Files
test/intern/cycles/scene/scene.cpp
Brecht Van Lommel 07b60c189b Cycles: Perform attribute subdivision on the host side
* Add SubdAttributeInterpolation class for linear attribute interpolation.
* Dicing computes ptex UV and face ID for interpolation.
* Simplify mesh storage of subd primitive counts
* Remove kernel code for subd attribute interpolation
* Remove patch table packing and upload

The old optimization adds a fair amount of complexity to the kernel, affecting
performance even when not using the feature. It's also not that useful as it
does not work for UVs that needs special interpolation. With this simpler code
it should be easier to make it feature complete.

Pull Request: https://projects.blender.org/blender/blender/pulls/135681
2025-03-11 20:58:07 +01:00

1021 lines
29 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include <cstdlib>
#include "bvh/bvh.h"
#include "device/device.h"
#include "scene/alembic.h"
#include "scene/background.h"
#include "scene/bake.h"
#include "scene/camera.h"
#include "scene/curves.h"
#include "scene/devicescene.h"
#include "scene/film.h"
#include "scene/hair.h"
#include "scene/integrator.h"
#include "scene/light.h"
#include "scene/mesh.h"
#include "scene/object.h"
#include "scene/osl.h"
#include "scene/particles.h"
#include "scene/pointcloud.h"
#include "scene/procedural.h"
#include "scene/scene.h"
#include "scene/shader.h"
#include "scene/svm.h"
#include "scene/tables.h"
#include "scene/volume.h"
#include "session/session.h"
#include "util/guarded_allocator.h"
#include "util/log.h"
#include "util/progress.h"
CCL_NAMESPACE_BEGIN
Scene ::Scene(const SceneParams &params_, Device *device)
: name("Scene"),
default_surface(nullptr),
default_volume(nullptr),
default_light(nullptr),
default_background(nullptr),
default_empty(nullptr),
device(device),
dscene(device),
params(params_),
update_stats(nullptr),
kernels_loaded(false),
/* TODO(sergey): Check if it's indeed optimal value for the split kernel.
*/
max_closure_global(1)
{
memset((void *)&dscene.data, 0, sizeof(dscene.data));
osl_manager = make_unique<OSLManager>(device);
shader_manager = ShaderManager::create(device->info.has_osl ? params.shadingsystem :
SHADINGSYSTEM_SVM);
light_manager = make_unique<LightManager>();
geometry_manager = make_unique<GeometryManager>();
object_manager = make_unique<ObjectManager>();
image_manager = make_unique<ImageManager>(device->info);
particle_system_manager = make_unique<ParticleSystemManager>();
bake_manager = make_unique<BakeManager>();
procedural_manager = make_unique<ProceduralManager>();
/* Create nodes after managers, since create_node() can tag the managers. */
camera = create_node<Camera>();
dicing_camera = create_node<Camera>();
lookup_tables = make_unique<LookupTables>();
film = create_node<Film>();
background = create_node<Background>();
integrator = create_node<Integrator>();
ccl::Film::add_default(this);
ccl::ShaderManager::add_default(this);
}
Scene::~Scene()
{
free_memory(true);
}
void Scene::free_memory(bool final)
{
bvh.reset();
/* The order of deletion is important to make sure data is freed based on
* possible dependencies as the Nodes' reference counts are decremented in the
* destructors:
*
* - Procedurals can create and hold pointers to any other types.
* - Objects can hold pointers to Geometries and ParticleSystems
* - Lights and Geometries can hold pointers to Shaders.
*
* Similarly, we first delete all nodes and their associated device data, and
* then the managers and their associated device data.
