repeat(): invalid vec_num");
return nullptr;
}
if ((value_num = mathutils_array_parse_alloc(
&iter_vec, 2, value, "Vector.Repeat(vector, vec_num), invalid 'vector' arg")) == -1)
{
return nullptr;
}
if (iter_vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.Repeat(): "
"problem allocating pointer space");
return nullptr;
}
vec = static_cast<float *>(PyMem_Malloc(vec_num * sizeof(float)));
if (vec == nullptr) {
PyMem_Free(iter_vec);
PyErr_SetString(PyExc_MemoryError,
"Vector.Repeat(): "
"problem allocating pointer space");
return nullptr;
}
i = 0;
while (i < vec_num) {
vec[i] = iter_vec[i % value_num];
i++;
}
PyMem_Free(iter_vec);
return Vector_CreatePyObject_alloc(vec, vec_num, (PyTypeObject *)cls);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Zero
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_zero_doc,
".. method:: zero()\n"
"\n"
" Set all values to zero.\n");
static PyObject *Vector_zero(VectorObject *self)
{
if (BaseMath_Prepare_ForWrite(self) == -1) {
return nullptr;
}
copy_vn_fl(self->vec, self->vec_num, 0.0f);
if (BaseMath_WriteCallback(self) == -1) {
return nullptr;
}
Py_RETURN_NONE;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Normalize
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_normalize_doc,
".. method:: normalize()\n"
"\n"
" Normalize the vector, making the length of the vector always 1.0.\n"
"\n"
" .. warning:: Normalizing a vector where all values are zero has no effect.\n"
"\n"
" .. note:: Normalize works for vectors of all sizes,\n"
" however 4D Vectors w axis is left untouched.\n");
static PyObject *Vector_normalize(VectorObject *self)
{
const int vec_num = (self->vec_num == 4 ? 3 : self->vec_num);
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return nullptr;
}
normalize_vn(self->vec, vec_num);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(
/* Wrap. */
Vector_normalized_doc,
".. method:: normalized()\n"
"\n"
" Return a new, normalized vector.\n"
"\n"
" :return: a normalized copy of the vector\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_normalized(VectorObject *self)
{
return vec__apply_to_copy(Vector_normalize, self);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Resize
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_resize_doc,
".. method:: resize(size=3)\n"
"\n"
" Resize the vector to have size number of elements.\n");
static PyObject *Vector_resize(VectorObject *self, PyObject *value)
{
int vec_num;
if (self->flag & BASE_MATH_FLAG_IS_WRAP) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize(): "
"cannot resize wrapped data - only Python vectors");
return nullptr;
}
if (self->cb_user) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize(): "
"cannot resize a vector that has an owner");
return nullptr;
}
if ((vec_num = PyC_Long_AsI32(value)) == -1) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize(size): "
"expected size argument to be an integer");
return nullptr;
}
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector.resize(): invalid size");
return nullptr;
}
self->vec = static_cast<float *>(PyMem_Realloc(self->vec, (vec_num * sizeof(float))));
if (self->vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.resize(): "
"problem allocating pointer space");
return nullptr;
}
/* If the vector has increased in length, set all new elements to 0.0f */
if (vec_num > self->vec_num) {
copy_vn_fl(self->vec + self->vec_num, vec_num - self->vec_num, 0.0f);
}
self->vec_num = vec_num;
Py_RETURN_NONE;
}
PyDoc_STRVAR(
/* Wrap. */
Vector_resized_doc,
".. method:: resized(size=3)\n"
"\n"
" Return a resized copy of the vector with size number of elements.\n"
"\n"
" :return: a new vector\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_resized(VectorObject *self, PyObject *value)
{
int vec_num;
float *vec;
if ((vec_num = PyLong_AsLong(value)) == -1) {
return nullptr;
}
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector.resized(): invalid size");
return nullptr;
}
vec = static_cast<float *>(PyMem_Malloc(vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.resized(): "
"problem allocating pointer space");
return nullptr;
}
copy_vn_fl(vec, vec_num, 0.0f);
memcpy(vec, self->vec, self->vec_num * sizeof(float));
return Vector_CreatePyObject_alloc(vec, vec_num, nullptr);
}
PyDoc_STRVAR(
/* Wrap. */
Vector_resize_2d_doc,
".. method:: resize_2d()\n"
"\n"
" Resize the vector to 2D (x, y).\n");
static PyObject *Vector_resize_2d(VectorObject *self)
{
if (self->flag & BASE_MATH_FLAG_IS_WRAP) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize_2d(): "
"cannot resize wrapped data - only Python vectors");
return nullptr;
}
if (self->cb_user) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize_2d(): "
"cannot resize a vector that has an owner");
return nullptr;
}
self->vec = static_cast<float *>(PyMem_Realloc(self->vec, sizeof(float[2])));
if (self->vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.resize_2d(): "
"problem allocating pointer space");
return nullptr;
}
self->vec_num = 2;
Py_RETURN_NONE;
}
PyDoc_STRVAR(
/* Wrap. */
Vector_resize_3d_doc,
".. method:: resize_3d()\n"
"\n"
" Resize the vector to 3D (x, y, z).\n");
static PyObject *Vector_resize_3d(VectorObject *self)
{
if (self->flag & BASE_MATH_FLAG_IS_WRAP) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize_3d(): "
"cannot resize wrapped data - only Python vectors");
return nullptr;
}
if (self->cb_user) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize_3d(): "
"cannot resize a vector that has an owner");
return nullptr;
}
self->vec = static_cast<float *>(PyMem_Realloc(self->vec, sizeof(float[3])));
if (self->vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.resize_3d(): "
"problem allocating pointer space");
return nullptr;
}
if (self->vec_num == 2) {
self->vec[2] = 0.0f;
}
self->vec_num = 3;
Py_RETURN_NONE;
}
PyDoc_STRVAR(
/* Wrap. */
Vector_resize_4d_doc,
".. method:: resize_4d()\n"
"\n"
" Resize the vector to 4D (x, y, z, w).\n");
static PyObject *Vector_resize_4d(VectorObject *self)
{
if (self->flag & BASE_MATH_FLAG_IS_WRAP) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize_4d(): "
"cannot resize wrapped data - only Python vectors");
return nullptr;
}
if (self->cb_user) {
PyErr_SetString(PyExc_TypeError,
"Vector.resize_4d(): "
"cannot resize a vector that has an owner");
return nullptr;
}
self->vec = static_cast<float *>(PyMem_Realloc(self->vec, sizeof(float[4])));
if (self->vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector.resize_4d(): "
"problem allocating pointer space");
return nullptr;
}
if (self->vec_num == 2) {
self->vec[2] = 0.0f;
self->vec[3] = 1.0f;
}
else if (self->vec_num == 3) {
self->vec[3] = 1.0f;
}
self->vec_num = 4;
Py_RETURN_NONE;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: To N-dimensions
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_to_2d_doc,
".. method:: to_2d()\n"
"\n"
" Return a 2d copy of the vector.\n"
"\n"
" :return: a new vector\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_to_2d(VectorObject *self)
{
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
return Vector_CreatePyObject(self->vec, 2, Py_TYPE(self));
}
PyDoc_STRVAR(
/* Wrap. */
Vector_to_3d_doc,
".. method:: to_3d()\n"
"\n"
" Return a 3d copy of the vector.\n"
"\n"
" :return: a new vector\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_to_3d(VectorObject *self)
{
float tvec[3] = {0.0f};
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
memcpy(tvec, self->vec, sizeof(float) * std::min(self->vec_num, 3));
return Vector_CreatePyObject(tvec, 3, Py_TYPE(self));
}
PyDoc_STRVAR(
/* Wrap. */
Vector_to_4d_doc,
".. method:: to_4d()\n"
"\n"
" Return a 4d copy of the vector.\n"
"\n"
" :return: a new vector\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_to_4d(VectorObject *self)
{
float tvec[4] = {0.0f, 0.0f, 0.0f, 1.0f};
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
memcpy(tvec, self->vec, sizeof(float) * std::min(self->vec_num, 4));
return Vector_CreatePyObject(tvec, 4, Py_TYPE(self));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: To Tuple
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_to_tuple_doc,
".. method:: to_tuple(precision=-1)\n"
"\n"
" Return this vector as a tuple with.\n"
"\n"
" :arg precision: The number to round the value to in [-1, 21].\n"
" :type precision: int\n"
" :return: the values of the vector rounded by *precision*\n"
" :rtype: tuple[float, ...]\n");
static PyObject *Vector_to_tuple(VectorObject *self, PyObject *args)
{
int ndigits = -1;
if (!PyArg_ParseTuple(args, "|i:to_tuple", &ndigits)) {
return nullptr;
}
if (ndigits > 22 || ndigits < -1) {
PyErr_SetString(PyExc_ValueError,
"Vector.to_tuple(precision): "
"precision must be between -1 and 21");
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
return Vector_to_tuple_ex(self, ndigits);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: To Track Quaternion
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_to_track_quat_doc,
".. method:: to_track_quat(track, up)\n"
"\n"
" Return a quaternion rotation from the vector and the track and up axis.\n"
"\n"
" :arg track: Track axis in ['X', 'Y', 'Z', '-X', '-Y', '-Z'].\n"
" :type track: str\n"
" :arg up: Up axis in ['X', 'Y', 'Z'].\n"
" :type up: str\n"
" :return: rotation from the vector and the track and up axis.\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Vector_to_track_quat(VectorObject *self, PyObject *args)
{
float vec[3], quat[4];
const char *strack = nullptr;
const char *sup = nullptr;
short track = 2, up = 1;
if (!PyArg_ParseTuple(args, "|ss:to_track_quat", &strack, &sup)) {
return nullptr;
}
if (self->vec_num != 3) {
PyErr_SetString(PyExc_TypeError,
"Vector.to_track_quat(): "
"only for 3D vectors");
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (strack) {
const char *axis_err_msg = "only X, -X, Y, -Y, Z or -Z for track axis";
if (strlen(strack) == 2) {
if (strack[0] == '-') {
switch (strack[1]) {
case 'X':
track = 3;
break;
case 'Y':
track = 4;
break;
case 'Z':
track = 5;
break;
default:
PyErr_SetString(PyExc_ValueError, axis_err_msg);
return nullptr;
}
}
else {
PyErr_SetString(PyExc_ValueError, axis_err_msg);
return nullptr;
}
}
else if (strlen(strack) == 1) {
switch (strack[0]) {
case '-':
case 'X':
track = 0;
break;
case 'Y':
track = 1;
break;
case 'Z':
track = 2;
break;
default:
PyErr_SetString(PyExc_ValueError, axis_err_msg);
return nullptr;
}
}
else {
PyErr_SetString(PyExc_ValueError, axis_err_msg);
return nullptr;
}
}
if (sup) {
const char *axis_err_msg = "only X, Y or Z for up axis";
if (strlen(sup) == 1) {
switch (*sup) {
case 'X':
up = 0;
break;
case 'Y':
up = 1;
break;
case 'Z':
up = 2;
break;
default:
PyErr_SetString(PyExc_ValueError, axis_err_msg);
return nullptr;
}
}
else {
PyErr_SetString(PyExc_ValueError, axis_err_msg);
return nullptr;
}
}
if (track == up) {
PyErr_SetString(PyExc_ValueError, "Can't have the same axis for track and up");
return nullptr;
}
/* Flip vector around, since #vec_to_quat expect a vector from target to tracking object
* and the python function expects the inverse (a vector to the target). */
negate_v3_v3(vec, self->vec);
vec_to_quat(quat, vec, track, up);
return Quaternion_CreatePyObject(quat, nullptr);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Orthogonal
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_orthogonal_doc,
".. method:: orthogonal()\n"
"\n"
" Return a perpendicular vector.\n"
"\n"
" :return: a new vector 90 degrees from this vector.\n"
" :rtype: :class:`Vector`\n"
"\n"
" .. note:: the axis is undefined, only use when any orthogonal vector is acceptable.\n");
static PyObject *Vector_orthogonal(VectorObject *self)
{
float vec[3];
if (self->vec_num > 3) {
PyErr_SetString(PyExc_TypeError,
"Vector.orthogonal(): "
"Vector must be 3D or 2D");
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (self->vec_num == 3) {
ortho_v3_v3(vec, self->vec);
}
else {
ortho_v2_v2(vec, self->vec);
}
return Vector_CreatePyObject(vec, self->vec_num, Py_TYPE(self));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Reflect
*
* `Vector.reflect(mirror)`: return a reflected vector on the mirror normal:
* `vec - ((2 * dot(vec, mirror)) * mirror)`.
