Files
test/intern/cycles/kernel/integrator/path_state.h
David Murmann ee51f643b0 Cycles: Ray Portal BSDF
Transport rays that enter to another location in the scene, with
specified ray position and normal. This may be used to render portals
for visual effects, and other production rendering tricks.

This acts much like a Transparent BSDF. Render passes are passed
through, and this is affected by light path max transparent bounces.

Pull Request: https://projects.blender.org/blender/blender/pulls/114386
2024-04-29 12:37:51 +02:00

404 lines
15 KiB
C

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#pragma once
#include "kernel/sample/pattern.h"
CCL_NAMESPACE_BEGIN
/* Initialize queues, so that the this path is considered terminated.
* Used for early outputs in the camera ray initialization, as well as initialization of split
* states for shadow catcher. */
ccl_device_inline void path_state_init_queues(IntegratorState state)
{
INTEGRATOR_STATE_WRITE(state, path, queued_kernel) = 0;
#ifndef __KERNEL_GPU__
INTEGRATOR_STATE_WRITE(&state->shadow, shadow_path, queued_kernel) = 0;
INTEGRATOR_STATE_WRITE(&state->ao, shadow_path, queued_kernel) = 0;
#endif
}
/* Minimalistic initialization of the path state, which is needed for early outputs in the
* integrator initialization to work. */
ccl_device_inline void path_state_init(IntegratorState state,
ccl_global const KernelWorkTile *ccl_restrict tile,
const int x,
const int y)
{
const uint render_pixel_index = (uint)tile->offset + x + y * tile->stride;
INTEGRATOR_STATE_WRITE(state, path, render_pixel_index) = render_pixel_index;
path_state_init_queues(state);
}
/* Initialize the rest of the path state needed to continue the path integration. */
ccl_device_inline void path_state_init_integrator(KernelGlobals kg,
IntegratorState state,
const int sample,
const uint rng_hash)
{
INTEGRATOR_STATE_WRITE(state, path, sample) = sample;
INTEGRATOR_STATE_WRITE(state, path, bounce) = 0;
INTEGRATOR_STATE_WRITE(state, path, diffuse_bounce) = 0;
INTEGRATOR_STATE_WRITE(state, path, glossy_bounce) = 0;
INTEGRATOR_STATE_WRITE(state, path, transmission_bounce) = 0;
INTEGRATOR_STATE_WRITE(state, path, transparent_bounce) = 0;
INTEGRATOR_STATE_WRITE(state, path, volume_bounce) = 0;
INTEGRATOR_STATE_WRITE(state, path, volume_bounds_bounce) = 0;
INTEGRATOR_STATE_WRITE(state, path, rng_hash) = rng_hash;
INTEGRATOR_STATE_WRITE(state, path, rng_offset) = PRNG_BOUNCE_NUM;
INTEGRATOR_STATE_WRITE(state, path, flag) = PATH_RAY_CAMERA | PATH_RAY_MIS_SKIP |
PATH_RAY_TRANSPARENT_BACKGROUND;
INTEGRATOR_STATE_WRITE(state, path, mis_ray_pdf) = 0.0f;
INTEGRATOR_STATE_WRITE(state, path, min_ray_pdf) = FLT_MAX;
INTEGRATOR_STATE_WRITE(state, path, continuation_probability) = 1.0f;
INTEGRATOR_STATE_WRITE(state, path, throughput) = one_spectrum();
#ifdef __PATH_GUIDING__
INTEGRATOR_STATE_WRITE(state, path, unguided_throughput) = 1.0f;
INTEGRATOR_STATE_WRITE(state, guiding, path_segment) = nullptr;
INTEGRATOR_STATE_WRITE(state, guiding, use_surface_guiding) = false;
INTEGRATOR_STATE_WRITE(state, guiding, sample_surface_guiding_rand) = 0.5f;
INTEGRATOR_STATE_WRITE(state, guiding, surface_guiding_sampling_prob) = 0.0f;
INTEGRATOR_STATE_WRITE(state, guiding, bssrdf_sampling_prob) = 0.0f;
INTEGRATOR_STATE_WRITE(state, guiding, use_volume_guiding) = false;
INTEGRATOR_STATE_WRITE(state, guiding, sample_volume_guiding_rand) = 0.5f;
INTEGRATOR_STATE_WRITE(state, guiding, volume_guiding_sampling_prob) = 0.0f;
#endif
#ifdef __MNEE__
INTEGRATOR_STATE_WRITE(state, path, mnee) = 0;
#endif
INTEGRATOR_STATE_WRITE(state, isect, object) = OBJECT_NONE;
