Files
test/intern/cycles/util/math_float3.h
Hoshinova c78c6b0bdf Fix #119797: Noise Texture Precision Issues
The Perlin noise algorithms suffer from precision issues when a coordinate
is greater than about 250000.

To fix this the Perlin noise texture is repeated every 100000 on each axis.
This causes discontinuities every 100000, however at such scales this
usually shouldn't be noticeable.

Pull Request: https://projects.blender.org/blender/blender/pulls/119884
2024-03-29 16:12:23 +01:00

509 lines
11 KiB
C

/* SPDX-FileCopyrightText: 2011-2013 Intel Corporation
* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#ifndef __UTIL_MATH_FLOAT3_H__
#define __UTIL_MATH_FLOAT3_H__
#ifndef __UTIL_MATH_H__
# error "Do not include this file directly, include util/types.h instead."
#endif
CCL_NAMESPACE_BEGIN
ccl_device_inline float3 zero_float3()
{
#ifdef __KERNEL_SSE__
return float3(_mm_setzero_ps());
#else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
ccl_device_inline float3 one_float3()
{
return make_float3(1.0f, 1.0f, 1.0f);
}
#if defined(__KERNEL_METAL__)
ccl_device_inline float3 rcp(float3 a)
{
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
}
#else
ccl_device_inline float3 operator-(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))));
# else
return make_float3(-a.x, -a.y, -a.z);
# endif
}
ccl_device_inline float3 operator*(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, b.m128));
# else
return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
# endif
}
ccl_device_inline float3 operator*(const float3 a, const float f)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, _mm_set1_ps(f)));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator*(const float f, const float3 a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator/(const float f, const float3 a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(f / a.x, f / a.y, f / a.z);
# endif
}
ccl_device_inline float3 operator/(const float3 a, const float f)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, _mm_set1_ps(f)));
# else
float invf = 1.0f / f;
return make_float3(a.x * invf, a.y * invf, a.z * invf);
# endif
}
ccl_device_inline float3 operator/(const float3 a, const float3 b)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, b.m128));
# else
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_add_ps(a.m128, b.m128));
# else
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 a, const float f)
{
return a + make_float3(f, f, f);
}
ccl_device_inline float3 operator-(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sub_ps(a.m128, b.m128));
# else
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
# endif
}
ccl_device_inline float3 operator-(const float3 a, const float f)
{
return a - make_float3(f, f, f);
}
ccl_device_inline float3 operator+=(float3 &a, const float3 b)
{
return a = a + b;
}
ccl_device_inline float3 operator-=(float3 &a, const float3 b)
{
return a = a - b;
}
ccl_device_inline float3 operator*=(float3 &a, const float3 b)
{
return a = a * b;
}
ccl_device_inline float3 operator*=(float3 &a, float f)
{
return a = a * f;
}
ccl_device_inline float3 operator/=(float3 &a, const float3 b)
{
return a = a / b;
}
ccl_device_inline float3 operator/=(float3 &a, float f)
{
float invf = 1.0f / f;
return a = a * invf;
}
# if !(defined(__KERNEL_METAL__) || defined(__KERNEL_CUDA__) || defined(__KERNEL_HIP__))
ccl_device_inline packed_float3 operator*=(packed_float3 &a, const float3 b)
{
a = float3(a) * b;
return a;
}
ccl_device_inline packed_float3 operator*=(packed_float3 &a, float f)
{
a = float3(a) * f;
return a;
}
ccl_device_inline packed_float3 operator/=(packed_float3 &a, const float3 b)
{
a = float3(a) / b;
return a;
}
ccl_device_inline packed_float3 operator/=(packed_float3 &a, float f)
{
a = float3(a) / f;
return a;
}
# endif
ccl_device_inline bool operator==(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7;
# else
return (a.x == b.x && a.y == b.y && a.z == b.z);
# endif
}
ccl_device_inline bool operator!=(const float3 a, const float3 b)
{
return !(a == b);
}
ccl_device_inline float dot(const float3 a, const float3 b)
{
# if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F));
# else
return a.x * b.x + a.y * b.y + a.z * b.z;
# endif
}
#endif
ccl_device_inline float dot_xy(const float3 a, const float3 b)
{
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a, b), b));
#else
return a.x * b.x + a.y * b.y;
#endif
}
ccl_device_inline float len(const float3 a)
{
#if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F)));
#else
return sqrtf(dot(a, a));
#endif
}
ccl_device_inline float reduce_min(float3 a)
{
return min(min(a.x, a.y), a.z);
}
ccl_device_inline float reduce_max(float3 a)
{
return max(max(a.x, a.y), a.z);
}
ccl_device_inline float len_squared(const float3 a)
{
return dot(a, a);
}
#ifndef __KERNEL_METAL__
ccl_device_inline float distance(const float3 a, const float3 b)
{
return len(a - b);
}
ccl_device_inline float3 cross(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
const float4 x = float4(a.m128);
const float4 y = shuffle<1, 2, 0, 3>(float4(b.m128));
const float4 z = float4(_mm_mul_ps(shuffle<1, 2, 0, 3>(float4(a.m128)), float4(b.m128)));
return float3(shuffle<1, 2, 0, 3>(msub(x, y, z)).m128);
# else
return make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
# endif
}
ccl_device_inline float3 normalize(const float3 a)
{
