Part 3/3 of #109135, #110272 Switch to new node group interfaces and deprecate old DNA and API. This completes support for panels in node drawing and in node group interface declarations in particular. The new node group interface DNA and RNA code has been added in parts 1 and 2 (#110885, #110952) but has not be enabled yet. This commit completes the integration by * enabling the new RNA API * using the new API in UI * read/write new interfaces from blend files * add versioning for backward compatibility * add forward-compatible writing code to reconstruct old interfaces All places accessing node group interface declarations should now be using the new API. A runtime cache has been added that allows simple linear access to socket inputs and outputs even when a panel hierarchy is used. Old DNA has been deprecated and should only be accessed for versioning (inputs/outputs renamed to inputs_legacy/outputs_legacy to catch errors). Versioning code ensures both backward and forward compatibility of existing files. The API for old interfaces is removed. The new API is very similar but is defined on the `ntree.interface` instead of the `ntree` directly. Breaking change notifications and detailed instructions for migrating will be added. A python test has been added for the node group API functions. This includes new functionality such as creating panels and moving items between different levels. This patch does not yet contain panel representations in the modifier UI. This has been tested in a separate branch and will be added with a later PR (#108565). Pull Request: https://projects.blender.org/blender/blender/pulls/111348
635 lines
22 KiB
C++
635 lines
22 KiB
C++
/* SPDX-FileCopyrightText: 2023 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include "BKE_node.hh"
|
|
#include "BKE_node_runtime.hh"
|
|
|
|
#include "DNA_node_types.h"
|
|
|
|
#include "BLI_function_ref.hh"
|
|
#include "BLI_stack.hh"
|
|
#include "BLI_task.hh"
|
|
#include "BLI_timeit.hh"
|
|
|
|
#include "NOD_geometry_nodes_lazy_function.hh"
|
|
|
|
namespace blender::bke::node_tree_runtime {
|
|
|
|
void preprocess_geometry_node_tree_for_evaluation(bNodeTree &tree_cow)
|
|
{
|
|
BLI_assert(tree_cow.type == NTREE_GEOMETRY);
|
|
/* Rebuild geometry nodes lazy function graph. */
|
|
tree_cow.runtime->geometry_nodes_lazy_function_graph_info.reset();
|
|
blender::nodes::ensure_geometry_nodes_lazy_function_graph(tree_cow);
|
|
}
|
|
|
|
static void update_interface(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
/* const_cast needed because the cache stores mutable item pointers, but needs a mutable
|
|
* interface in order to get them. The interface itself is not modified here. */
|
|
tree_runtime.interface_cache.rebuild(const_cast<bNodeTreeInterface &>(ntree.tree_interface));
|
|
}
|
|
|
|
static void update_node_vector(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
const Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
tree_runtime.group_nodes.clear();
|
|
tree_runtime.has_undefined_nodes_or_sockets = false;
|
|
for (const int i : nodes.index_range()) {
|
|
bNode &node = *nodes[i];
|
|
node.runtime->index_in_tree = i;
|
|
node.runtime->owner_tree = const_cast<bNodeTree *>(&ntree);
|
|
tree_runtime.has_undefined_nodes_or_sockets |= node.typeinfo == &bke::NodeTypeUndefined;
|
|
if (node.is_group()) {
|
|
tree_runtime.group_nodes.append(&node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_link_vector(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.links.clear();
|
|
LISTBASE_FOREACH (bNodeLink *, link, &ntree.links) {
|
|
/* Check that the link connects nodes within this tree. */
|
|