INTEGRATOR_STATE_WRITE(state, isect, prim) = PRIM_NONE;
if (kernel_data.kernel_features & KERNEL_FEATURE_VOLUME) {
INTEGRATOR_STATE_ARRAY_WRITE(state, volume_stack, 0, object) = OBJECT_NONE;
INTEGRATOR_STATE_ARRAY_WRITE(
state, volume_stack, 0, shader) = kernel_data.background.volume_shader;
INTEGRATOR_STATE_ARRAY_WRITE(state, volume_stack, 1, object) = OBJECT_NONE;
INTEGRATOR_STATE_ARRAY_WRITE(state, volume_stack, 1, shader) = SHADER_NONE;
}
#ifdef __DENOISING_FEATURES__
if (kernel_data.kernel_features & KERNEL_FEATURE_DENOISING) {
INTEGRATOR_STATE_WRITE(state, path, flag) |= PATH_RAY_DENOISING_FEATURES;
INTEGRATOR_STATE_WRITE(state, path, denoising_feature_throughput) = one_spectrum();
}
#endif
#ifdef __LIGHT_LINKING__
if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_LINKING) {
INTEGRATOR_STATE_WRITE(state, path, mis_ray_object) = OBJECT_NONE;
}
#endif
}
ccl_device_inline void path_state_next(KernelGlobals kg,
IntegratorState state,
const int label,
const int shader_flag)
{
uint32_t flag = INTEGRATOR_STATE(state, path, flag);
/* ray through transparent keeps same flags from previous ray and is
* not counted as a regular bounce, transparent has separate max */
if (label & (LABEL_TRANSPARENT | LABEL_RAY_PORTAL)) {
uint32_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce) + 1;
flag |= PATH_RAY_TRANSPARENT;
if (transparent_bounce >= kernel_data.integrator.transparent_max_bounce) {
flag |= PATH_RAY_TERMINATE_ON_NEXT_SURFACE;
}
if (shader_flag & SD_RAY_PORTAL) {
flag |= PATH_RAY_MIS_SKIP;
}
INTEGRATOR_STATE_WRITE(state, path, flag) = flag;
INTEGRATOR_STATE_WRITE(state, path, transparent_bounce) = transparent_bounce;
/* Random number generator next bounce. */
INTEGRATOR_STATE_WRITE(state, path, rng_offset) += PRNG_BOUNCE_NUM;
return;
}
uint32_t bounce = INTEGRATOR_STATE(state, path, bounce) + 1;
if (bounce >= kernel_data.integrator.max_bounce) {
flag |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
}
flag &= ~(PATH_RAY_ALL_VISIBILITY | PATH_RAY_MIS_SKIP | PATH_RAY_MIS_HAD_TRANSMISSION);
#ifdef __VOLUME__
if (label & LABEL_VOLUME_SCATTER) {
/* volume scatter */
flag |= PATH_RAY_VOLUME_SCATTER | PATH_RAY_MIS_HAD_TRANSMISSION;
flag &= ~PATH_RAY_TRANSPARENT_BACKGROUND;
if (!(flag & PATH_RAY_ANY_PASS)) {
flag |= PATH_RAY_VOLUME_PASS;
}
const int volume_bounce = INTEGRATOR_STATE(state, path, volume_bounce) + 1;
INTEGRATOR_STATE_WRITE(state, path, volume_bounce) = volume_bounce;
if (volume_bounce >= kernel_data.integrator.max_volume_bounce) {
flag |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
}
}
else
#endif
{
/* surface reflection/transmission */
if (label & LABEL_REFLECT) {
flag |= PATH_RAY_REFLECT;
flag &= ~PATH_RAY_TRANSPARENT_BACKGROUND;
if (label & LABEL_DIFFUSE) {
const int diffuse_bounce = INTEGRATOR_STATE(state, path, diffuse_bounce) + 1;
INTEGRATOR_STATE_WRITE(state, path, diffuse_bounce) = diffuse_bounce;
if (diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) {
flag |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
}
}
else {
const int glossy_bounce = INTEGRATOR_STATE(state, path, glossy_bounce) + 1;
INTEGRATOR_STATE_WRITE(state, path, glossy_bounce) = glossy_bounce;
if (glossy_bounce >= kernel_data.integrator.max_glossy_bounce) {
flag |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
}
}
}
else {
kernel_assert(label & LABEL_TRANSMIT);
flag |= PATH_RAY_TRANSMIT;
if (!(label & LABEL_TRANSMIT_TRANSPARENT)) {
flag &= ~PATH_RAY_TRANSPARENT_BACKGROUND;
}
const int transmission_bounce = INTEGRATOR_STATE(state, path, transmission_bounce) + 1;
INTEGRATOR_STATE_WRITE(state, path, transmission_bounce) = transmission_bounce;