*/
procedurals.clear();
objects.clear();
geometry.clear();
particle_systems.clear();
passes.clear();
if (device) {
camera->device_free(device, &dscene, this);
film->device_free(device, &dscene, this);
background->device_free(device, &dscene);
integrator->device_free(device, &dscene, true);
}
if (final) {
cameras.clear();
integrators.clear();
films.clear();
backgrounds.clear();
camera = nullptr;
dicing_camera = nullptr;
integrator = nullptr;
film = nullptr;
background = nullptr;
}
/* Delete Shaders after every other nodes to ensure that we do not try to
* decrement the reference count on some dangling pointer. */
shaders.clear();
/* Now that all nodes have been deleted, we can safely delete managers and
* device data. */
if (device) {
object_manager->device_free(device, &dscene, true);
geometry_manager->device_free(device, &dscene, true);
shader_manager->device_free(device, &dscene, this);
osl_manager->device_free(device, &dscene, this);
light_manager->device_free(device, &dscene);
particle_system_manager->device_free(device, &dscene);
bake_manager->device_free(device, &dscene);
if (final) {
image_manager->device_free(device);
}
else {
image_manager->device_free_builtin(device);
}
lookup_tables->device_free(device, &dscene);
}
if (final) {
lookup_tables.reset();
object_manager.reset();
geometry_manager.reset();
shader_manager.reset();
osl_manager.reset();
light_manager.reset();
particle_system_manager.reset();
image_manager.reset();
bake_manager.reset();
update_stats.reset();
procedural_manager.reset();
}
}
void Scene::device_update(Device *device_, Progress &progress)
{
if (!device) {
device = device_;
}
const bool print_stats = need_data_update();
if (update_stats) {
update_stats->clear();
}
const scoped_callback_timer timer([this, print_stats](double time) {
if (update_stats) {
update_stats->scene.times.add_entry({"device_update", time});
if (print_stats) {
printf("Update statistics:\n%s\n", update_stats->full_report().c_str());
}
}
});
/* The order of updates is important, because there's dependencies between
* the different managers, using data computed by previous managers.
*
* - Image manager uploads images used by shaders.
* - Camera may be used for adaptive subdivision.
* - Displacement shader must have all shader data available.
* - Light manager needs lookup tables and final mesh data to compute emission
* CDF.
* - Lookup tables are done a second time to handle film tables
*/
if (film->update_lightgroups(this)) {
light_manager->tag_update(this, ccl::LightManager::LIGHT_MODIFIED);
object_manager->tag_update(this, ccl::ObjectManager::OBJECT_MODIFIED);
background->tag_modified();
}
if (film->exposure_is_modified()) {
integrator->tag_modified();
}
progress.set_status("Updating Shaders");
osl_manager->device_update_pre(device, this);
shader_manager->device_update(device, &dscene, this, progress);
osl_manager->device_update_post(device, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
procedural_manager->update(this, progress);
if (progress.get_cancel()) {
return;
}
progress.set_status("Updating Background");
background->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Camera");
camera->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
geometry_manager->device_update_preprocess(device, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Objects");
object_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Particle Systems");
particle_system_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Meshes");
geometry_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Objects Flags");
object_manager->device_update_flags(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Primitive Offsets");