BLI_assert(tree_runtime.nodes_by_id.contains(link->fromnode));
|
|
BLI_assert(tree_runtime.nodes_by_id.contains(link->tonode));
|
|
|
|
tree_runtime.links.append(link);
|
|
}
|
|
}
|
|
|
|
static void update_socket_vectors_and_owner_node(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.sockets.clear();
|
|
tree_runtime.input_sockets.clear();
|
|
tree_runtime.output_sockets.clear();
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
bNodeRuntime &node_runtime = *node->runtime;
|
|
node_runtime.inputs.clear();
|
|
node_runtime.outputs.clear();
|
|
LISTBASE_FOREACH (bNodeSocket *, socket, &node->inputs) {
|
|
socket->runtime->index_in_node = node_runtime.inputs.append_and_get_index(socket);
|
|
socket->runtime->index_in_all_sockets = tree_runtime.sockets.append_and_get_index(socket);
|
|
socket->runtime->index_in_inout_sockets = tree_runtime.input_sockets.append_and_get_index(
|
|
socket);
|
|
socket->runtime->owner_node = node;
|
|
tree_runtime.has_undefined_nodes_or_sockets |= socket->typeinfo ==
|
|
&bke::NodeSocketTypeUndefined;
|
|
}
|
|
LISTBASE_FOREACH (bNodeSocket *, socket, &node->outputs) {
|
|
socket->runtime->index_in_node = node_runtime.outputs.append_and_get_index(socket);
|
|
socket->runtime->index_in_all_sockets = tree_runtime.sockets.append_and_get_index(socket);
|
|
socket->runtime->index_in_inout_sockets = tree_runtime.output_sockets.append_and_get_index(
|
|
socket);
|
|
socket->runtime->owner_node = node;
|
|
tree_runtime.has_undefined_nodes_or_sockets |= socket->typeinfo ==
|
|
&bke::NodeSocketTypeUndefined;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_panels(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
bNodeRuntime &node_runtime = *node->runtime;
|
|
node_runtime.panels.reinitialize(node->num_panel_states);
|
|
}
|
|
}
|
|
|
|
static void update_internal_link_inputs(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
for (bNodeSocket *socket : node->runtime->outputs) {
|
|
socket->runtime->internal_link_input = nullptr;
|
|
}
|
|
for (bNodeLink &link : node->runtime->internal_links) {
|
|
link.tosock->runtime->internal_link_input = link.fromsock;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_directly_linked_links_and_sockets(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
for (bNodeSocket *socket : node->runtime->inputs) {
|
|
socket->runtime->directly_linked_links.clear();
|
|
socket->runtime->directly_linked_sockets.clear();
|
|
}
|
|
for (bNodeSocket *socket : node->runtime->outputs) {
|
|
socket->runtime->directly_linked_links.clear();
|
|
socket->runtime->directly_linked_sockets.clear();
|
|
}
|
|
node->runtime->has_available_linked_inputs = false;
|
|
node->runtime->has_available_linked_outputs = false;
|
|
}
|
|
for (bNodeLink *link : tree_runtime.links) {
|
|
link->fromsock->runtime->directly_linked_links.append(link);
|
|
link->fromsock->runtime->directly_linked_sockets.append(link->tosock);
|
|
link->tosock->runtime->directly_linked_links.append(link);
|
|
if (link->is_available()) {
|
|
link->fromnode->runtime->has_available_linked_outputs = true;
|
|
link->tonode->runtime->has_available_linked_inputs = true;
|
|
}
|
|
}
|
|
for (bNodeSocket *socket : tree_runtime.input_sockets) {
|
|
if (socket->flag & SOCK_MULTI_INPUT) {
|
|
std::sort(socket->runtime->directly_linked_links.begin(),
|
|
socket->runtime->directly_linked_links.end(),
|
|
[&](const bNodeLink *a, const bNodeLink *b) {
|
|
return a->multi_input_socket_index > b->multi_input_socket_index;
|
|
});
|
|
}
|
|
}
|
|
for (bNodeSocket *socket : tree_runtime.input_sockets) {
|
|
for (bNodeLink *link : socket->runtime->directly_linked_links) {
|
|
/* Do this after sorting the input links. */