if (transmission_bounce >= kernel_data.integrator.max_transmission_bounce) {
flag |= PATH_RAY_TERMINATE_AFTER_TRANSPARENT;
}
}
/* diffuse/glossy/singular */
if (label & LABEL_DIFFUSE) {
flag |= PATH_RAY_DIFFUSE | PATH_RAY_DIFFUSE_ANCESTOR;
}
else if (label & LABEL_GLOSSY) {
flag |= PATH_RAY_GLOSSY;
}
else {
kernel_assert(label & LABEL_SINGULAR);
flag |= PATH_RAY_GLOSSY | PATH_RAY_SINGULAR | PATH_RAY_MIS_SKIP;
}
/* Flag for consistent MIS weights with light tree. */
if (shader_flag & SD_BSDF_HAS_TRANSMISSION) {
flag |= PATH_RAY_MIS_HAD_TRANSMISSION;
}
/* Render pass categories. */
if (!(flag & PATH_RAY_ANY_PASS) && !(flag & PATH_RAY_TRANSPARENT_BACKGROUND)) {
flag |= PATH_RAY_SURFACE_PASS;
}
}
INTEGRATOR_STATE_WRITE(state, path, flag) = flag;
INTEGRATOR_STATE_WRITE(state, path, bounce) = bounce;
/* Random number generator next bounce. */
INTEGRATOR_STATE_WRITE(state, path, rng_offset) += PRNG_BOUNCE_NUM;
}
#ifdef __VOLUME__
ccl_device_inline bool path_state_volume_next(IntegratorState state)
{
/* For volume bounding meshes we pass through without counting transparent
* bounces, only sanity check in case self intersection gets us stuck. */
uint32_t volume_bounds_bounce = INTEGRATOR_STATE(state, path, volume_bounds_bounce) + 1;
INTEGRATOR_STATE_WRITE(state, path, volume_bounds_bounce) = volume_bounds_bounce;
if (volume_bounds_bounce > VOLUME_BOUNDS_MAX) {
return false;
}
/* Random number generator next bounce. */
INTEGRATOR_STATE_WRITE(state, path, rng_offset) += PRNG_BOUNCE_NUM;
return true;
}
#endif
ccl_device_inline uint path_state_ray_visibility(ConstIntegratorState state)
{
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
uint32_t visibility = path_flag & PATH_RAY_ALL_VISIBILITY;
/* For visibility, diffuse/glossy are for reflection only. */
if (visibility & PATH_RAY_TRANSMIT) {
visibility &= ~(PATH_RAY_DIFFUSE | PATH_RAY_GLOSSY);
}
/* todo: this is not supported as its own ray visibility yet. */
if (path_flag & PATH_RAY_VOLUME_SCATTER) {
visibility |= PATH_RAY_DIFFUSE;
}
visibility = SHADOW_CATCHER_PATH_VISIBILITY(path_flag, visibility);
return visibility;
}
ccl_device_inline float path_state_continuation_probability(KernelGlobals kg,
ConstIntegratorState state,
const uint32_t path_flag)
{
if (path_flag & PATH_RAY_TRANSPARENT) {
const uint32_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
/* Do at least specified number of bounces without RR. */
if (transparent_bounce <= kernel_data.integrator.transparent_min_bounce) {
return 1.0f;
}
}
else {
const uint32_t bounce = INTEGRATOR_STATE(state, path, bounce);
/* Do at least specified number of bounces without RR. */
if (bounce <= kernel_data.integrator.min_bounce) {
return 1.0f;
}
}
/* Probabilistic termination: use sqrt() to roughly match typical view
* transform and do path termination a bit later on average. */
Spectrum throughput = INTEGRATOR_STATE(state, path, throughput);
#if defined(__PATH_GUIDING__) && PATH_GUIDING_LEVEL >= 4
throughput *= INTEGRATOR_STATE(state, path, unguided_throughput);
#endif
return min(sqrtf(reduce_max(fabs(throughput))), 1.0f);
}
ccl_device_inline bool path_state_ao_bounce(KernelGlobals kg, ConstIntegratorState state)
{
if (!kernel_data.integrator.ao_bounces) {
return false;
}
const int bounce = INTEGRATOR_STATE(state, path, bounce) -
INTEGRATOR_STATE(state, path, transmission_bounce) -
(INTEGRATOR_STATE(state, path, glossy_bounce) > 0) + 1;
return (bounce > kernel_data.integrator.ao_bounces);
}
/* Random Number Sampling Utility Functions
*
* For each random number in each step of the path we must have a unique
* dimension to avoid using the same sequence twice.