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_reflect_doc,
".. method:: reflect(mirror)\n"
"\n"
" Return the reflection vector from the *mirror* argument.\n"
"\n"
" :arg mirror: This vector could be a normal from the reflecting surface.\n"
" :type mirror: :class:`Vector`\n"
" :return: The reflected vector matching the size of this vector.\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_reflect(VectorObject *self, PyObject *value)
{
int value_num;
float mirror[3], vec[3];
float reflect[3] = {0.0f};
float tvec[MAX_DIMENSIONS];
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if ((value_num = mathutils_array_parse(
tvec, 2, 4, value, "Vector.reflect(other), invalid 'other' arg")) == -1)
{
return nullptr;
}
if (self->vec_num < 2 || self->vec_num > 4) {
PyErr_SetString(PyExc_ValueError, "Vector must be 2D, 3D or 4D");
return nullptr;
}
mirror[0] = tvec[0];
mirror[1] = tvec[1];
mirror[2] = (value_num > 2) ? tvec[2] : 0.0f;
vec[0] = self->vec[0];
vec[1] = self->vec[1];
vec[2] = (value_num > 2) ? self->vec[2] : 0.0f;
normalize_v3(mirror);
reflect_v3_v3v3(reflect, vec, mirror);
return Vector_CreatePyObject(reflect, self->vec_num, Py_TYPE(self));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Cross Product
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_cross_doc,
".. method:: cross(other)\n"
"\n"
" Return the cross product of this vector and another.\n"
"\n"
" :arg other: The other vector to perform the cross product with.\n"
" :type other: :class:`Vector`\n"
" :return: The cross product as a vector or a float when 2D vectors are used.\n"
" :rtype: :class:`Vector` | float\n"
"\n"
" .. note:: both vectors must be 2D or 3D\n");
static PyObject *Vector_cross(VectorObject *self, PyObject *value)
{
PyObject *ret;
float tvec[3];
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (self->vec_num > 3) {
PyErr_SetString(PyExc_ValueError, "Vector must be 2D or 3D");
return nullptr;
}
if (mathutils_array_parse(
tvec, self->vec_num, self->vec_num, value, "Vector.cross(other), invalid 'other' arg") ==
-1)
{
return nullptr;
}
if (self->vec_num == 3) {
ret = Vector_CreatePyObject(nullptr, 3, Py_TYPE(self));
cross_v3_v3v3(((VectorObject *)ret)->vec, self->vec, tvec);
}
else {
/* size == 2 */
ret = PyFloat_FromDouble(cross_v2v2(self->vec, tvec));
}
return ret;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Dot Product
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_dot_doc,
".. method:: dot(other)\n"
"\n"
" Return the dot product of this vector and another.\n"
"\n"
" :arg other: The other vector to perform the dot product with.\n"
" :type other: :class:`Vector`\n"
" :return: The dot product.\n"
" :rtype: float\n");
static PyObject *Vector_dot(VectorObject *self, PyObject *value)
{
float *tvec;
PyObject *ret;
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (mathutils_array_parse_alloc(
&tvec, self->vec_num, value, "Vector.dot(other), invalid 'other' arg") == -1)
{
return nullptr;
}
ret = PyFloat_FromDouble(dot_vn_vn(self->vec, tvec, self->vec_num));
PyMem_Free(tvec);
return ret;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Angle
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_angle_doc,
".. function:: angle(other, fallback=None)\n"
"\n"
" Return the angle between two vectors.\n"
"\n"
" :arg other: another vector to compare the angle with\n"
" :type other: :class:`Vector`\n"
" :arg fallback: return this when the angle can't be calculated (zero length vector),\n"
" (instead of raising a :exc:`ValueError`).\n"
" :type fallback: Any\n"
" :return: angle in radians or fallback when given\n"
" :rtype: float | Any\n");
static PyObject *Vector_angle(VectorObject *self, PyObject *args)
{
const int vec_num = std::min(self->vec_num, 3); /* 4D angle makes no sense */
float tvec[MAX_DIMENSIONS];
PyObject *value;
double dot = 0.0f, dot_self = 0.0f, dot_other = 0.0f;
int x;
PyObject *fallback = nullptr;
if (!PyArg_ParseTuple(args, "O|O:angle", &value, &fallback)) {
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
/* don't use clamped size, rule of thumb is vector sizes must match,
* even though n this case 'w' is ignored */
if (mathutils_array_parse(
tvec, self->vec_num, self->vec_num, value, "Vector.angle(other), invalid 'other' arg") ==
-1)
{
return nullptr;
}
if (self->vec_num > 4) {
PyErr_SetString(PyExc_ValueError, "Vector must be 2D, 3D or 4D");
return nullptr;
}
for (x = 0; x < vec_num; x++) {
dot_self += double(self->vec[x]) * double(self->vec[x]);
dot_other += double(tvec[x]) * double(tvec[x]);
dot += double(self->vec[x]) * double(tvec[x]);
}
if (!dot_self || !dot_other) {
/* avoid exception */
if (fallback) {
Py_INCREF(fallback);
return fallback;
}
PyErr_SetString(PyExc_ValueError,
"Vector.angle(other): "
"zero length vectors have no valid angle");
return nullptr;
}
return PyFloat_FromDouble(safe_acosf(dot / (sqrt(dot_self) * sqrt(dot_other))));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Angle Signed
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_angle_signed_doc,
".. function:: angle_signed(other, fallback=None)\n"
"\n"
" Return the signed angle between two 2D vectors (clockwise is positive).\n"
"\n"
" :arg other: another vector to compare the angle with\n"
" :type other: :class:`Vector`\n"
" :arg fallback: return this when the angle can't be calculated (zero length vector),\n"
" (instead of raising a :exc:`ValueError`).\n"
" :type fallback: Any\n"
" :return: angle in radians or fallback when given\n"
" :rtype: float | Any\n");
static PyObject *Vector_angle_signed(VectorObject *self, PyObject *args)
{
float tvec[2];
PyObject *value;
PyObject *fallback = nullptr;
if (!PyArg_ParseTuple(args, "O|O:angle_signed", &value, &fallback)) {
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (mathutils_array_parse(
tvec, 2, 2, value, "Vector.angle_signed(other), invalid 'other' arg") == -1)
{
return nullptr;
}
if (self->vec_num != 2) {
PyErr_SetString(PyExc_ValueError, "Vector must be 2D");
return nullptr;
}
if (is_zero_v2(self->vec) || is_zero_v2(tvec)) {
/* avoid exception */
if (fallback) {
Py_INCREF(fallback);
return fallback;
}
PyErr_SetString(PyExc_ValueError,
"Vector.angle_signed(other): "
"zero length vectors have no valid angle");
return nullptr;
}
return PyFloat_FromDouble(angle_signed_v2v2(self->vec, tvec));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Rotation Difference
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_rotation_difference_doc,
".. function:: rotation_difference(other)\n"
"\n"
" Returns a quaternion representing the rotational difference between this\n"
" vector and another.\n"
"\n"
" :arg other: second vector.\n"
" :type other: :class:`Vector`\n"
" :return: the rotational difference between the two vectors.\n"
" :rtype: :class:`Quaternion`\n"
"\n"
" .. note:: 2D vectors raise an :exc:`AttributeError`.\n");
static PyObject *Vector_rotation_difference(VectorObject *self, PyObject *value)
{
float quat[4], vec_a[3], vec_b[3];
if (self->vec_num < 3 || self->vec_num > 4) {
PyErr_SetString(PyExc_ValueError,
"vec.difference(value): "
"expects both vectors to be size 3 or 4");
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (mathutils_array_parse(
vec_b, 3, MAX_DIMENSIONS, value, "Vector.difference(other), invalid 'other' arg") == -1)
{
return nullptr;
}
normalize_v3_v3(vec_a, self->vec);
normalize_v3(vec_b);
rotation_between_vecs_to_quat(quat, vec_a, vec_b);
return Quaternion_CreatePyObject(quat, nullptr);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Project
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_project_doc,
".. function:: project(other)\n"
"\n"
" Return the projection of this vector onto the *other*.\n"
"\n"
" :arg other: second vector.\n"
" :type other: :class:`Vector`\n"
" :return: the parallel projection vector\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_project(VectorObject *self, PyObject *value)
{
const int vec_num = self->vec_num;
float *tvec;
double dot = 0.0f, dot2 = 0.0f;
int x;
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (mathutils_array_parse_alloc(
&tvec, vec_num, value, "Vector.project(other), invalid 'other' arg") == -1)
{
return nullptr;
}
/* get dot products */
for (x = 0; x < vec_num; x++) {
dot += double(self->vec[x] * tvec[x]);
dot2 += double(tvec[x] * tvec[x]);
}
/* projection */
dot /= dot2;
for (x = 0; x < vec_num; x++) {
tvec[x] *= float(dot);
}
return Vector_CreatePyObject_alloc(tvec, vec_num, Py_TYPE(self));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Linear Interpolation
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_lerp_doc,
".. function:: lerp(other, factor)\n"
"\n"
" Returns the interpolation of two vectors.\n"
"\n"
" :arg other: value to interpolate with.\n"
" :type other: :class:`Vector`\n"
" :arg factor: The interpolation value in [0.0, 1.0].\n"
" :type factor: float\n"
" :return: The interpolated vector.\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_lerp(VectorObject *self, PyObject *args)
{
const int vec_num = self->vec_num;
PyObject *value = nullptr;
float fac;
float *tvec;
if (!PyArg_ParseTuple(args, "Of:lerp", &value, &fac)) {
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (mathutils_array_parse_alloc(
&tvec, vec_num, value, "Vector.lerp(other), invalid 'other' arg") == -1)
{
return nullptr;
}
interp_vn_vn(tvec, self->vec, 1.0f - fac, vec_num);
return Vector_CreatePyObject_alloc(tvec, vec_num, Py_TYPE(self));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Spherical Interpolation
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_slerp_doc,
".. function:: slerp(other, factor, fallback=None)\n"
"\n"
" Returns the interpolation of two non-zero vectors (spherical coordinates).\n"
"\n"
" :arg other: value to interpolate with.\n"
" :type other: :class:`Vector`\n"
" :arg factor: The interpolation value typically in [0.0, 1.0].\n"
" :type factor: float\n"