|
|
socket->runtime->directly_linked_sockets.append(link->fromsock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void find_logical_origins_for_socket_recursive(
|
|
bNodeSocket &input_socket,
|
|
bool only_follow_first_input_link,
|
|
Vector<bNodeSocket *, 16> &sockets_in_current_chain,
|
|
Vector<bNodeSocket *> &r_logical_origins,
|
|
Vector<bNodeSocket *> &r_skipped_origins)
|
|
{
|
|
if (sockets_in_current_chain.contains(&input_socket)) {
|
|
/* Protect against reroute recursions. */
|
|
return;
|
|
}
|
|
sockets_in_current_chain.append(&input_socket);
|
|
|
|
Span<bNodeLink *> links_to_check = input_socket.runtime->directly_linked_links;
|
|
if (only_follow_first_input_link) {
|
|
links_to_check = links_to_check.take_front(1);
|
|
}
|
|
for (bNodeLink *link : links_to_check) {
|
|
if (link->is_muted()) {
|
|
continue;
|
|
}
|
|
if (!link->is_available()) {
|
|
continue;
|
|
}
|
|
bNodeSocket &origin_socket = *link->fromsock;
|
|
bNode &origin_node = *link->fromnode;
|
|
if (!origin_socket.is_available()) {
|
|
/* Non available sockets are ignored. */
|
|
continue;
|
|
}
|
|
if (origin_node.type == NODE_REROUTE) {
|
|
bNodeSocket &reroute_input = *origin_node.runtime->inputs[0];
|
|
bNodeSocket &reroute_output = *origin_node.runtime->outputs[0];
|
|
r_skipped_origins.append(&reroute_input);
|
|
r_skipped_origins.append(&reroute_output);
|
|
find_logical_origins_for_socket_recursive(
|
|
reroute_input, false, sockets_in_current_chain, r_logical_origins, r_skipped_origins);
|
|
continue;
|
|
}
|
|
if (origin_node.is_muted()) {
|
|
if (bNodeSocket *mute_input = origin_socket.runtime->internal_link_input) {
|
|
r_skipped_origins.append(&origin_socket);
|
|
r_skipped_origins.append(mute_input);
|
|
find_logical_origins_for_socket_recursive(
|
|
*mute_input, true, sockets_in_current_chain, r_logical_origins, r_skipped_origins);
|
|
}
|
|
continue;
|
|
}
|
|
r_logical_origins.append(&origin_socket);
|
|
}
|
|
|
|
sockets_in_current_chain.pop_last();
|
|
}
|
|
|
|
static void update_logically_linked_sockets(const bNodeTree &ntree)
|
|
{
|
|
/* Compute logically linked sockets to inputs. */
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
bNode &node = *nodes[i];
|
|
for (bNodeSocket *socket : node.runtime->inputs) {
|
|
Vector<bNodeSocket *, 16> sockets_in_current_chain;
|
|
socket->runtime->logically_linked_sockets.clear();
|
|
socket->runtime->logically_linked_skipped_sockets.clear();
|
|
find_logical_origins_for_socket_recursive(
|
|
*socket,
|
|
false,
|
|
sockets_in_current_chain,
|
|
socket->runtime->logically_linked_sockets,
|
|
socket->runtime->logically_linked_skipped_sockets);
|
|
}
|
|
}
|
|
});
|
|
|
|
/* Clear logically linked sockets to outputs. */
|
|
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
|
|
for (const int i : range) {
|
|
bNode &node = *nodes[i];
|
|
for (bNodeSocket *socket : node.runtime->outputs) {
|
|
socket->runtime->logically_linked_sockets.clear();
|
|
}
|
|
}
|
|
});
|
|
|
|
/* Compute logically linked sockets to outputs using the previously computed logically linked
|
|
* sockets to inputs. */
|
|
for (const bNode *node : nodes) {
|
|
for (bNodeSocket *input_socket : node->runtime->inputs) {
|
|
for (bNodeSocket *output_socket : input_socket->runtime->logically_linked_sockets) {
|
|
output_socket->runtime->logically_linked_sockets.append(input_socket);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_nodes_by_type(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.nodes_by_type.clear();
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
tree_runtime.nodes_by_type.add(node->typeinfo, node);
|
|
}
|
|
}
|
|
|
|