object_manager->device_update_prim_offsets(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Images");
image_manager->device_update(device, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Camera Volume");
camera->device_update_volume(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Lights");
light_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Integrator");
integrator->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Film");
film->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error()) {
return;
}
progress.set_status("Updating Baking");
bake_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error()) {
return;
}
if (device->have_error() == false) {
dscene.data.volume_stack_size = get_volume_stack_size();
progress.set_status("Updating Device", "Writing constant memory");
device->const_copy_to("data", &dscene.data, sizeof(dscene.data));
}
device->optimize_for_scene(this);
if (print_stats) {
const size_t mem_used = util_guarded_get_mem_used();
const size_t mem_peak = util_guarded_get_mem_peak();
VLOG_INFO << "System memory statistics after full device sync:\n"
<< " Usage: " << string_human_readable_number(mem_used) << " ("
<< string_human_readable_size(mem_used) << ")\n"
<< " Peak: " << string_human_readable_number(mem_peak) << " ("
<< string_human_readable_size(mem_peak) << ")";
}
}
Scene::MotionType Scene::need_motion() const
{
if (integrator->get_motion_blur()) {
return MOTION_BLUR;
}
if (Pass::contains(passes, PASS_MOTION)) {
return MOTION_PASS;
}
return MOTION_NONE;
}
float Scene::motion_shutter_time()
{
if (need_motion() == Scene::MOTION_PASS) {
return 2.0f;
}
return camera->get_shuttertime();
}
bool Scene::need_global_attribute(AttributeStandard std)
{
if (std == ATTR_STD_UV) {
return Pass::contains(passes, PASS_UV);
}
if (std == ATTR_STD_MOTION_VERTEX_POSITION) {
return need_motion() != MOTION_NONE;
}
if (std == ATTR_STD_MOTION_VERTEX_NORMAL) {
return need_motion() == MOTION_BLUR;
}
if (std == ATTR_STD_VOLUME_VELOCITY || std == ATTR_STD_VOLUME_VELOCITY_X ||
std == ATTR_STD_VOLUME_VELOCITY_Y || std == ATTR_STD_VOLUME_VELOCITY_Z)
{
return need_motion() != MOTION_NONE;
}
return false;
}
void Scene::need_global_attributes(AttributeRequestSet &attributes)
{
for (int std = ATTR_STD_NONE; std < ATTR_STD_NUM; std++) {
if (need_global_attribute((AttributeStandard)std)) {
attributes.add((AttributeStandard)std);
}
}
}
bool Scene::need_update()
{
return (need_reset() || film->is_modified());
}
bool Scene::need_data_update()
{
return (background->is_modified() || image_manager->need_update() ||
object_manager->need_update() || geometry_manager->need_update() ||
light_manager->need_update() || lookup_tables->need_update() ||
integrator->is_modified() || shader_manager->need_update() ||
particle_system_manager->need_update() || bake_manager->need_update() ||
film->is_modified() || procedural_manager->need_update());
}
bool Scene::need_reset(const bool check_camera)
{
return need_data_update() || (check_camera && camera->is_modified());
}
void Scene::reset()
{
osl_manager->reset(this);
ShaderManager::add_default(this);
/* ensure all objects are updated */
camera->tag_modified();
dicing_camera->tag_modified();
film->tag_modified();
background->tag_modified();
background->tag_update(this);
integrator->tag_update(this, Integrator::UPDATE_ALL);
object_manager->tag_update(this, ObjectManager::UPDATE_ALL);
geometry_manager->tag_update(this, GeometryManager::UPDATE_ALL);
light_manager->tag_update(this, LightManager::UPDATE_ALL);
particle_system_manager->tag_update(this);
procedural_manager->tag_update();
}
void Scene::device_free()
{
free_memory(false);
}