" :arg fallback: return this when the vector can't be calculated (zero length "
"vector or direct opposites),\n"
" (instead of raising a :exc:`ValueError`).\n"
" :type fallback: Any\n"
" :return: The interpolated vector.\n"
" :rtype: :class:`Vector`\n");
static PyObject *Vector_slerp(VectorObject *self, PyObject *args)
{
const int vec_num = self->vec_num;
PyObject *value = nullptr;
float fac, cosom, w[2];
float self_vec[3], other_vec[3], ret_vec[3];
float self_len_sq, other_len_sq;
int x;
PyObject *fallback = nullptr;
if (!PyArg_ParseTuple(args, "Of|O:slerp", &value, &fac, &fallback)) {
return nullptr;
}
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
if (self->vec_num > 3) {
PyErr_SetString(PyExc_ValueError, "Vector must be 2D or 3D");
return nullptr;
}
if (mathutils_array_parse(
other_vec, vec_num, vec_num, value, "Vector.slerp(other), invalid 'other' arg") == -1)
{
return nullptr;
}
self_len_sq = normalize_vn_vn(self_vec, self->vec, vec_num);
other_len_sq = normalize_vn(other_vec, vec_num);
/* use fallbacks for zero length vectors */
if (UNLIKELY((self_len_sq < FLT_EPSILON) || (other_len_sq < FLT_EPSILON))) {
/* avoid exception */
if (fallback) {
Py_INCREF(fallback);
return fallback;
}
PyErr_SetString(PyExc_ValueError,
"Vector.slerp(): "
"zero length vectors unsupported");
return nullptr;
}
/* We have sane state, execute slerp */
cosom = float(dot_vn_vn(self_vec, other_vec, vec_num));
/* direct opposite, can't slerp */
if (UNLIKELY(cosom < (-1.0f + FLT_EPSILON))) {
/* avoid exception */
if (fallback) {
Py_INCREF(fallback);
return fallback;
}
PyErr_SetString(PyExc_ValueError,
"Vector.slerp(): "
"opposite vectors unsupported");
return nullptr;
}
interp_dot_slerp(fac, cosom, w);
for (x = 0; x < vec_num; x++) {
ret_vec[x] = (w[0] * self_vec[x]) + (w[1] * other_vec[x]);
}
return Vector_CreatePyObject(ret_vec, vec_num, Py_TYPE(self));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Rotate
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_rotate_doc,
".. function:: rotate(other)\n"
"\n"
" Rotate the vector by a rotation value.\n"
"\n"
" .. note:: 2D vectors are a special case that can only be rotated by a 2x2 matrix.\n"
"\n"
" :arg other: rotation component of mathutils value\n"
" :type other: :class:`Euler` | :class:`Quaternion` | :class:`Matrix`\n");
static PyObject *Vector_rotate(VectorObject *self, PyObject *value)
{
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return nullptr;
}
if (self->vec_num == 2) {
/* Special case for 2D Vector with 2x2 matrix, so we avoid resizing it to a 3x3. */
float other_rmat[2][2];
MatrixObject *pymat;
if (!Matrix_Parse2x2(value, &pymat)) {
return nullptr;
}
normalize_m2_m2(other_rmat, (const float(*)[2])pymat->matrix);
/* Equivalent to a rotation along the Z axis. */
mul_m2_v2(other_rmat, self->vec);
}
else {
float other_rmat[3][3];
if (mathutils_any_to_rotmat(other_rmat, value, "Vector.rotate(value)") == -1) {
return nullptr;
}
mul_m3_v3(other_rmat, self->vec);
}
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Negate
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_negate_doc,
".. method:: negate()\n"
"\n"
" Set all values to their negative.\n");
static PyObject *Vector_negate(VectorObject *self)
{
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
negate_vn(self->vec, self->vec_num);
(void)BaseMath_WriteCallback(self); /* already checked for error */
Py_RETURN_NONE;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Methods: Copy/Deep-Copy
* \{ */
PyDoc_STRVAR(
/* Wrap. */
Vector_copy_doc,
".. function:: copy()\n"
"\n"
" Returns a copy of this vector.\n"
"\n"
" :return: A copy of the vector.\n"
" :rtype: :class:`Vector`\n"
"\n"
" .. note:: use this to get a copy of a wrapped vector with\n"
" no reference to the original data.\n");
static PyObject *Vector_copy(VectorObject *self)
{
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
return Vector_CreatePyObject(self->vec, self->vec_num, Py_TYPE(self));
}
static PyObject *Vector_deepcopy(VectorObject *self, PyObject *args)
{
if (!PyC_CheckArgs_DeepCopy(args)) {
return nullptr;
}
return Vector_copy(self);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: `__repr__` & `__str__`
* \{ */
static PyObject *Vector_repr(VectorObject *self)
{
PyObject *ret, *tuple;
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
tuple = Vector_to_tuple_ex(self, -1);
ret = PyUnicode_FromFormat("Vector(%R)", tuple);
Py_DECREF(tuple);
return ret;
}
#ifndef MATH_STANDALONE
static PyObject *Vector_str(VectorObject *self)
{
int i;
DynStr *ds;
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
ds = BLI_dynstr_new();
BLI_dynstr_append(ds, "<Vector (");
for (i = 0; i < self->vec_num; i++) {
BLI_dynstr_appendf(ds, i ? ", %.4f" : "%.4f", self->vec[i]);
}
BLI_dynstr_append(ds, ")>");
return mathutils_dynstr_to_py(ds); /* frees ds */
}
#endif
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Rich Compare
* \{ */
static PyObject *Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
VectorObject *vecA = nullptr, *vecB = nullptr;
int result = 0;
const double epsilon = 0.000001f;
double lenA, lenB;
if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)) {
if (comparison_type == Py_NE) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
vecA = (VectorObject *)objectA;
vecB = (VectorObject *)objectB;
if (BaseMath_ReadCallback(vecA) == -1 || BaseMath_ReadCallback(vecB) == -1) {
return nullptr;
}
if (vecA->vec_num != vecB->vec_num) {
if (comparison_type == Py_NE) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
switch (comparison_type) {
case Py_LT:
lenA = len_squared_vn(vecA->vec, vecA->vec_num);
lenB = len_squared_vn(vecB->vec, vecB->vec_num);
if (lenA < lenB) {
result = 1;
}
break;
case Py_LE:
lenA = len_squared_vn(vecA->vec, vecA->vec_num);
lenB = len_squared_vn(vecB->vec, vecB->vec_num);
if (lenA < lenB) {
result = 1;
}
else {
result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
}
break;
case Py_EQ:
result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->vec_num, 1);
break;
case Py_NE:
result = !EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->vec_num, 1);
break;
case Py_GT:
lenA = len_squared_vn(vecA->vec, vecA->vec_num);
lenB = len_squared_vn(vecB->vec, vecB->vec_num);
if (lenA > lenB) {
result = 1;
}
break;
case Py_GE:
lenA = len_squared_vn(vecA->vec, vecA->vec_num);
lenB = len_squared_vn(vecB->vec, vecB->vec_num);
if (lenA > lenB) {
result = 1;
}
else {
result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
}
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Hash (`__hash__`)
* \{ */
static Py_hash_t Vector_hash(VectorObject *self)
{
if (BaseMath_ReadCallback(self) == -1) {
return -1;
}
if (BaseMathObject_Prepare_ForHash(self) == -1) {
return -1;
}
return mathutils_array_hash(self->vec, self->vec_num);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Sequence & Mapping Protocols Implementation
* \{ */
/** Sequence length: `len(object)`. */
static Py_ssize_t Vector_len(VectorObject *self)
{
return self->vec_num;
}
static PyObject *vector_item_internal(VectorObject *self, int i, const bool is_attr)
{
if (i < 0) {
i = self->vec_num - i;
}
if (i < 0 || i >= self->vec_num) {
if (is_attr) {
PyErr_Format(PyExc_AttributeError,
"Vector.%c: unavailable on %dd vector",
*(((const char *)"xyzw") + i),
self->vec_num);
}
else {
PyErr_SetString(PyExc_IndexError, "vector[index]: out of range");
}
return nullptr;
}
if (BaseMath_ReadIndexCallback(self, i) == -1) {
return nullptr;
}
return PyFloat_FromDouble(self->vec[i]);
}
/** Sequence accessor (get): `x = object[i]`. */
static PyObject *Vector_item(VectorObject *self, Py_ssize_t i)
{
return vector_item_internal(self, i, false);
}
static int vector_ass_item_internal(VectorObject *self, int i, PyObject *value, const bool is_attr)
{
float scalar;
if (BaseMath_Prepare_ForWrite(self) == -1) {
return -1;
}
if ((scalar = PyFloat_AsDouble(value)) == -1.0f && PyErr_Occurred()) {
/* parsed item not a number */
PyErr_SetString(PyExc_TypeError,
"vector[index] = x: "
"assigned value not a number");
return -1;
}
if (i < 0) {
i = self->vec_num - i;
}
if (i < 0 || i >= self->vec_num) {
if (is_attr) {
PyErr_Format(PyExc_AttributeError,
"Vector.%c = x: unavailable on %dd vector",
*(((const char *)"xyzw") + i),
self->vec_num);
}
else {
PyErr_SetString(PyExc_IndexError,
"vector[index] = x: "
"assignment index out of range");
}
return -1;
}
self->vec[i] = scalar;
if (BaseMath_WriteIndexCallback(self, i) == -1) {
return -1;
}
return 0;
}
/** Sequence accessor (set): `object[i] = x`. */
static int Vector_ass_item(VectorObject *self, Py_ssize_t i, PyObject *value)
{
return vector_ass_item_internal(self, i, value, false);
}
/** Sequence slice accessor (get): `x = object[i:j]`. */
static PyObject *Vector_slice(VectorObject *self, int begin, int end)
{
PyObject *tuple;
int count;
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
CLAMP(begin, 0, self->vec_num);
if (end < 0) {
end = self->vec_num + end + 1;
}
CLAMP(end, 0, self->vec_num);
begin = std::min(begin, end);
tuple = PyTuple_New(end - begin);
for (count = begin; count < end; count++) {
PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->vec[count]));
}
return tuple;
}
/** Sequence slice accessor (set): `object[i:j] = x`. */
static int Vector_ass_slice(VectorObject *self, int begin, int end, PyObject *seq)
{
int vec_num = 0;
float *vec = nullptr;
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return -1;
}
CLAMP(begin, 0, self->vec_num);
CLAMP(end, 0, self->vec_num);
begin = std::min(begin, end);
vec_num = (end - begin);
if (mathutils_array_parse_alloc(&vec, vec_num, seq, "vector[begin:end] = [...]") == -1) {
return -1;
}
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"vec[:] = seq: "
"problem allocating pointer space");
return -1;
}
/* Parsed well - now set in vector. */
memcpy(self->vec + begin, vec, vec_num * sizeof(float));