static void update_sockets_by_identifier(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
|
|
for (bNode *node : nodes.slice(range)) {
|
|
node->runtime->inputs_by_identifier.clear();
|
|
node->runtime->outputs_by_identifier.clear();
|
|
for (bNodeSocket *socket : node->runtime->inputs) {
|
|
node->runtime->inputs_by_identifier.add_new(socket->identifier, socket);
|
|
}
|
|
for (bNodeSocket *socket : node->runtime->outputs) {
|
|
node->runtime->outputs_by_identifier.add_new(socket->identifier, socket);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
enum class ToposortDirection {
|
|
LeftToRight,
|
|
RightToLeft,
|
|
};
|
|
|
|
struct ToposortNodeState {
|
|
bool is_done = false;
|
|
bool is_in_stack = false;
|
|
};
|
|
|
|
static Vector<const bNode *> get_implicit_origin_nodes(const bNodeTree &ntree, bNode &node)
|
|
{
|
|
Vector<const bNode *> origin_nodes;
|
|
if (node.type == GEO_NODE_SIMULATION_OUTPUT) {
|
|
for (const bNode *sim_input_node :
|
|
ntree.runtime->nodes_by_type.lookup(nodeTypeFind("GeometryNodeSimulationInput")))
|
|
{
|
|
const auto &storage = *static_cast<const NodeGeometrySimulationInput *>(
|
|
sim_input_node->storage);
|
|
if (storage.output_node_id == node.identifier) {
|
|
origin_nodes.append(sim_input_node);
|
|
}
|
|
}
|
|
}
|
|
if (node.type == GEO_NODE_REPEAT_OUTPUT) {
|
|
for (const bNode *repeat_input_node :
|
|
ntree.runtime->nodes_by_type.lookup(nodeTypeFind("GeometryNodeRepeatInput")))
|
|
{
|
|
const auto &storage = *static_cast<const NodeGeometryRepeatInput *>(
|
|
repeat_input_node->storage);
|
|
if (storage.output_node_id == node.identifier) {
|
|
origin_nodes.append(repeat_input_node);
|
|
}
|
|
}
|
|
}
|
|
return origin_nodes;
|
|
}
|
|
|
|
static Vector<const bNode *> get_implicit_target_nodes(const bNodeTree &ntree, bNode &node)
|
|
{
|
|
Vector<const bNode *> target_nodes;
|
|
if (node.type == GEO_NODE_SIMULATION_INPUT) {
|
|
const auto &storage = *static_cast<const NodeGeometrySimulationInput *>(node.storage);
|
|
if (const bNode *sim_output_node = ntree.node_by_id(storage.output_node_id)) {
|
|
target_nodes.append(sim_output_node);
|
|
}
|
|
}
|
|
if (node.type == GEO_NODE_REPEAT_INPUT) {
|
|
const auto &storage = *static_cast<const NodeGeometryRepeatInput *>(node.storage);
|
|
if (const bNode *repeat_output_node = ntree.node_by_id(storage.output_node_id)) {
|
|
target_nodes.append(repeat_output_node);
|
|
}
|
|
}
|
|
return target_nodes;
|
|
}
|
|
|
|
static void toposort_from_start_node(const bNodeTree &ntree,
|
|
const ToposortDirection direction,
|
|
bNode &start_node,
|
|
MutableSpan<ToposortNodeState> node_states,
|
|
Vector<bNode *> &r_sorted_nodes,
|
|
bool &r_cycle_detected)
|
|
{
|
|
struct Item {
|
|
bNode *node;
|
|
int socket_index = 0;
|
|
int link_index = 0;
|
|
int implicit_link_index = 0;
|
|
};
|
|
|
|
Stack<Item, 64> nodes_to_check;
|
|
nodes_to_check.push({&start_node});
|
|
node_states[start_node.index()].is_in_stack = true;
|
|
while (!nodes_to_check.is_empty()) {
|
|
Item &item = nodes_to_check.peek();
|
|
bNode &node = *item.node;
|
|
bool pushed_node = false;
|
|
|
|
auto handle_linked_node = [&](bNode &linked_node) {
|
|
ToposortNodeState &linked_node_state = node_states[linked_node.index()];
|
|
if (linked_node_state.is_done) {
|
|
/* The linked node has already been visited. */
|
|
return true;
|
|
}
|
|
if (linked_node_state.is_in_stack) {
|
|
r_cycle_detected = true;
|
|
}
|
|
else {
|
|
nodes_to_check.push({&linked_node});
|
|
linked_node_state.is_in_stack = true;
|
|
pushed_node = true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
const Span<bNodeSocket *> sockets = (direction == ToposortDirection::LeftToRight) ?