void Scene::collect_statistics(RenderStats *stats)
{
geometry_manager->collect_statistics(this, stats);
image_manager->collect_statistics(stats);
}
void Scene::enable_update_stats()
{
if (!update_stats) {
update_stats = make_unique<SceneUpdateStats>();
}
}
void Scene::update_kernel_features()
{
if (!need_update()) {
return;
}
const thread_scoped_lock scene_lock(mutex);
/* These features are not being tweaked as often as shaders,
* so could be done selective magic for the viewport as well. */
uint kernel_features = shader_manager->get_kernel_features(this);
const bool use_motion = need_motion() == Scene::MotionType::MOTION_BLUR;
kernel_features |= KERNEL_FEATURE_PATH_TRACING;
if (params.hair_shape == CURVE_THICK) {
kernel_features |= KERNEL_FEATURE_HAIR_THICK;
}
/* Figure out whether the scene will use shader ray-trace we need at least
* one caustic light, one caustic caster and one caustic receiver to use
* and enable the MNEE code path. */
bool has_caustics_receiver = false;
bool has_caustics_caster = false;
bool has_caustics_light = false;
for (Object *object : objects) {
if (object->get_is_caustics_caster()) {
has_caustics_caster = true;
}
else if (object->get_is_caustics_receiver()) {
has_caustics_receiver = true;
}
Geometry *geom = object->get_geometry();
if (use_motion) {
if (object->use_motion() || geom->get_use_motion_blur()) {
kernel_features |= KERNEL_FEATURE_OBJECT_MOTION;
}
}
if (object->get_is_shadow_catcher() && !geom->is_light()) {
kernel_features |= KERNEL_FEATURE_SHADOW_CATCHER;
}
if (geom->is_hair()) {
kernel_features |= KERNEL_FEATURE_HAIR;
}
else if (geom->is_pointcloud()) {
kernel_features |= KERNEL_FEATURE_POINTCLOUD;
}
else if (geom->is_light()) {
const Light *light = static_cast<const Light *>(object->get_geometry());
if (light->get_use_caustics()) {
has_caustics_light = true;
}
}
if (object->has_light_linking()) {
kernel_features |= KERNEL_FEATURE_LIGHT_LINKING;
}
if (object->has_shadow_linking()) {
kernel_features |= KERNEL_FEATURE_SHADOW_LINKING;
}
}
dscene.data.integrator.use_caustics = false;
if (device->info.has_mnee && has_caustics_caster && has_caustics_receiver && has_caustics_light)
{
dscene.data.integrator.use_caustics = true;
kernel_features |= KERNEL_FEATURE_MNEE;
}
if (integrator->get_guiding_params(device).use) {
kernel_features |= KERNEL_FEATURE_PATH_GUIDING;
}
if (bake_manager->get_baking()) {
kernel_features |= KERNEL_FEATURE_BAKING;
}
kernel_features |= film->get_kernel_features(this);
kernel_features |= integrator->get_kernel_features();
dscene.data.kernel_features = kernel_features;
/* Currently viewport render is faster with higher max_closures, needs
* investigating. */
const uint max_closures = (params.background) ? get_max_closure_count() : MAX_CLOSURE;
dscene.data.max_closures = max_closures;
dscene.data.max_shaders = shaders.size();
}
bool Scene::update(Progress &progress)
{
if (!need_update()) {
return false;
}
/* Upload scene data to the GPU. */
progress.set_status("Updating Scene");
MEM_GUARDED_CALL(&progress, device_update, device, progress);
return true;
}
static void log_kernel_features(const uint features)
{
VLOG_INFO << "Requested features:\n";
VLOG_INFO << "Use BSDF " << string_from_bool(features & KERNEL_FEATURE_NODE_BSDF) << "\n";
VLOG_INFO << "Use Emission " << string_from_bool(features & KERNEL_FEATURE_NODE_EMISSION)
<< "\n";
VLOG_INFO << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_NODE_VOLUME) << "\n";
VLOG_INFO << "Use Bump " << string_from_bool(features & KERNEL_FEATURE_NODE_BUMP) << "\n";
VLOG_INFO << "Use Voronoi " << string_from_bool(features & KERNEL_FEATURE_NODE_VORONOI_EXTRA)
<< "\n";
VLOG_INFO << "Use Shader Raytrace " << string_from_bool(features & KERNEL_FEATURE_NODE_RAYTRACE)