PyMem_Free(vec);
if (BaseMath_WriteCallback(self) == -1) {
return -1;
}
return 0;
}
/** Sequence generic subscript (get): `x = object[...]`. */
static PyObject *Vector_subscript(VectorObject *self, PyObject *item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred()) {
return nullptr;
}
if (i < 0) {
i += self->vec_num;
}
return Vector_item(self, i);
}
if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, self->vec_num, &start, &stop, &step, &slicelength) < 0) {
return nullptr;
}
if (slicelength <= 0) {
return PyTuple_New(0);
}
if (step == 1) {
return Vector_slice(self, start, stop);
}
PyErr_SetString(PyExc_IndexError, "slice steps not supported with vectors");
return nullptr;
}
PyErr_Format(
PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
return nullptr;
}
/** Sequence generic subscript (set): `object[...] = x`. */
static int Vector_ass_subscript(VectorObject *self, PyObject *item, PyObject *value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
if (i < 0) {
i += self->vec_num;
}
return Vector_ass_item(self, i, value);
}
if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, self->vec_num, &start, &stop, &step, &slicelength) < 0) {
return -1;
}
if (step == 1) {
return Vector_ass_slice(self, start, stop, value);
}
PyErr_SetString(PyExc_IndexError, "slice steps not supported with vectors");
return -1;
}
PyErr_Format(
PyExc_TypeError, "vector indices must be integers, not %.200s", Py_TYPE(item)->tp_name);
return -1;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Numeric Protocol Implementation
* \{ */
/** Addition: `object + object`. */
static PyObject *Vector_add(PyObject *v1, PyObject *v2)
{
VectorObject *vec1 = nullptr, *vec2 = nullptr;
float *vec = nullptr;
if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) {
PyErr_Format(PyExc_AttributeError,
"Vector addition: (%s + %s) "
"invalid type for this operation",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
vec1 = (VectorObject *)v1;
vec2 = (VectorObject *)v2;
if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) {
return nullptr;
}
/* VECTOR + VECTOR. */
if (vec1->vec_num != vec2->vec_num) {
PyErr_SetString(PyExc_AttributeError,
"Vector addition: "
"vectors must have the same dimensions for this operation");
return nullptr;
}
vec = static_cast<float *>(PyMem_Malloc(vec1->vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector(): "
"problem allocating pointer space");
return nullptr;
}
add_vn_vnvn(vec, vec1->vec, vec2->vec, vec1->vec_num);
return Vector_CreatePyObject_alloc(vec, vec1->vec_num, Py_TYPE(v1));
}
/** Addition in-place: `object += object`. */
static PyObject *Vector_iadd(PyObject *v1, PyObject *v2)
{
VectorObject *vec1 = nullptr, *vec2 = nullptr;
if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) {
PyErr_Format(PyExc_AttributeError,
"Vector addition: (%s += %s) "
"invalid type for this operation",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
vec1 = (VectorObject *)v1;
vec2 = (VectorObject *)v2;
if (vec1->vec_num != vec2->vec_num) {
PyErr_SetString(PyExc_AttributeError,
"Vector addition: "
"vectors must have the same dimensions for this operation");
return nullptr;
}
if (BaseMath_ReadCallback_ForWrite(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) {
return nullptr;
}
add_vn_vn(vec1->vec, vec2->vec, vec1->vec_num);
(void)BaseMath_WriteCallback(vec1);
Py_INCREF(v1);
return v1;
}
/** Subtraction: `object - object`. */
static PyObject *Vector_sub(PyObject *v1, PyObject *v2)
{
VectorObject *vec1 = nullptr, *vec2 = nullptr;
float *vec;
if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) {
PyErr_Format(PyExc_AttributeError,
"Vector subtraction: (%s - %s) "
"invalid type for this operation",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
vec1 = (VectorObject *)v1;
vec2 = (VectorObject *)v2;
if (BaseMath_ReadCallback(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) {
return nullptr;
}
if (vec1->vec_num != vec2->vec_num) {
PyErr_SetString(PyExc_AttributeError,
"Vector subtraction: "
"vectors must have the same dimensions for this operation");
return nullptr;
}
vec = static_cast<float *>(PyMem_Malloc(vec1->vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"Vector(): "
"problem allocating pointer space");
return nullptr;
}
sub_vn_vnvn(vec, vec1->vec, vec2->vec, vec1->vec_num);
return Vector_CreatePyObject_alloc(vec, vec1->vec_num, Py_TYPE(v1));
}
/** Subtraction in-place: `object -= object`. */
static PyObject *Vector_isub(PyObject *v1, PyObject *v2)
{
VectorObject *vec1 = nullptr, *vec2 = nullptr;
if (!VectorObject_Check(v1) || !VectorObject_Check(v2)) {
PyErr_Format(PyExc_AttributeError,
"Vector subtraction: (%s -= %s) "
"invalid type for this operation",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
vec1 = (VectorObject *)v1;
vec2 = (VectorObject *)v2;
if (vec1->vec_num != vec2->vec_num) {
PyErr_SetString(PyExc_AttributeError,
"Vector subtraction: "
"vectors must have the same dimensions for this operation");
return nullptr;
}
if (BaseMath_ReadCallback_ForWrite(vec1) == -1 || BaseMath_ReadCallback(vec2) == -1) {
return nullptr;
}
sub_vn_vn(vec1->vec, vec2->vec, vec1->vec_num);
(void)BaseMath_WriteCallback(vec1);
Py_INCREF(v1);
return v1;
}
/* Multiply internal implementation `object * object`, `object *= object`. */
int column_vector_multiplication(float r_vec[MAX_DIMENSIONS], VectorObject *vec, MatrixObject *mat)
{
float vec_cpy[MAX_DIMENSIONS];
int row, col, z = 0;
if (mat->col_num != vec->vec_num) {
if (mat->col_num == 4 && vec->vec_num == 3) {
vec_cpy[3] = 1.0f;
}
else {
PyErr_SetString(PyExc_ValueError,
"matrix * vector: "
"len(matrix.col) and len(vector) must be the same, "
"except for 4x4 matrix * 3D vector.");
return -1;
}
}
memcpy(vec_cpy, vec->vec, vec->vec_num * sizeof(float));
r_vec[3] = 1.0f;
for (row = 0; row < mat->row_num; row++) {
double dot = 0.0f;
for (col = 0; col < mat->col_num; col++) {
dot += double(MATRIX_ITEM(mat, row, col) * vec_cpy[col]);
}
r_vec[z++] = float(dot);
}
return 0;
}
static PyObject *vector_mul_float(VectorObject *vec, const float scalar)
{
float *tvec = static_cast<float *>(PyMem_Malloc(vec->vec_num * sizeof(float)));
if (tvec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"vec * float: "
"problem allocating pointer space");
return nullptr;
}
mul_vn_vn_fl(tvec, vec->vec, vec->vec_num, scalar);
return Vector_CreatePyObject_alloc(tvec, vec->vec_num, Py_TYPE(vec));
}
static PyObject *vector_mul_vec(VectorObject *vec1, VectorObject *vec2)
{
float *tvec = static_cast<float *>(PyMem_Malloc(vec1->vec_num * sizeof(float)));
if (tvec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"vec * vec: "
"problem allocating pointer space");
return nullptr;
}
mul_vn_vnvn(tvec, vec1->vec, vec2->vec, vec1->vec_num);
return Vector_CreatePyObject_alloc(tvec, vec1->vec_num, Py_TYPE(vec1));
}
/** Multiplication (element-wise or scalar): `object * object`. */
static PyObject *Vector_mul(PyObject *v1, PyObject *v2)
{
VectorObject *vec1 = nullptr, *vec2 = nullptr;
float scalar;
if (VectorObject_Check(v1)) {
vec1 = (VectorObject *)v1;
if (BaseMath_ReadCallback(vec1) == -1) {
return nullptr;
}
}
if (VectorObject_Check(v2)) {
vec2 = (VectorObject *)v2;
if (BaseMath_ReadCallback(vec2) == -1) {
return nullptr;
}
}
/* Intentionally don't support (Quaternion) here, uses reverse order instead. */
/* make sure v1 is always the vector */
if (vec1 && vec2) {
if (vec1->vec_num != vec2->vec_num) {
PyErr_SetString(PyExc_ValueError,
"Vector multiplication: "
"vectors must have the same dimensions for this operation");
return nullptr;
}
/* element-wise product */
return vector_mul_vec(vec1, vec2);
}
if (vec1) {
if (((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) == 0) { /* VEC * FLOAT */
return vector_mul_float(vec1, scalar);
}
}
else if (vec2) {
if (((scalar = PyFloat_AsDouble(v1)) == -1.0f && PyErr_Occurred()) == 0) { /* FLOAT * VEC */
return vector_mul_float(vec2, scalar);
}
}
PyErr_Format(PyExc_TypeError,
"Element-wise multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
/** Multiplication in-place (element-wise or scalar): `object *= object`. */
static PyObject *Vector_imul(PyObject *v1, PyObject *v2)
{
VectorObject *vec1 = nullptr, *vec2 = nullptr;
float scalar;
if (VectorObject_Check(v1)) {
vec1 = (VectorObject *)v1;
if (BaseMath_ReadCallback(vec1) == -1) {
return nullptr;
}
}
if (VectorObject_Check(v2)) {
vec2 = (VectorObject *)v2;
if (BaseMath_ReadCallback(vec2) == -1) {
return nullptr;
}
}
if (BaseMath_ReadCallback_ForWrite(vec1) == -1) {
return nullptr;
}
/* Intentionally don't support (Quaternion, Matrix) here, uses reverse order instead. */
if (vec1 && vec2) {
if (vec1->vec_num != vec2->vec_num) {
PyErr_SetString(PyExc_ValueError,
"Vector multiplication: "
"vectors must have the same dimensions for this operation");
return nullptr;
}
/* Element-wise product in-place. */
mul_vn_vn(vec1->vec, vec2->vec, vec1->vec_num);
}
else if (vec1 && (((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) == 0)) {
/* VEC *= FLOAT */
mul_vn_fl(vec1->vec, vec1->vec_num, scalar);
}
else {
PyErr_Format(PyExc_TypeError,
"In place element-wise multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
(void)BaseMath_WriteCallback(vec1);
Py_INCREF(v1);
return v1;
}
/** Multiplication (matrix multiply): `object @ object`. */
static PyObject *Vector_matmul(PyObject *v1, PyObject *v2)
{
VectorObject *vec1 = nullptr, *vec2 = nullptr;
int vec_num;
if (VectorObject_Check(v1)) {
vec1 = (VectorObject *)v1;
if (BaseMath_ReadCallback(vec1) == -1) {
return nullptr;
}
}
if (VectorObject_Check(v2)) {
vec2 = (VectorObject *)v2;
if (BaseMath_ReadCallback(vec2) == -1) {
return nullptr;
}
}
/* Intentionally don't support (Quaternion) here, uses reverse order instead. */
/* make sure v1 is always the vector */
if (vec1 && vec2) {
if (vec1->vec_num != vec2->vec_num) {