|
|
node.runtime->inputs :
|
|
node.runtime->outputs;
|
|
while (true) {
|
|
if (item.socket_index == sockets.size()) {
|
|
/* All sockets have already been visited. */
|
|
break;
|
|
}
|
|
bNodeSocket &socket = *sockets[item.socket_index];
|
|
const Span<bNodeLink *> linked_links = socket.runtime->directly_linked_links;
|
|
if (item.link_index == linked_links.size()) {
|
|
/* All links connected to this socket have already been visited. */
|
|
item.socket_index++;
|
|
item.link_index = 0;
|
|
continue;
|
|
}
|
|
bNodeLink &link = *linked_links[item.link_index];
|
|
if (!link.is_available()) {
|
|
/* Ignore unavailable links. */
|
|
item.link_index++;
|
|
continue;
|
|
}
|
|
bNodeSocket &linked_socket = *socket.runtime->directly_linked_sockets[item.link_index];
|
|
bNode &linked_node = *linked_socket.runtime->owner_node;
|
|
if (handle_linked_node(linked_node)) {
|
|
/* The linked node has already been visited. */
|
|
item.link_index++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!pushed_node) {
|
|
/* Some nodes are internally linked without an explicit `bNodeLink`. The toposort should
|
|
* still order them correctly and find cycles. */
|
|
const Vector<const bNode *> implicitly_linked_nodes =
|
|
(direction == ToposortDirection::LeftToRight) ? get_implicit_origin_nodes(ntree, node) :
|
|
get_implicit_target_nodes(ntree, node);
|
|
while (true) {
|
|
if (item.implicit_link_index == implicitly_linked_nodes.size()) {
|
|
/* All implicitly linked nodes have already been visited. */
|
|
break;
|
|
}
|
|
const bNode &linked_node = *implicitly_linked_nodes[item.implicit_link_index];
|
|
if (handle_linked_node(const_cast<bNode &>(linked_node))) {
|
|
/* The implicitly linked node has already been visited. */
|
|
item.implicit_link_index++;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If no other element has been pushed, the current node can be pushed to the sorted list.
|
|
*/
|
|
if (!pushed_node) {
|
|
ToposortNodeState &node_state = node_states[node.index()];
|
|
node_state.is_done = true;
|
|
node_state.is_in_stack = false;
|
|
r_sorted_nodes.append(&node);
|
|
nodes_to_check.pop();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_toposort(const bNodeTree &ntree,
|
|
const ToposortDirection direction,
|
|
Vector<bNode *> &r_sorted_nodes,
|
|
bool &r_cycle_detected)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
r_sorted_nodes.clear();
|
|
r_sorted_nodes.reserve(tree_runtime.nodes_by_id.size());
|
|
r_cycle_detected = false;
|
|
|
|
Array<ToposortNodeState> node_states(tree_runtime.nodes_by_id.size());
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
if (node_states[node->index()].is_done) {
|
|
/* Ignore nodes that are done already. */
|
|
continue;
|
|
}
|
|
if ((direction == ToposortDirection::LeftToRight) ?
|
|
node->runtime->has_available_linked_outputs :
|
|
node->runtime->has_available_linked_inputs)
|
|
{
|
|
/* Ignore non-start nodes. */
|
|
continue;
|
|
}
|
|
toposort_from_start_node(
|
|
ntree, direction, *node, node_states, r_sorted_nodes, r_cycle_detected);
|
|
}
|
|
|
|
if (r_sorted_nodes.size() < tree_runtime.nodes_by_id.size()) {
|
|
r_cycle_detected = true;
|
|
for (bNode *node : tree_runtime.nodes_by_id) {
|
|
if (node_states[node->index()].is_done) {
|
|
/* Ignore nodes that are done already. */
|
|
continue;
|
|
}
|
|
/* Start toposort at this node which is somewhere in the middle of a loop. */
|
|
toposort_from_start_node(
|
|
ntree, direction, *node, node_states, r_sorted_nodes, r_cycle_detected);
|
|
}
|
|
}
|
|
|
|
BLI_assert(tree_runtime.nodes_by_id.size() == r_sorted_nodes.size());
|
|
}
|
|
|
|
static void update_root_frames(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
|
|
tree_runtime.root_frames.clear();
|
|
|
|
for (bNode *node : nodes) {
|
|
if (!node->parent && node->is_frame()) {
|
|
tree_runtime.root_frames.append(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_direct_frames_childrens(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
Span<bNode *> nodes = tree_runtime.nodes_by_id;
|
|
|
|
for (bNode *node : nodes) {
|
|