*
* For branches in the path we must be careful not to reuse the same number
* in a sequence and offset accordingly.
*/
/* RNG State loaded onto stack. */
typedef struct RNGState {
uint rng_hash;
uint rng_offset;
int sample;
} RNGState;
ccl_device_inline void path_state_rng_load(ConstIntegratorState state,
ccl_private RNGState *rng_state)
{
rng_state->rng_hash = INTEGRATOR_STATE(state, path, rng_hash);
rng_state->rng_offset = INTEGRATOR_STATE(state, path, rng_offset);
rng_state->sample = INTEGRATOR_STATE(state, path, sample);
}
ccl_device_inline void shadow_path_state_rng_load(ConstIntegratorShadowState state,
ccl_private RNGState *rng_state)
{
rng_state->rng_hash = INTEGRATOR_STATE(state, shadow_path, rng_hash);
rng_state->rng_offset = INTEGRATOR_STATE(state, shadow_path, rng_offset);
rng_state->sample = INTEGRATOR_STATE(state, shadow_path, sample);
}
ccl_device_inline float path_state_rng_1D(KernelGlobals kg,
ccl_private const RNGState *rng_state,
const int dimension)
{
return path_rng_1D(
kg, rng_state->rng_hash, rng_state->sample, rng_state->rng_offset + dimension);
}
ccl_device_inline float2 path_state_rng_2D(KernelGlobals kg,
ccl_private const RNGState *rng_state,
const int dimension)
{
return path_rng_2D(
kg, rng_state->rng_hash, rng_state->sample, rng_state->rng_offset + dimension);
}
ccl_device_inline float3 path_state_rng_3D(KernelGlobals kg,
ccl_private const RNGState *rng_state,
const int dimension)
{
return path_rng_3D(
kg, rng_state->rng_hash, rng_state->sample, rng_state->rng_offset + dimension);
}
ccl_device_inline float path_branched_rng_1D(KernelGlobals kg,
ccl_private const RNGState *rng_state,
const int branch,
const int num_branches,
const int dimension)
{
return path_rng_1D(kg,
rng_state->rng_hash,
rng_state->sample * num_branches + branch,
rng_state->rng_offset + dimension);
}
ccl_device_inline float2 path_branched_rng_2D(KernelGlobals kg,
ccl_private const RNGState *rng_state,
const int branch,
const int num_branches,
const int dimension)
{
return path_rng_2D(kg,
rng_state->rng_hash,
rng_state->sample * num_branches + branch,
rng_state->rng_offset + dimension);
}
ccl_device_inline float3 path_branched_rng_3D(KernelGlobals kg,
ccl_private const RNGState *rng_state,
const int branch,
const int num_branches,
const int dimension)
{
return path_rng_3D(kg,
rng_state->rng_hash,
rng_state->sample * num_branches + branch,
rng_state->rng_offset + dimension);
}
/* Utility functions to get light termination value,
* since it might not be needed in many cases.
*/
ccl_device_inline float path_state_rng_light_termination(KernelGlobals kg,
ccl_private const RNGState *state)
{
if (kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
return path_state_rng_1D(kg, state, PRNG_LIGHT_TERMINATE);
}
return 0.0f;
}
CCL_NAMESPACE_END