# if defined(__KERNEL_SSE42__) && defined(__KERNEL_SSE__)
__m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F));
return float3(_mm_div_ps(a.m128, norm));
# else
return a / len(a);
# endif
}
ccl_device_inline float3 min(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_min_ps(a.m128, b.m128));
# else
return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
# endif
}
ccl_device_inline float3 max(const float3 a, const float3 b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_max_ps(a.m128, b.m128));
# else
return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
# endif
}
ccl_device_inline float3 clamp(const float3 a, const float3 mn, const float3 mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float3 fabs(const float3 a)
{
# ifdef __KERNEL_SSE__
# ifdef __KERNEL_NEON__
return float3(vabsq_f32(a.m128));
# else
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
return float3(_mm_and_ps(a.m128, mask));
# endif
# else
return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z));
# endif
}
ccl_device_inline float3 fmod(const float3 a, const float b)
{
return make_float3(fmodf(a.x, b), fmodf(a.y, b), fmodf(a.z, b));
}
ccl_device_inline float3 sqrt(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sqrt_ps(a));
# else
return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));
# endif
}
ccl_device_inline float3 floor(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_floor_ps(a));
# else
return make_float3(floorf(a.x), floorf(a.y), floorf(a.z));
# endif
}
ccl_device_inline float3 ceil(const float3 a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_ceil_ps(a));
# else
return make_float3(ceilf(a.x), ceilf(a.y), ceilf(a.z));
# endif
}
ccl_device_inline float3 mix(const float3 a, const float3 b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 rcp(const float3 a)
{
# ifdef __KERNEL_SSE__
/* Don't use _mm_rcp_ps due to poor precision. */
return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
# else
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
# endif
}
ccl_device_inline float3 saturate(float3 a)
{
return make_float3(saturatef(a.x), saturatef(a.y), saturatef(a.z));
}
ccl_device_inline float3 exp(float3 v)
{
return make_float3(expf(v.x), expf(v.y), expf(v.z));
}
ccl_device_inline float3 log(float3 v)
{
return make_float3(logf(v.x), logf(v.y), logf(v.z));
}
ccl_device_inline float3 reflect(const float3 incident, const float3 normal)
{
float3 unit_normal = normalize(normal);
return incident - 2.0f * unit_normal * dot(incident, unit_normal);
}
ccl_device_inline float3 refract(const float3 incident, const float3 normal, const float eta)
{
float k = 1.0f - eta * eta * (1.0f - dot(normal, incident) * dot(normal, incident));
if (k < 0.0f)
return zero_float3();
else
return eta * incident - (eta * dot(normal, incident) + sqrt(k)) * normal;
}
ccl_device_inline float3 faceforward(const float3 vector,
const float3 incident,
const float3 reference)
{
return (dot(reference, incident) < 0.0f) ? vector : -vector;
}
#endif
ccl_device_inline float3 project(const float3 v, const float3 v_proj)
{
float len_squared = dot(v_proj, v_proj);
return (len_squared != 0.0f) ? (dot(v, v_proj) / len_squared) * v_proj : zero_float3();
}
ccl_device_inline float3 normalize_len(const float3 a, ccl_private float *t)
{
*t = len(a);
float x = 1.0f / *t;
return a * x;
}
ccl_device_inline float3 safe_normalize(const float3 a)
{
float t = len(a);
return (t != 0.0f) ? a * (1.0f / t) : a;
}
ccl_device_inline float3 safe_normalize_fallback(const float3 a, const float3 fallback)
{
float t = len(a);
return (t != 0.0f) ? a * (1.0f / t) : fallback;
}
ccl_device_inline float3 safe_normalize_len(const float3 a, ccl_private float *t)
{
*t = len(a);
return (*t != 0.0f) ? a / (*t) : a;
}
ccl_device_inline float3 safe_divide(const float3 a, const float3 b)
{
return make_float3((b.x != 0.0f) ? a.x / b.x : 0.0f,
(b.y != 0.0f) ? a.y / b.y : 0.0f,
(b.z != 0.0f) ? a.z / b.z : 0.0f);
}
ccl_device_inline float3 safe_divide(const float3 a, const float b)
{
return (b != 0.0f) ? a / b : zero_float3();
}
ccl_device_inline float3 interp(float3 a, float3 b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 sqr(float3 a)
{
return a * a;
}
ccl_device_inline bool is_zero(const float3 a)
{
#ifdef __KERNEL_SSE__
return a == make_float3(0.0f);
#else
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f);
#endif
}
ccl_device_inline float reduce_add(const float3 a)
{
#if defined(__KERNEL_SSE__) && defined(__KERNEL_NEON__)
__m128 t = a.m128;
t = vsetq_lane_f32(0.0f, t, 3);
return vaddvq_f32(t);
#else
return (a.x + a.y + a.z);
#endif
}
ccl_device_inline float average(const float3 a)
{
return reduce_add(a) * (1.0f / 3.0f);
}
ccl_device_inline bool isequal(const float3 a, const float3 b)
{
#if defined(__KERNEL_METAL__)
return all(a == b);
#else
return a == b;
#endif
}
/* Consistent name for this would be pow, but HIP compiler crashes in name mangling. */
ccl_device_inline float3 power(float3 v, float e)
{
return make_float3(powf(v.x, e), powf(v.y, e), powf(v.z, e));
}
ccl_device_inline bool isfinite_safe(float3 v)
{
return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z);
}
ccl_device_inline float3 ensure_finite(float3 v)
{
if (!isfinite_safe(v.x))
v.x = 0.0f;
if (!isfinite_safe(v.y))
v.y = 0.0f;
if (!isfinite_safe(v.z))
v.z = 0.0f;
return v;
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_FLOAT3_H__ */