PyErr_SetString(PyExc_ValueError,
"Vector multiplication: "
"vectors must have the same dimensions for this operation");
return nullptr;
}
/* Dot product. */
return PyFloat_FromDouble(dot_vn_vn(vec1->vec, vec2->vec, vec1->vec_num));
}
if (vec1) {
if (MatrixObject_Check(v2)) {
/* VEC @ MATRIX */
float tvec[MAX_DIMENSIONS];
if (BaseMath_ReadCallback((MatrixObject *)v2) == -1) {
return nullptr;
}
if (row_vector_multiplication(tvec, vec1, (MatrixObject *)v2) == -1) {
return nullptr;
}
if (((MatrixObject *)v2)->row_num == 4 && vec1->vec_num == 3) {
vec_num = 3;
}
else {
vec_num = ((MatrixObject *)v2)->col_num;
}
return Vector_CreatePyObject(tvec, vec_num, Py_TYPE(vec1));
}
}
PyErr_Format(PyExc_TypeError,
"Vector multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
/** Multiplication in-place (matrix multiply): `object @= object`. */
static PyObject *Vector_imatmul(PyObject *v1, PyObject *v2)
{
PyErr_Format(PyExc_TypeError,
"In place vector multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(v1)->tp_name,
Py_TYPE(v2)->tp_name);
return nullptr;
}
/** Division: `object / object`. */
static PyObject *Vector_div(PyObject *v1, PyObject *v2)
{
float *vec = nullptr, scalar;
VectorObject *vec1 = nullptr;
if (!VectorObject_Check(v1)) { /* not a vector */
PyErr_SetString(PyExc_TypeError,
"Vector division: "
"Vector must be divided by a float");
return nullptr;
}
vec1 = (VectorObject *)v1; /* vector */
if (BaseMath_ReadCallback(vec1) == -1) {
return nullptr;
}
if ((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) {
/* parsed item not a number */
PyErr_SetString(PyExc_TypeError,
"Vector division: "
"Vector must be divided by a float");
return nullptr;
}
if (scalar == 0.0f) {
PyErr_SetString(PyExc_ZeroDivisionError,
"Vector division: "
"divide by zero error");
return nullptr;
}
vec = static_cast<float *>(PyMem_Malloc(vec1->vec_num * sizeof(float)));
if (vec == nullptr) {
PyErr_SetString(PyExc_MemoryError,
"vec / value: "
"problem allocating pointer space");
return nullptr;
}
mul_vn_vn_fl(vec, vec1->vec, vec1->vec_num, 1.0f / scalar);
return Vector_CreatePyObject_alloc(vec, vec1->vec_num, Py_TYPE(v1));
}
/** Division in-place: `object /= object`. */
static PyObject *Vector_idiv(PyObject *v1, PyObject *v2)
{
float scalar;
VectorObject *vec1 = (VectorObject *)v1;
if (BaseMath_ReadCallback_ForWrite(vec1) == -1) {
return nullptr;
}
if ((scalar = PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) {
/* parsed item not a number */
PyErr_SetString(PyExc_TypeError,
"Vector division: "
"Vector must be divided by a float");
return nullptr;
}
if (scalar == 0.0f) {
PyErr_SetString(PyExc_ZeroDivisionError,
"Vector division: "
"divide by zero error");
return nullptr;
}
mul_vn_fl(vec1->vec, vec1->vec_num, 1.0f / scalar);
(void)BaseMath_WriteCallback(vec1);
Py_INCREF(v1);
return v1;
}
/** Negative (returns the negative of this object): `-object`. */
static PyObject *Vector_neg(VectorObject *self)
{
float *tvec;
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
tvec = static_cast<float *>(PyMem_Malloc(self->vec_num * sizeof(float)));
negate_vn_vn(tvec, self->vec, self->vec_num);
return Vector_CreatePyObject_alloc(tvec, self->vec_num, Py_TYPE(self));
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Protocol Declarations
* \{ */
static PySequenceMethods Vector_SeqMethods = {
/*sq_length*/ (lenfunc)Vector_len,
/*sq_concat*/ nullptr,
/*sq_repeat*/ nullptr,
/*sq_item*/ (ssizeargfunc)Vector_item,
/*was_sq_slice*/ nullptr, /* DEPRECATED. */
/*sq_ass_item*/ (ssizeobjargproc)Vector_ass_item,
/*was_sq_ass_slice*/ nullptr, /* DEPRECATED. */
/*sq_contains*/ nullptr,
/*sq_inplace_concat*/ nullptr,
/*sq_inplace_repeat*/ nullptr,
};
static PyMappingMethods Vector_AsMapping = {
/*mp_length*/ (lenfunc)Vector_len,
/*mp_subscript*/ (binaryfunc)Vector_subscript,
/*mp_ass_subscript*/ (objobjargproc)Vector_ass_subscript,
};
static PyNumberMethods Vector_NumMethods = {
/*nb_add*/ (binaryfunc)Vector_add,
/*nb_subtract*/ (binaryfunc)Vector_sub,
/*nb_multiply*/ (binaryfunc)Vector_mul,
/*nb_remainder*/ nullptr,
/*nb_divmod*/ nullptr,
/*nb_power*/ nullptr,
/*nb_negative*/ (unaryfunc)Vector_neg,
/*nb_positive*/ (unaryfunc)Vector_copy,
/*nb_absolute*/ nullptr,
/*nb_bool*/ nullptr,
/*nb_invert*/ nullptr,
/*nb_lshift*/ nullptr,
/*nb_rshift*/ nullptr,
/*nb_and*/ nullptr,
/*nb_xor*/ nullptr,
/*nb_or*/ nullptr,
/*nb_int*/ nullptr,
/*nb_reserved*/ nullptr,
/*nb_float*/ nullptr,
/*nb_inplace_add*/ Vector_iadd,
/*nb_inplace_subtract*/ Vector_isub,
/*nb_inplace_multiply*/ Vector_imul,
/*nb_inplace_remainder*/ nullptr,
/*nb_inplace_power*/ nullptr,
/*nb_inplace_lshift*/ nullptr,
/*nb_inplace_rshift*/ nullptr,
/*nb_inplace_and*/ nullptr,
/*nb_inplace_xor*/ nullptr,
/*nb_inplace_or*/ nullptr,
/*nb_floor_divide*/ nullptr,
/*nb_true_divide*/ Vector_div,
/*nb_inplace_floor_divide*/ nullptr,
/*nb_inplace_true_divide*/ Vector_idiv,
/*nb_index*/ nullptr,
/*nb_matrix_multiply*/ (binaryfunc)Vector_matmul,
/*nb_inplace_matrix_multiply*/ (binaryfunc)Vector_imatmul,
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Get/Set Item Implementation
* \{ */
/* Vector axis: `vector.x/y/z/w`. */
PyDoc_STRVAR(
/* Wrap. */
Vector_axis_x_doc,
"Vector X axis.\n"
"\n"
":type: float");
PyDoc_STRVAR(
/* Wrap. */
Vector_axis_y_doc,
"Vector Y axis.\n"
"\n"
":type: float");
PyDoc_STRVAR(
/* Wrap. */
Vector_axis_z_doc,
"Vector Z axis (3D Vectors only).\n"
"\n"
":type: float");
PyDoc_STRVAR(
/* Wrap. */
Vector_axis_w_doc,
"Vector W axis (4D Vectors only).\n"
"\n"
":type: float");
static PyObject *Vector_axis_get(VectorObject *self, void *type)
{
return vector_item_internal(self, POINTER_AS_INT(type), true);
}
static int Vector_axis_set(VectorObject *self, PyObject *value, void *type)
{
return vector_ass_item_internal(self, POINTER_AS_INT(type), value, true);
}
/* `Vector.length`. */
PyDoc_STRVAR(
/* Wrap. */
Vector_length_doc,
"Vector Length.\n"
"\n"
":type: float");
static PyObject *Vector_length_get(VectorObject *self, void * /*closure*/)
{
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
return PyFloat_FromDouble(sqrt(dot_vn_vn(self->vec, self->vec, self->vec_num)));
}
static int Vector_length_set(VectorObject *self, PyObject *value)
{
double dot = 0.0f, param;
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return -1;
}
if ((param = PyFloat_AsDouble(value)) == -1.0 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "length must be set to a number");
return -1;
}
if (param < 0.0) {
PyErr_SetString(PyExc_ValueError, "cannot set a vectors length to a negative value");
return -1;
}
if (param == 0.0) {
copy_vn_fl(self->vec, self->vec_num, 0.0f);
return 0;
}
dot = dot_vn_vn(self->vec, self->vec, self->vec_num);
if (!dot) {
/* can't sqrt zero */
return 0;
}
dot = sqrt(dot);
if (dot == param) {
return 0;
}
dot = dot / param;
mul_vn_fl(self->vec, self->vec_num, 1.0 / dot);
(void)BaseMath_WriteCallback(self); /* checked already */
return 0;
}
/* `Vector.length_squared`. */
PyDoc_STRVAR(
/* Wrap. */
Vector_length_squared_doc,
"Vector length squared (v.dot(v)).\n"
"\n"
":type: float");
static PyObject *Vector_length_squared_get(VectorObject *self, void * /*closure*/)
{
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
return PyFloat_FromDouble(dot_vn_vn(self->vec, self->vec, self->vec_num));
}
/* `Vector.xyzw`, etc.. */
PyDoc_STRVAR(
/* Wrap. */
Vector_swizzle_doc,
":type: :class:`Vector`");
/**
* Python script used to make swizzle array:
*
* \code{.py}
* SWIZZLE_BITS_PER_AXIS = 3
* SWIZZLE_VALID_AXIS = 0x4
*
* axis_dict = {}
* axis_pos = {"x": 0, "y": 1, "z": 2, "w": 3}
* axis_chars = "xyzw"
* while len(axis_chars) >= 2:
* for axis_0 in axis_chars:
* axis_0_pos = axis_pos[axis_0]
* for axis_1 in axis_chars:
* axis_1_pos = axis_pos[axis_1]
* axis_dict[axis_0 + axis_1] = (
* "(({:d} | SWIZZLE_VALID_AXIS) | "
* "(({:d} | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS))"
* ).format(axis_0_pos, axis_1_pos)
* if len(axis_chars) <= 2:
* continue
* for axis_2 in axis_chars:
* axis_2_pos = axis_pos[axis_2]
* axis_dict[axis_0 + axis_1 + axis_2] = (
* "(({:d} | SWIZZLE_VALID_AXIS) | "
* "(({:d} | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS) | "
* "(({:d} | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2)))"
* ).format(axis_0_pos, axis_1_pos, axis_2_pos)
* if len(axis_chars) <= 3:
* continue
* for axis_3 in axis_chars:
* axis_3_pos = axis_pos[axis_3]
* axis_dict[axis_0 + axis_1 + axis_2 + axis_3] = (
* "(({:d} | SWIZZLE_VALID_AXIS) | "
* "(({:d} | SWIZZLE_VALID_AXIS) << SWIZZLE_BITS_PER_AXIS) | "
* "(({:d} | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2)) | "
* "(({:d} | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 3)))"
* ).format(axis_0_pos, axis_1_pos, axis_2_pos, axis_3_pos)
*
* axis_chars = axis_chars[:-1]
* items = list(axis_dict.items())
* items.sort(
* key=lambda a: a[0].replace("x", "0").replace("y", "1").replace("z", "2").replace("w", "3")
* )
*
* for size in range(2, 5):
* for rw_pass in (True, False):
* key_args = ", ".join(list("abcd"[:size]))
*
* print("#define VECTOR_SWIZZLE{:d}_{:s}_DEF(attr, {:s}) \\".format(
* size,
* "RW" if rw_pass else "RO",
* key_args,
* ))
* print(" {{attr, (getter){:s}, (setter){:s}, {:s}, SWIZZLE{:d}({:s}), }}".format(
* "Vector_swizzle_get",
* "Vector_swizzle_set" if rw_pass else "nullptr",
* "Vector_swizzle_doc",
* size,
* key_args,
* ))
* print()
*
* unique = set()
* for key, val in items:
* num = eval(val)
* key_args = ", ".join(["{:d}".format(axis_pos[c]) for c in key.lower()])
* macro = "VECTOR_SWIZZLE{:d}_{:s}_DEF".format(
* len(key),
* "RW" if len(set(key)) == len(key) else "RO",
* )
* print(" {:s}(\"{:s}\", {:s}),".format(
* macro,
* key,
* key_args,
* ))
* unique.add(num)
*
* if len(unique) != len(items):
* print("ERROR, duplicate values found")
* \endcode
*/
/**
* Get a new Vector according to the provided swizzle bits.