node->runtime->direct_children_in_frame.clear();
|
|
}
|
|
|
|
for (bNode *node : nodes) {
|
|
if (const bNode *frame = node->parent) {
|
|
frame->runtime->direct_children_in_frame.append(node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_group_output_node(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
const bNodeType *node_type = nodeTypeFind("NodeGroupOutput");
|
|
const Span<bNode *> group_output_nodes = tree_runtime.nodes_by_type.lookup(node_type);
|
|
if (group_output_nodes.is_empty()) {
|
|
tree_runtime.group_output_node = nullptr;
|
|
}
|
|
else if (group_output_nodes.size() == 1) {
|
|
tree_runtime.group_output_node = group_output_nodes[0];
|
|
}
|
|
else {
|
|
for (bNode *group_output : group_output_nodes) {
|
|
if (group_output->flag & NODE_DO_OUTPUT) {
|
|
tree_runtime.group_output_node = group_output;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ensure_topology_cache(const bNodeTree &ntree)
|
|
{
|
|
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
|
|
tree_runtime.topology_cache_mutex.ensure([&]() {
|
|
update_interface(ntree);
|
|
update_node_vector(ntree);
|
|
update_link_vector(ntree);
|
|
update_socket_vectors_and_owner_node(ntree);
|
|
update_panels(ntree);
|
|
update_internal_link_inputs(ntree);
|
|
update_directly_linked_links_and_sockets(ntree);
|
|
update_nodes_by_type(ntree);
|
|
threading::parallel_invoke(
|
|
tree_runtime.nodes_by_id.size() > 32,
|
|
[&]() { update_logically_linked_sockets(ntree); },
|
|
[&]() { update_sockets_by_identifier(ntree); },
|
|
[&]() {
|
|
update_toposort(ntree,
|
|
ToposortDirection::LeftToRight,
|
|
tree_runtime.toposort_left_to_right,
|
|
tree_runtime.has_available_link_cycle);
|
|
for (const int i : tree_runtime.toposort_left_to_right.index_range()) {
|
|
const bNode &node = *tree_runtime.toposort_left_to_right[i];
|
|
node.runtime->toposort_left_to_right_index = i;
|
|
}
|
|
},
|
|
[&]() {
|
|
bool dummy;
|
|
update_toposort(
|
|
ntree, ToposortDirection::RightToLeft, tree_runtime.toposort_right_to_left, dummy);
|
|
for (const int i : tree_runtime.toposort_right_to_left.index_range()) {
|
|
const bNode &node = *tree_runtime.toposort_right_to_left[i];
|
|
node.runtime->toposort_right_to_left_index = i;
|
|
}
|
|
},
|
|
[&]() { update_root_frames(ntree); },
|
|
[&]() { update_direct_frames_childrens(ntree); });
|
|
update_group_output_node(ntree);
|
|
tree_runtime.topology_cache_exists = true;
|
|
});
|
|
}
|
|
|
|
} // namespace blender::bke::node_tree_runtime
|
|
|
|
void bNodeTree::ensure_topology_cache() const
|
|
{
|
|
blender::bke::node_tree_runtime::ensure_topology_cache(*this);
|
|
}
|
|
|
|
const bNestedNodeRef *bNodeTree::find_nested_node_ref(const int32_t nested_node_id) const
|
|
{
|
|
for (const bNestedNodeRef &ref : this->nested_node_refs_span()) {
|
|
if (ref.id == nested_node_id) {
|
|
return &ref;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
const bNestedNodeRef *bNodeTree::nested_node_ref_from_node_id_path(
|
|
const blender::Span<int32_t> node_ids) const
|
|
{
|
|
if (node_ids.is_empty()) {
|
|
return nullptr;
|
|
}
|
|
for (const bNestedNodeRef &ref : this->nested_node_refs_span()) {
|
|
blender::Vector<int> current_node_ids;
|
|
if (this->node_id_path_from_nested_node_ref(ref.id, current_node_ids)) {
|
|
if (current_node_ids.as_span() == node_ids) {
|
|
return &ref;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool bNodeTree::node_id_path_from_nested_node_ref(const int32_t nested_node_id,
|
|
blender::Vector<int> &r_node_ids) const
|
|
{
|
|
const bNestedNodeRef *ref = this->find_nested_node_ref(nested_node_id);
|
|
if (ref == nullptr) {
|
|
return false;
|
|
}
|
|
const int32_t node_id = ref->path.node_id;
|
|
const bNode *node = this->node_by_id(node_id);
|
|
if (node == nullptr) {
|
|
return false;
|
|
}
|
|
r_node_ids.append(node_id);
|
|
if (!node->is_group()) {
|
|
return true;
|
|
}
|
|
const bNodeTree *group = reinterpret_cast<const bNodeTree *>(node->id);
|
|
if (group == nullptr) {
|
|
return false;
|
|
}
|
|
return group->node_id_path_from_nested_node_ref(ref->path.id_in_node, r_node_ids);
|
|
}
|