<< "\n";
VLOG_INFO << "Use MNEE " << string_from_bool(features & KERNEL_FEATURE_MNEE) << "\n";
VLOG_INFO << "Use Transparent " << string_from_bool(features & KERNEL_FEATURE_TRANSPARENT)
<< "\n";
VLOG_INFO << "Use Denoising " << string_from_bool(features & KERNEL_FEATURE_DENOISING) << "\n";
VLOG_INFO << "Use Path Tracing " << string_from_bool(features & KERNEL_FEATURE_PATH_TRACING)
<< "\n";
VLOG_INFO << "Use Hair " << string_from_bool(features & KERNEL_FEATURE_HAIR) << "\n";
VLOG_INFO << "Use Pointclouds " << string_from_bool(features & KERNEL_FEATURE_POINTCLOUD)
<< "\n";
VLOG_INFO << "Use Object Motion " << string_from_bool(features & KERNEL_FEATURE_OBJECT_MOTION)
<< "\n";
VLOG_INFO << "Use Baking " << string_from_bool(features & KERNEL_FEATURE_BAKING) << "\n";
VLOG_INFO << "Use Subsurface " << string_from_bool(features & KERNEL_FEATURE_SUBSURFACE) << "\n";
VLOG_INFO << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_VOLUME) << "\n";
VLOG_INFO << "Use Shadow Catcher " << string_from_bool(features & KERNEL_FEATURE_SHADOW_CATCHER)
<< "\n";
}
bool Scene::load_kernels(Progress &progress)
{
update_kernel_features();
const uint kernel_features = dscene.data.kernel_features;
if (!kernels_loaded || loaded_kernel_features != kernel_features) {
progress.set_status("Loading render kernels (may take a few minutes the first time)");
const scoped_timer timer;
log_kernel_features(kernel_features);
if (!device->load_kernels(kernel_features)) {
string message = device->error_message();
if (message.empty()) {
message = "Failed loading render kernel, see console for errors";
}
progress.set_error(message);
progress.set_status(message);
progress.set_update();
return false;
}
kernels_loaded = true;
loaded_kernel_features = kernel_features;
return true;
}
return false;
}
int Scene::get_max_closure_count()
{
if (shader_manager->use_osl()) {
/* OSL always needs the maximum as we can't predict the
* number of closures a shader might generate. */
return MAX_CLOSURE;
}
int max_closures = 0;
for (int i = 0; i < shaders.size(); i++) {
Shader *shader = shaders[i];
if (shader->reference_count()) {
const int num_closures = shader->graph->get_num_closures();
max_closures = max(max_closures, num_closures);
}
}
max_closure_global = max(max_closure_global, max_closures);
if (max_closure_global > MAX_CLOSURE) {
/* This is usually harmless as more complex shader tend to get many
* closures discarded due to mixing or low weights. We need to limit
* to MAX_CLOSURE as this is hardcoded in CPU/mega kernels, and it
* avoids excessive memory usage for split kernels. */
VLOG_WARNING << "Maximum number of closures exceeded: " << max_closure_global << " > "
<< MAX_CLOSURE;
max_closure_global = MAX_CLOSURE;
}
return max_closure_global;
}
int Scene::get_volume_stack_size() const
{
int volume_stack_size = 0;
/* Space for background volume and terminator.
* Don't do optional here because camera ray initialization expects that there
* is space for at least those elements (avoiding extra condition to check if
* there is actual volume or not).
*/
volume_stack_size += 2;
/* Quick non-expensive check. Can over-estimate maximum possible nested level,
* but does not require expensive calculation during pre-processing. */
bool has_volume_object = false;
for (const Object *object : objects) {
if (!object->get_geometry()->has_volume) {
continue;
}
if (object->intersects_volume) {
/* Object intersects another volume, assume it's possible to go deeper in
* the stack. */
/* TODO(sergey): This might count nesting twice (A intersects B and B
* intersects A), but can't think of a computationally cheap algorithm.