*/
static PyObject *Vector_swizzle_get(VectorObject *self, void *closure)
{
size_t axis_to;
size_t axis_from;
float vec[MAX_DIMENSIONS];
uint swizzleClosure;
if (BaseMath_ReadCallback(self) == -1) {
return nullptr;
}
/* Unpack the axes from the closure into an array. */
axis_to = 0;
swizzleClosure = POINTER_AS_INT(closure);
while (swizzleClosure & SWIZZLE_VALID_AXIS) {
axis_from = swizzleClosure & SWIZZLE_AXIS;
if (axis_from >= self->vec_num) {
PyErr_SetString(PyExc_AttributeError,
"Vector swizzle: "
"specified axis not present");
return nullptr;
}
vec[axis_to] = self->vec[axis_from];
swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
axis_to++;
}
return Vector_CreatePyObject(vec, axis_to, Py_TYPE(self));
}
/**
* Set the items of this vector using a swizzle.
* - If value is a vector or list this operates like an array copy, except that
* the destination is effectively re-ordered as defined by the swizzle. At
* most `min(len(source), len(destination))` values will be copied.
* - If the value is scalar, it is copied to all axes listed in the swizzle.
* - If an axis appears more than once in the swizzle, the final occurrence is
* the one that determines its value.
*
* \return 0 on success and -1 on failure. On failure, the vector will be unchanged.
*/
static int Vector_swizzle_set(VectorObject *self, PyObject *value, void *closure)
{
size_t size_from;
float scalarVal;
size_t axis_from;
size_t axis_to;
uint swizzleClosure;
float tvec[MAX_DIMENSIONS];
float vec_assign[MAX_DIMENSIONS];
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return -1;
}
/* Check that the closure can be used with this vector: even 2D vectors have
* swizzles defined for axes z and w, but they would be invalid. */
swizzleClosure = POINTER_AS_INT(closure);
axis_from = 0;
while (swizzleClosure & SWIZZLE_VALID_AXIS) {
axis_to = swizzleClosure & SWIZZLE_AXIS;
if (axis_to >= self->vec_num) {
PyErr_SetString(PyExc_AttributeError,
"Vector swizzle: "
"specified axis not present");
return -1;
}
swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
axis_from++;
}
if (((scalarVal = PyFloat_AsDouble(value)) == -1 && PyErr_Occurred()) == 0) {
int i;
for (i = 0; i < MAX_DIMENSIONS; i++) {
vec_assign[i] = scalarVal;
}
size_from = axis_from;
}
else if (PyErr_Clear(), /* run but ignore the result */
(size_from = size_t(mathutils_array_parse(
vec_assign, 2, 4, value, "Vector.**** = swizzle assignment"))) == size_t(-1))
{
return -1;
}
if (axis_from != size_from) {
PyErr_SetString(PyExc_AttributeError, "Vector swizzle: size does not match swizzle");
return -1;
}
/* Copy vector contents onto swizzled axes. */
axis_from = 0;
swizzleClosure = POINTER_AS_INT(closure);
/* We must first copy current vec into tvec, else some org values may be lost.
* See #31760.
* Assuming self->vec_num can't be higher than MAX_DIMENSIONS! */
memcpy(tvec, self->vec, self->vec_num * sizeof(float));
while (swizzleClosure & SWIZZLE_VALID_AXIS) {
axis_to = swizzleClosure & SWIZZLE_AXIS;
tvec[axis_to] = vec_assign[axis_from];
swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
axis_from++;
}
/* We must copy back the whole tvec into vec, else some changes may be lost (e.g. xz...).
* See #31760. */
memcpy(self->vec, tvec, self->vec_num * sizeof(float));
/* continue with BaseMathObject_WriteCallback at the end */
if (BaseMath_WriteCallback(self) == -1) {
return -1;
}
return 0;
}
#define _SWIZZLE1(a) ((a) | SWIZZLE_VALID_AXIS)
#define _SWIZZLE2(a, b) (_SWIZZLE1(a) | (((b) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS)))
#define _SWIZZLE3(a, b, c) \
(_SWIZZLE2(a, b) | (((c) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 2)))
#define _SWIZZLE4(a, b, c, d) \
(_SWIZZLE3(a, b, c) | (((d) | SWIZZLE_VALID_AXIS) << (SWIZZLE_BITS_PER_AXIS * 3)))
#define SWIZZLE2(a, b) POINTER_FROM_INT(_SWIZZLE2(a, b))
#define SWIZZLE3(a, b, c) POINTER_FROM_INT(_SWIZZLE3(a, b, c))
#define SWIZZLE4(a, b, c, d) POINTER_FROM_INT(_SWIZZLE4(a, b, c, d))
#define VECTOR_SWIZZLE2_RW_DEF(attr, a, b) \
{ \
attr, (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, Vector_swizzle_doc, \
SWIZZLE2(a, b), \
}
#define VECTOR_SWIZZLE2_RO_DEF(attr, a, b) \
{ \
attr, (getter)Vector_swizzle_get, (setter) nullptr, Vector_swizzle_doc, SWIZZLE2(a, b), \
}
#define VECTOR_SWIZZLE3_RW_DEF(attr, a, b, c) \
{ \
attr, (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, Vector_swizzle_doc, \
SWIZZLE3(a, b, c), \
}
#define VECTOR_SWIZZLE3_RO_DEF(attr, a, b, c) \
{ \
attr, (getter)Vector_swizzle_get, (setter) nullptr, Vector_swizzle_doc, SWIZZLE3(a, b, c), \
}
#define VECTOR_SWIZZLE4_RW_DEF(attr, a, b, c, d) \
{ \
attr, (getter)Vector_swizzle_get, (setter)Vector_swizzle_set, Vector_swizzle_doc, \
SWIZZLE4(a, b, c, d), \
}
#define VECTOR_SWIZZLE4_RO_DEF(attr, a, b, c, d) \
{ \
attr, (getter)Vector_swizzle_get, (setter) nullptr, Vector_swizzle_doc, SWIZZLE4(a, b, c, d) \
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Get/Set Item Definitions
* \{ */
#ifdef __GNUC__
# ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wcast-function-type"
# else
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wcast-function-type"
# endif
#endif
static PyGetSetDef Vector_getseters[] = {
{"x",
(getter)Vector_axis_get,
(setter)Vector_axis_set,
Vector_axis_x_doc,
POINTER_FROM_INT(0)},
{"y",
(getter)Vector_axis_get,
(setter)Vector_axis_set,
Vector_axis_y_doc,
POINTER_FROM_INT(1)},
{"z",
(getter)Vector_axis_get,
(setter)Vector_axis_set,
Vector_axis_z_doc,
POINTER_FROM_INT(2)},
{"w",
(getter)Vector_axis_get,
(setter)Vector_axis_set,
Vector_axis_w_doc,
POINTER_FROM_INT(3)},
{"length", (getter)Vector_length_get, (setter)Vector_length_set, Vector_length_doc, nullptr},
{"length_squared",
(getter)Vector_length_squared_get,
(setter) nullptr,
Vector_length_squared_doc,
nullptr},
{"magnitude",
(getter)Vector_length_get,
(setter)Vector_length_set,
Vector_length_doc,
nullptr},
{"is_wrapped",
(getter)BaseMathObject_is_wrapped_get,
(setter) nullptr,
BaseMathObject_is_wrapped_doc,
nullptr},
{"is_frozen",
(getter)BaseMathObject_is_frozen_get,
(setter) nullptr,
BaseMathObject_is_frozen_doc,
nullptr},
{"is_valid",
(getter)BaseMathObject_is_valid_get,
(setter) nullptr,
BaseMathObject_is_valid_doc,
nullptr},
{"owner",
(getter)BaseMathObject_owner_get,
(setter) nullptr,
BaseMathObject_owner_doc,
nullptr},
/* Auto-generated swizzle attributes, see Python script above. */
VECTOR_SWIZZLE2_RO_DEF("xx", 0, 0),
VECTOR_SWIZZLE3_RO_DEF("xxx", 0, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("xxxx", 0, 0, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("xxxy", 0, 0, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("xxxz", 0, 0, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("xxxw", 0, 0, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("xxy", 0, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("xxyx", 0, 0, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("xxyy", 0, 0, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("xxyz", 0, 0, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("xxyw", 0, 0, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("xxz", 0, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("xxzx", 0, 0, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("xxzy", 0, 0, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("xxzz", 0, 0, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("xxzw", 0, 0, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("xxw", 0, 0, 3),
VECTOR_SWIZZLE4_RO_DEF("xxwx", 0, 0, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("xxwy", 0, 0, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("xxwz", 0, 0, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("xxww", 0, 0, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("xy", 0, 1),
VECTOR_SWIZZLE3_RO_DEF("xyx", 0, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("xyxx", 0, 1, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("xyxy", 0, 1, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("xyxz", 0, 1, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("xyxw", 0, 1, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("xyy", 0, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("xyyx", 0, 1, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("xyyy", 0, 1, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("xyyz", 0, 1, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("xyyw", 0, 1, 1, 3),
VECTOR_SWIZZLE3_RW_DEF("xyz", 0, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("xyzx", 0, 1, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("xyzy", 0, 1, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("xyzz", 0, 1, 2, 2),
VECTOR_SWIZZLE4_RW_DEF("xyzw", 0, 1, 2, 3),
VECTOR_SWIZZLE3_RW_DEF("xyw", 0, 1, 3),
VECTOR_SWIZZLE4_RO_DEF("xywx", 0, 1, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("xywy", 0, 1, 3, 1),
VECTOR_SWIZZLE4_RW_DEF("xywz", 0, 1, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("xyww", 0, 1, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("xz", 0, 2),
VECTOR_SWIZZLE3_RO_DEF("xzx", 0, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("xzxx", 0, 2, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("xzxy", 0, 2, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("xzxz", 0, 2, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("xzxw", 0, 2, 0, 3),
VECTOR_SWIZZLE3_RW_DEF("xzy", 0, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("xzyx", 0, 2, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("xzyy", 0, 2, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("xzyz", 0, 2, 1, 2),
VECTOR_SWIZZLE4_RW_DEF("xzyw", 0, 2, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("xzz", 0, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("xzzx", 0, 2, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("xzzy", 0, 2, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("xzzz", 0, 2, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("xzzw", 0, 2, 2, 3),
VECTOR_SWIZZLE3_RW_DEF("xzw", 0, 2, 3),
VECTOR_SWIZZLE4_RO_DEF("xzwx", 0, 2, 3, 0),
VECTOR_SWIZZLE4_RW_DEF("xzwy", 0, 2, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("xzwz", 0, 2, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("xzww", 0, 2, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("xw", 0, 3),
VECTOR_SWIZZLE3_RO_DEF("xwx", 0, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("xwxx", 0, 3, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("xwxy", 0, 3, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("xwxz", 0, 3, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("xwxw", 0, 3, 0, 3),
VECTOR_SWIZZLE3_RW_DEF("xwy", 0, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("xwyx", 0, 3, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("xwyy", 0, 3, 1, 1),
VECTOR_SWIZZLE4_RW_DEF("xwyz", 0, 3, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("xwyw", 0, 3, 1, 3),
VECTOR_SWIZZLE3_RW_DEF("xwz", 0, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("xwzx", 0, 3, 2, 0),
VECTOR_SWIZZLE4_RW_DEF("xwzy", 0, 3, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("xwzz", 0, 3, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("xwzw", 0, 3, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("xww", 0, 3, 3),
VECTOR_SWIZZLE4_RO_DEF("xwwx", 0, 3, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("xwwy", 0, 3, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("xwwz", 0, 3, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("xwww", 0, 3, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("yx", 1, 0),
VECTOR_SWIZZLE3_RO_DEF("yxx", 1, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("yxxx", 1, 0, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("yxxy", 1, 0, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("yxxz", 1, 0, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("yxxw", 1, 0, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("yxy", 1, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("yxyx", 1, 0, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("yxyy", 1, 0, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("yxyz", 1, 0, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("yxyw", 1, 0, 1, 3),
VECTOR_SWIZZLE3_RW_DEF("yxz", 1, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("yxzx", 1, 0, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("yxzy", 1, 0, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("yxzz", 1, 0, 2, 2),
VECTOR_SWIZZLE4_RW_DEF("yxzw", 1, 0, 2, 3),
VECTOR_SWIZZLE3_RW_DEF("yxw", 1, 0, 3),
VECTOR_SWIZZLE4_RO_DEF("yxwx", 1, 0, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("yxwy", 1, 0, 3, 1),
VECTOR_SWIZZLE4_RW_DEF("yxwz", 1, 0, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("yxww", 1, 0, 3, 3),
VECTOR_SWIZZLE2_RO_DEF("yy", 1, 1),
VECTOR_SWIZZLE3_RO_DEF("yyx", 1, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("yyxx", 1, 1, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("yyxy", 1, 1, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("yyxz", 1, 1, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("yyxw", 1, 1, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("yyy", 1, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("yyyx", 1, 1, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("yyyy", 1, 1, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("yyyz", 1, 1, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("yyyw", 1, 1, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("yyz", 1, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("yyzx", 1, 1, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("yyzy", 1, 1, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("yyzz", 1, 1, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("yyzw", 1, 1, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("yyw", 1, 1, 3),
VECTOR_SWIZZLE4_RO_DEF("yywx", 1, 1, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("yywy", 1, 1, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("yywz", 1, 1, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("yyww", 1, 1, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("yz", 1, 2),
VECTOR_SWIZZLE3_RW_DEF("yzx", 1, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("yzxx", 1, 2, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("yzxy", 1, 2, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("yzxz", 1, 2, 0, 2),
VECTOR_SWIZZLE4_RW_DEF("yzxw", 1, 2, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("yzy", 1, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("yzyx", 1, 2, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("yzyy", 1, 2, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("yzyz", 1, 2, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("yzyw", 1, 2, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("yzz", 1, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("yzzx", 1, 2, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("yzzy", 1, 2, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("yzzz", 1, 2, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("yzzw", 1, 2, 2, 3),
VECTOR_SWIZZLE3_RW_DEF("yzw", 1, 2, 3),
VECTOR_SWIZZLE4_RW_DEF("yzwx", 1, 2, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("yzwy", 1, 2, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("yzwz", 1, 2, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("yzww", 1, 2, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("yw", 1, 3),
VECTOR_SWIZZLE3_RW_DEF("ywx", 1, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("ywxx", 1, 3, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("ywxy", 1, 3, 0, 1),
VECTOR_SWIZZLE4_RW_DEF("ywxz", 1, 3, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("ywxw", 1, 3, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("ywy", 1, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("ywyx", 1, 3, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("ywyy", 1, 3, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("ywyz", 1, 3, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("ywyw", 1, 3, 1, 3),
VECTOR_SWIZZLE3_RW_DEF("ywz", 1, 3, 2),
VECTOR_SWIZZLE4_RW_DEF("ywzx", 1, 3, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("ywzy", 1, 3, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("ywzz", 1, 3, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("ywzw", 1, 3, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("yww", 1, 3, 3),
VECTOR_SWIZZLE4_RO_DEF("ywwx", 1, 3, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("ywwy", 1, 3, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("ywwz", 1, 3, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("ywww", 1, 3, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("zx", 2, 0),
VECTOR_SWIZZLE3_RO_DEF("zxx", 2, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("zxxx", 2, 0, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("zxxy", 2, 0, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("zxxz", 2, 0, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("zxxw", 2, 0, 0, 3),
VECTOR_SWIZZLE3_RW_DEF("zxy", 2, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("zxyx", 2, 0, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("zxyy", 2, 0, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("zxyz", 2, 0, 1, 2),
VECTOR_SWIZZLE4_RW_DEF("zxyw", 2, 0, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("zxz", 2, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("zxzx", 2, 0, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("zxzy", 2, 0, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("zxzz", 2, 0, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("zxzw", 2, 0, 2, 3),
VECTOR_SWIZZLE3_RW_DEF("zxw", 2, 0, 3),
VECTOR_SWIZZLE4_RO_DEF("zxwx", 2, 0, 3, 0),
VECTOR_SWIZZLE4_RW_DEF("zxwy", 2, 0, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("zxwz", 2, 0, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("zxww", 2, 0, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("zy", 2, 1),
VECTOR_SWIZZLE3_RW_DEF("zyx", 2, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("zyxx", 2, 1, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("zyxy", 2, 1, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("zyxz", 2, 1, 0, 2),
VECTOR_SWIZZLE4_RW_DEF("zyxw", 2, 1, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("zyy", 2, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("zyyx", 2, 1, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("zyyy", 2, 1, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("zyyz", 2, 1, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("zyyw", 2, 1, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("zyz", 2, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("zyzx", 2, 1, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("zyzy", 2, 1, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("zyzz", 2, 1, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("zyzw", 2, 1, 2, 3),
VECTOR_SWIZZLE3_RW_DEF("zyw", 2, 1, 3),
VECTOR_SWIZZLE4_RW_DEF("zywx", 2, 1, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("zywy", 2, 1, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("zywz", 2, 1, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("zyww", 2, 1, 3, 3),
VECTOR_SWIZZLE2_RO_DEF("zz", 2, 2),
VECTOR_SWIZZLE3_RO_DEF("zzx", 2, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("zzxx", 2, 2, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("zzxy", 2, 2, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("zzxz", 2, 2, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("zzxw", 2, 2, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("zzy", 2, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("zzyx", 2, 2, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("zzyy", 2, 2, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("zzyz", 2, 2, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("zzyw", 2, 2, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("zzz", 2, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("zzzx", 2, 2, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("zzzy", 2, 2, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("zzzz", 2, 2, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("zzzw", 2, 2, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("zzw", 2, 2, 3),
VECTOR_SWIZZLE4_RO_DEF("zzwx", 2, 2, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("zzwy", 2, 2, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("zzwz", 2, 2, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("zzww", 2, 2, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("zw", 2, 3),
VECTOR_SWIZZLE3_RW_DEF("zwx", 2, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("zwxx", 2, 3, 0, 0),
VECTOR_SWIZZLE4_RW_DEF("zwxy", 2, 3, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("zwxz", 2, 3, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("zwxw", 2, 3, 0, 3),
VECTOR_SWIZZLE3_RW_DEF("zwy", 2, 3, 1),
VECTOR_SWIZZLE4_RW_DEF("zwyx", 2, 3, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("zwyy", 2, 3, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("zwyz", 2, 3, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("zwyw", 2, 3, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("zwz", 2, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("zwzx", 2, 3, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("zwzy", 2, 3, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("zwzz", 2, 3, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("zwzw", 2, 3, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("zww", 2, 3, 3),
VECTOR_SWIZZLE4_RO_DEF("zwwx", 2, 3, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("zwwy", 2, 3, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("zwwz", 2, 3, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("zwww", 2, 3, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("wx", 3, 0),
VECTOR_SWIZZLE3_RO_DEF("wxx", 3, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("wxxx", 3, 0, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("wxxy", 3, 0, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("wxxz", 3, 0, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("wxxw", 3, 0, 0, 3),
VECTOR_SWIZZLE3_RW_DEF("wxy", 3, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("wxyx", 3, 0, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("wxyy", 3, 0, 1, 1),
VECTOR_SWIZZLE4_RW_DEF("wxyz", 3, 0, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("wxyw", 3, 0, 1, 3),
VECTOR_SWIZZLE3_RW_DEF("wxz", 3, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("wxzx", 3, 0, 2, 0),
VECTOR_SWIZZLE4_RW_DEF("wxzy", 3, 0, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("wxzz", 3, 0, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("wxzw", 3, 0, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("wxw", 3, 0, 3),
VECTOR_SWIZZLE4_RO_DEF("wxwx", 3, 0, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("wxwy", 3, 0, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("wxwz", 3, 0, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("wxww", 3, 0, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("wy", 3, 1),