* Dividing my 2 doesn't work because of Venn diagram example with 3
* circles. */
++volume_stack_size;
}
else if (!has_volume_object) {
/* Allocate space for at least one volume object. */
++volume_stack_size;
}
has_volume_object = true;
if (volume_stack_size == MAX_VOLUME_STACK_SIZE) {
break;
}
}
volume_stack_size = min(volume_stack_size, MAX_VOLUME_STACK_SIZE);
VLOG_WORK << "Detected required volume stack size " << volume_stack_size;
return volume_stack_size;
}
bool Scene::has_shadow_catcher()
{
if (shadow_catcher_modified_) {
has_shadow_catcher_ = false;
for (Object *object : objects) {
/* Shadow catcher flags on lights only controls effect on other objects, it's
* not catching shadows itself. This is on by default, so ignore to avoid
* performance impact when there is no actual shadow catcher. */
if (object->get_is_shadow_catcher() && !object->get_geometry()->is_light()) {
has_shadow_catcher_ = true;
break;
}
}
shadow_catcher_modified_ = false;
}
return has_shadow_catcher_;
}
void Scene::tag_shadow_catcher_modified()
{
shadow_catcher_modified_ = true;
}
template<> Light *Scene::create_node<Light>()
{
unique_ptr<Light> node = make_unique<Light>();
Light *node_ptr = node.get();
node->set_owner(this);
geometry.push_back(std::move(node));
light_manager->tag_update(this, LightManager::LIGHT_ADDED);
return node_ptr;
}
template<> Mesh *Scene::create_node<Mesh>()
{
unique_ptr<Mesh> node = make_unique<Mesh>();
Mesh *node_ptr = node.get();
node->set_owner(this);
geometry.push_back(std::move(node));
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node_ptr;
}
template<> Hair *Scene::create_node<Hair>()
{
unique_ptr<Hair> node = make_unique<Hair>();
Hair *node_ptr = node.get();
node->set_owner(this);
geometry.push_back(std::move(node));
geometry_manager->tag_update(this, GeometryManager::HAIR_ADDED);
return node_ptr;
}
template<> Volume *Scene::create_node<Volume>()
{
unique_ptr<Volume> node = make_unique<Volume>();
Volume *node_ptr = node.get();
node->set_owner(this);
geometry.push_back(std::move(node));
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node_ptr;
}
template<> PointCloud *Scene::create_node<PointCloud>()
{
unique_ptr<PointCloud> node = make_unique<PointCloud>();
PointCloud *node_ptr = node.get();
node->set_owner(this);
geometry.push_back(std::move(node));
geometry_manager->tag_update(this, GeometryManager::POINT_ADDED);
return node_ptr;
}
template<> Object *Scene::create_node<Object>()
{
unique_ptr<Object> node = make_unique<Object>();
Object *node_ptr = node.get();
node->set_owner(this);
objects.push_back(std::move(node));
object_manager->tag_update(this, ObjectManager::OBJECT_ADDED);
return node_ptr;
}
template<> ParticleSystem *Scene::create_node<ParticleSystem>()
{
unique_ptr<ParticleSystem> node = make_unique<ParticleSystem>();
ParticleSystem *node_ptr = node.get();
node->set_owner(this);
particle_systems.push_back(std::move(node));
particle_system_manager->tag_update(this);
return node_ptr;
}
template<> Shader *Scene::create_node<Shader>()
{
unique_ptr<Shader> node = make_unique<Shader>();
Shader *node_ptr = node.get();
node->set_owner(this);
shaders.push_back(std::move(node));
shader_manager->tag_update(this, ShaderManager::SHADER_ADDED);
return node_ptr;
}
template<> AlembicProcedural *Scene::create_node<AlembicProcedural>()
{
#ifdef WITH_ALEMBIC
unique_ptr<AlembicProcedural> node = make_unique<AlembicProcedural>();
AlembicProcedural *node_ptr = node.get();
node->set_owner(this);
procedurals.push_back(std::move(node));
procedural_manager->tag_update();
return node_ptr;
#else
return nullptr;
#endif
}
template<> Pass *Scene::create_node<Pass>()
{
unique_ptr<Pass> node = make_unique<Pass>();
Pass *node_ptr = node.get();
node->set_owner(this);
passes.push_back(std::move(node));
film->tag_modified();
return node_ptr;
}
template<> Camera *Scene::create_node<Camera>()
{
unique_ptr<Camera> node = make_unique<Camera>();
Camera *node_ptr = node.get();
node->set_owner(this);
cameras.push_back(std::move(node));
return node_ptr;
}
template<> Integrator *Scene::create_node<Integrator>()