VECTOR_SWIZZLE3_RW_DEF("wyx", 3, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("wyxx", 3, 1, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("wyxy", 3, 1, 0, 1),
VECTOR_SWIZZLE4_RW_DEF("wyxz", 3, 1, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("wyxw", 3, 1, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("wyy", 3, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("wyyx", 3, 1, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("wyyy", 3, 1, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("wyyz", 3, 1, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("wyyw", 3, 1, 1, 3),
VECTOR_SWIZZLE3_RW_DEF("wyz", 3, 1, 2),
VECTOR_SWIZZLE4_RW_DEF("wyzx", 3, 1, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("wyzy", 3, 1, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("wyzz", 3, 1, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("wyzw", 3, 1, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("wyw", 3, 1, 3),
VECTOR_SWIZZLE4_RO_DEF("wywx", 3, 1, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("wywy", 3, 1, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("wywz", 3, 1, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("wyww", 3, 1, 3, 3),
VECTOR_SWIZZLE2_RW_DEF("wz", 3, 2),
VECTOR_SWIZZLE3_RW_DEF("wzx", 3, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("wzxx", 3, 2, 0, 0),
VECTOR_SWIZZLE4_RW_DEF("wzxy", 3, 2, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("wzxz", 3, 2, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("wzxw", 3, 2, 0, 3),
VECTOR_SWIZZLE3_RW_DEF("wzy", 3, 2, 1),
VECTOR_SWIZZLE4_RW_DEF("wzyx", 3, 2, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("wzyy", 3, 2, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("wzyz", 3, 2, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("wzyw", 3, 2, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("wzz", 3, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("wzzx", 3, 2, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("wzzy", 3, 2, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("wzzz", 3, 2, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("wzzw", 3, 2, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("wzw", 3, 2, 3),
VECTOR_SWIZZLE4_RO_DEF("wzwx", 3, 2, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("wzwy", 3, 2, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("wzwz", 3, 2, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("wzww", 3, 2, 3, 3),
VECTOR_SWIZZLE2_RO_DEF("ww", 3, 3),
VECTOR_SWIZZLE3_RO_DEF("wwx", 3, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("wwxx", 3, 3, 0, 0),
VECTOR_SWIZZLE4_RO_DEF("wwxy", 3, 3, 0, 1),
VECTOR_SWIZZLE4_RO_DEF("wwxz", 3, 3, 0, 2),
VECTOR_SWIZZLE4_RO_DEF("wwxw", 3, 3, 0, 3),
VECTOR_SWIZZLE3_RO_DEF("wwy", 3, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("wwyx", 3, 3, 1, 0),
VECTOR_SWIZZLE4_RO_DEF("wwyy", 3, 3, 1, 1),
VECTOR_SWIZZLE4_RO_DEF("wwyz", 3, 3, 1, 2),
VECTOR_SWIZZLE4_RO_DEF("wwyw", 3, 3, 1, 3),
VECTOR_SWIZZLE3_RO_DEF("wwz", 3, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("wwzx", 3, 3, 2, 0),
VECTOR_SWIZZLE4_RO_DEF("wwzy", 3, 3, 2, 1),
VECTOR_SWIZZLE4_RO_DEF("wwzz", 3, 3, 2, 2),
VECTOR_SWIZZLE4_RO_DEF("wwzw", 3, 3, 2, 3),
VECTOR_SWIZZLE3_RO_DEF("www", 3, 3, 3),
VECTOR_SWIZZLE4_RO_DEF("wwwx", 3, 3, 3, 0),
VECTOR_SWIZZLE4_RO_DEF("wwwy", 3, 3, 3, 1),
VECTOR_SWIZZLE4_RO_DEF("wwwz", 3, 3, 3, 2),
VECTOR_SWIZZLE4_RO_DEF("wwww", 3, 3, 3, 3),
#undef AXIS_FROM_CHAR
#undef SWIZZLE1
#undef SWIZZLE2
#undef SWIZZLE3
#undef SWIZZLE4
#undef _SWIZZLE1
#undef _SWIZZLE2
#undef _SWIZZLE3
#undef _SWIZZLE4
#undef VECTOR_SWIZZLE2_RW_DEF
#undef VECTOR_SWIZZLE2_RO_DEF
#undef VECTOR_SWIZZLE3_RW_DEF
#undef VECTOR_SWIZZLE3_RO_DEF
#undef VECTOR_SWIZZLE4_RW_DEF
#undef VECTOR_SWIZZLE4_RO_DEF
{nullptr, nullptr, nullptr, nullptr, nullptr} /* Sentinel */
};
#ifdef __GNUC__
# ifdef __clang__
# pragma clang diagnostic pop
# else
# pragma GCC diagnostic pop
# endif
#endif
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Method Definitions
* \{ */
#ifdef __GNUC__
# ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wcast-function-type"
# else
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wcast-function-type"
# endif
#endif
static PyMethodDef Vector_methods[] = {
/* Class Methods */
{"Fill", (PyCFunction)C_Vector_Fill, METH_VARARGS | METH_CLASS, C_Vector_Fill_doc},
{"Range", (PyCFunction)C_Vector_Range, METH_VARARGS | METH_CLASS, C_Vector_Range_doc},
{"Linspace", (PyCFunction)C_Vector_Linspace, METH_VARARGS | METH_CLASS, C_Vector_Linspace_doc},
{"Repeat", (PyCFunction)C_Vector_Repeat, METH_VARARGS | METH_CLASS, C_Vector_Repeat_doc},
/* In place only. */
{"zero", (PyCFunction)Vector_zero, METH_NOARGS, Vector_zero_doc},
{"negate", (PyCFunction)Vector_negate, METH_NOARGS, Vector_negate_doc},
/* Operate on original or copy. */
{"normalize", (PyCFunction)Vector_normalize, METH_NOARGS, Vector_normalize_doc},
{"normalized", (PyCFunction)Vector_normalized, METH_NOARGS, Vector_normalized_doc},
{"resize", (PyCFunction)Vector_resize, METH_O, Vector_resize_doc},
{"resized", (PyCFunction)Vector_resized, METH_O, Vector_resized_doc},
{"to_2d", (PyCFunction)Vector_to_2d, METH_NOARGS, Vector_to_2d_doc},
{"resize_2d", (PyCFunction)Vector_resize_2d, METH_NOARGS, Vector_resize_2d_doc},
{"to_3d", (PyCFunction)Vector_to_3d, METH_NOARGS, Vector_to_3d_doc},
{"resize_3d", (PyCFunction)Vector_resize_3d, METH_NOARGS, Vector_resize_3d_doc},
{"to_4d", (PyCFunction)Vector_to_4d, METH_NOARGS, Vector_to_4d_doc},
{"resize_4d", (PyCFunction)Vector_resize_4d, METH_NOARGS, Vector_resize_4d_doc},
{"to_tuple", (PyCFunction)Vector_to_tuple, METH_VARARGS, Vector_to_tuple_doc},
{"to_track_quat", (PyCFunction)Vector_to_track_quat, METH_VARARGS, Vector_to_track_quat_doc},
{"orthogonal", (PyCFunction)Vector_orthogonal, METH_NOARGS, Vector_orthogonal_doc},
/* Operation between 2 or more types. */
{"reflect", (PyCFunction)Vector_reflect, METH_O, Vector_reflect_doc},
{"cross", (PyCFunction)Vector_cross, METH_O, Vector_cross_doc},
{"dot", (PyCFunction)Vector_dot, METH_O, Vector_dot_doc},
{"angle", (PyCFunction)Vector_angle, METH_VARARGS, Vector_angle_doc},
{"angle_signed", (PyCFunction)Vector_angle_signed, METH_VARARGS, Vector_angle_signed_doc},
{"rotation_difference",
(PyCFunction)Vector_rotation_difference,
METH_O,
Vector_rotation_difference_doc},
{"project", (PyCFunction)Vector_project, METH_O, Vector_project_doc},
{"lerp", (PyCFunction)Vector_lerp, METH_VARARGS, Vector_lerp_doc},
{"slerp", (PyCFunction)Vector_slerp, METH_VARARGS, Vector_slerp_doc},
{"rotate", (PyCFunction)Vector_rotate, METH_O, Vector_rotate_doc},
/* Base-math methods. */
{"freeze", (PyCFunction)BaseMathObject_freeze, METH_NOARGS, BaseMathObject_freeze_doc},
{"copy", (PyCFunction)Vector_copy, METH_NOARGS, Vector_copy_doc},
{"__copy__", (PyCFunction)Vector_copy, METH_NOARGS, nullptr},
{"__deepcopy__", (PyCFunction)Vector_deepcopy, METH_VARARGS, nullptr},
{nullptr, nullptr, 0, nullptr},
};
#ifdef __GNUC__
# ifdef __clang__
# pragma clang diagnostic pop
# else
# pragma GCC diagnostic pop
# endif
#endif
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: Python Object Definition
*
* \note #Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing
* but this means for eg that (vec * mat) and (mat * vec)
* both get sent to Vector_mul and it needs to sort out the order
* \{ */
#ifdef MATH_STANDALONE
# define Vector_str nullptr
#endif
PyDoc_STRVAR(
/* Wrap. */
vector_doc,
".. class:: Vector(seq)\n"
"\n"
" This object gives access to Vectors in Blender.\n"
"\n"
" :arg seq: Components of the vector, must be a sequence of at least two.\n"
" :type seq: Sequence[float]\n");
PyTypeObject vector_Type = {
/*ob_base*/ PyVarObject_HEAD_INIT(nullptr, 0)
/*tp_name*/ "Vector",
/*tp_basicsize*/ sizeof(VectorObject),
/*tp_itemsize*/ 0,
/*tp_dealloc*/ (destructor)BaseMathObject_dealloc,
/*tp_vectorcall_offset*/ 0,
/*tp_getattr*/ nullptr,
/*tp_setattr*/ nullptr,
/*tp_as_async*/ nullptr,
/*tp_repr*/ (reprfunc)Vector_repr,
/*tp_as_number*/ &Vector_NumMethods,
/*tp_as_sequence*/ &Vector_SeqMethods,
/*tp_as_mapping*/ &Vector_AsMapping,
/*tp_hash*/ (hashfunc)Vector_hash,
/*tp_call*/ nullptr,
/*tp_str*/ (reprfunc)Vector_str,
/*tp_getattro*/ nullptr,
/*tp_setattro*/ nullptr,
/*tp_as_buffer*/ nullptr,
/*tp_flags*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
/*tp_doc*/ vector_doc,
/*tp_traverse*/ (traverseproc)BaseMathObject_traverse,
/*tp_clear*/ (inquiry)BaseMathObject_clear,
/*tp_richcompare*/ (richcmpfunc)Vector_richcmpr,
/*tp_weaklistoffset*/ 0,
/*tp_iter*/ nullptr,
/*tp_iternext*/ nullptr,
/*tp_methods*/ Vector_methods,
/*tp_members*/ nullptr,
/*tp_getset*/ Vector_getseters,
/*tp_base*/ nullptr,
/*tp_dict*/ nullptr,
/*tp_descr_get*/ nullptr,
/*tp_descr_set*/ nullptr,
/*tp_dictoffset*/ 0,
/*tp_init*/ nullptr,
/*tp_alloc*/ nullptr,
/*tp_new*/ Vector_new,
/*tp_free*/ nullptr,
/*tp_is_gc*/ (inquiry)BaseMathObject_is_gc,
/*tp_bases*/ nullptr,
/*tp_mro*/ nullptr,
/*tp_cache*/ nullptr,
/*tp_subclasses*/ nullptr,
/*tp_weaklist*/ nullptr,
/*tp_del*/ nullptr,
/*tp_version_tag*/ 0,
/*tp_finalize*/ nullptr,
/*tp_vectorcall*/ nullptr,
};
#ifdef MATH_STANDALONE
# undef Vector_str nullptr
#endif
/** \} */
/* -------------------------------------------------------------------- */
/** \name Vector Type: C/API Constructors
* \{ */
PyObject *Vector_CreatePyObject(const float *vec, const int vec_num, PyTypeObject *base_type)
{
VectorObject *self;
float *vec_alloc;
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size");
return nullptr;
}
vec_alloc = static_cast<float *>(PyMem_Malloc(vec_num * sizeof(float)));
if (UNLIKELY(vec_alloc == nullptr)) {
PyErr_SetString(PyExc_MemoryError,
"Vector(): "
"problem allocating data");
return nullptr;
}
self = BASE_MATH_NEW(VectorObject, vector_Type, base_type);
if (self) {
self->vec = vec_alloc;
self->vec_num = vec_num;
/* Initialize callbacks as nullptr. */
self->cb_user = nullptr;
self->cb_type = self->cb_subtype = 0;
if (vec) {
memcpy(self->vec, vec, vec_num * sizeof(float));
}
else { /* new empty */
copy_vn_fl(self->vec, vec_num, 0.0f);
if (vec_num == 4) { /* do the homogeneous thing */
self->vec[3] = 1.0f;
}
}
self->flag = BASE_MATH_FLAG_DEFAULT;
}
else {
PyMem_Free(vec_alloc);
}
return (PyObject *)self;
}
PyObject *Vector_CreatePyObject_wrap(float *vec, const int vec_num, PyTypeObject *base_type)
{
VectorObject *self;
if (vec_num < 2) {
PyErr_SetString(PyExc_RuntimeError, "Vector(): invalid size");
return nullptr;
}
self = BASE_MATH_NEW(VectorObject, vector_Type, base_type);
if (self) {
self->vec_num = vec_num;
/* Initialize callbacks as nullptr. */
self->cb_user = nullptr;
self->cb_type = self->cb_subtype = 0;
self->vec = vec;
self->flag = BASE_MATH_FLAG_DEFAULT | BASE_MATH_FLAG_IS_WRAP;
}
return (PyObject *)self;
}
PyObject *Vector_CreatePyObject_cb(PyObject *cb_user, int vec_num, uchar cb_type, uchar cb_subtype)
{
VectorObject *self = (VectorObject *)Vector_CreatePyObject(nullptr, vec_num, nullptr);
if (self) {
Py_INCREF(cb_user);
self->cb_user = cb_user;
self->cb_type = cb_type;
self->cb_subtype = cb_subtype;
BLI_assert(!PyObject_GC_IsTracked((PyObject *)self));
PyObject_GC_Track(self);
}
return (PyObject *)self;
}
PyObject *Vector_CreatePyObject_alloc(float *vec, const int vec_num, PyTypeObject *base_type)
{
VectorObject *self;
self = (VectorObject *)Vector_CreatePyObject_wrap(vec, vec_num, base_type);
if (self) {
self->flag &= ~BASE_MATH_FLAG_IS_WRAP;
}
return (PyObject *)self;
}
/** \} */