{
unique_ptr<Integrator> node = make_unique<Integrator>();
Integrator *node_ptr = node.get();
node->set_owner(this);
integrators.push_back(std::move(node));
return node_ptr;
}
template<> Background *Scene::create_node<Background>()
{
unique_ptr<Background> node = make_unique<Background>();
Background *node_ptr = node.get();
node->set_owner(this);
backgrounds.push_back(std::move(node));
return node_ptr;
}
template<> Film *Scene::create_node<Film>()
{
unique_ptr<Film> node = make_unique<Film>();
Film *node_ptr = node.get();
node->set_owner(this);
films.push_back(std::move(node));
return node_ptr;
}
template<> void Scene::delete_node(Light *node)
{
assert(node->get_owner() == this);
geometry.erase_by_swap(node);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_node(Mesh *node)
{
assert(node->get_owner() == this);
geometry.erase_by_swap(node);
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node(Hair *node)
{
assert(node->get_owner() == this);
geometry.erase_by_swap(node);
geometry_manager->tag_update(this, GeometryManager::HAIR_REMOVED);
}
template<> void Scene::delete_node(Volume *node)
{
assert(node->get_owner() == this);
geometry.erase_by_swap(node);
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node(PointCloud *node)
{
assert(node->get_owner() == this);
geometry.erase_by_swap(node);
geometry_manager->tag_update(this, GeometryManager::POINT_REMOVED);
}
template<> void Scene::delete_node(Geometry *node)
{
assert(node->get_owner() == this);
uint flag;
if (node->is_hair()) {
flag = GeometryManager::HAIR_REMOVED;
}
else {
flag = GeometryManager::MESH_REMOVED;
}
geometry.erase_by_swap(node);
geometry_manager->tag_update(this, flag);
}
template<> void Scene::delete_node(Object *node)
{
assert(node->get_owner() == this);
objects.erase_by_swap(node);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_node(ParticleSystem *node)
{
assert(node->get_owner() == this);
particle_systems.erase_by_swap(node);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_node(Shader *node)
{
assert(node->get_owner() == this);
/* don't delete unused shaders, not supported */
node->clear_reference_count();
}
template<> void Scene::delete_node(Procedural *node)
{
assert(node->get_owner() == this);
procedurals.erase_by_swap(node);
procedural_manager->tag_update();
}
template<> void Scene::delete_node(AlembicProcedural *node)
{
#ifdef WITH_ALEMBIC
delete_node(static_cast<Procedural *>(node));
#else
(void)node;
#endif
}
template<> void Scene::delete_node(Pass *node)
{
assert(node->get_owner() == this);
passes.erase_by_swap(node);
film->tag_modified();
}
template<typename T> static void assert_same_owner(const set<T *> &nodes, const NodeOwner *owner)
{
#ifdef NDEBUG
(void)nodes;
(void)owner;
#else
for (const T *node : nodes) {
assert(node->get_owner() == owner);
}
#endif
}
template<> void Scene::delete_nodes(const set<Geometry *> &nodes, const NodeOwner *owner)
{
assert_same_owner(nodes, owner);
geometry.erase_in_set(nodes);
geometry_manager->tag_update(this, GeometryManager::GEOMETRY_REMOVED);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_nodes(const set<Object *> &nodes, const NodeOwner *owner)
{
assert_same_owner(nodes, owner);
objects.erase_in_set(nodes);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_nodes(const set<ParticleSystem *> &nodes, const NodeOwner *owner)
{
assert_same_owner(nodes, owner);
particle_systems.erase_in_set(nodes);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_nodes(const set<Shader *> &nodes, const NodeOwner * /*owner*/)
{
/* don't delete unused shaders, not supported */
for (Shader *shader : nodes) {
shader->clear_reference_count();
}
}
template<> void Scene::delete_nodes(const set<Procedural *> &nodes, const NodeOwner *owner)
{
assert_same_owner(nodes, owner);
procedurals.erase_in_set(nodes);
procedural_manager->tag_update();
}
template<> void Scene::delete_nodes(const set<Pass *> &nodes, const NodeOwner *owner)
{
assert_same_owner(nodes, owner);
passes.erase_in_set(nodes);
film->tag_modified();
}
CCL_NAMESPACE_END