Files
test/intern/cycles/kernel/bvh/util.h
Sergey Sharybin 50180283e9 Fix #117527: Spatial split leads to artifacts on transparent shadows
The reason for this to happen is because when spatial split is used
the same intersection could be recorded twice (via different BVH nodes).

This change introduces check for the intersection being already recoded,
similar to the check in the local BVH. The check is done during BVH
intersection which allows to properly ignore intersections even for the
maximum bounce number check. A faster approach would be to do such
filtering after sorting, but then we can not keep bounce check in the
BVH code consistent with and without spatial splits.

Intuitively it seems that it should be possible to merge the new loop
with the one that checks for which intersection to keep. But it is not
so trivial in practice: it doesn't run for all intersections, and also
it is formulated in a way that updates isect_index for the next record.

Pull Request: https://projects.blender.org/blender/blender/pulls/136251
2025-03-21 13:56:50 +01:00

314 lines
11 KiB
C

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#pragma once
#include "kernel/globals.h"
#include "kernel/integrator/state.h"
#include "kernel/types.h"
CCL_NAMESPACE_BEGIN
ccl_device_inline bool intersection_ray_valid(const ccl_private Ray *ray)
{
/* NOTE: Due to some vectorization code non-finite origin point might
* cause lots of false-positive intersections which will overflow traversal
* stack.
* This code is a quick way to perform early output, to avoid crashes in
* such cases.
* From production scenes so far it seems it's enough to test first element
* only.
* Scene intersection may also called with empty rays for conditional trace
* calls that evaluate to false, so filter those out.
*/
return isfinite_safe(ray->P.x) && isfinite_safe(ray->D.x) && len_squared(ray->D) != 0.0f;
}
/* Offset intersection distance by the smallest possible amount, to skip
* intersections at this distance. This works in cases where the ray start
* position is unchanged and only tmin is updated, since for self
* intersection we'll be comparing against the exact same distances.
*
* Always returns normalized floating point value. */
ccl_device_forceinline float intersection_t_offset(const float t)
{
/* This is a simplified version of `nextafterf(t, FLT_MAX)`, only dealing with
* non-negative and finite t. */
kernel_assert(t >= 0.0f && isfinite_safe(t));
/* Special handling of zero, which also includes handling of denormal values:
* always return smallest normalized value. If a denormalized zero is returned
* it will cause false-positive intersection detection with a distance of 0.
*
* The check relies on the fact that comparison of denormal values with zero
* returns true. */
if (t == 0.0f) {
/* The exact bit value of this should be 0x1p-126, but hex floating point values notation is
* not available in CUDA/OptiX. */
return FLT_MIN;
}
const uint32_t bits = __float_as_uint(t) + 1;
const float result = __uint_as_float(bits);
/* Assert that the calculated value is indeed considered to be offset from the
* original value. */
kernel_assert(result > t);
return result;
}
/* Ray offset to avoid self intersection.
*
* This function can be used to compute a modified ray start position for rays
* leaving from a surface. This is from:
* "A Fast and Robust Method for Avoiding Self-Intersection"
* Ray Tracing Gems, chapter 6.
*/
ccl_device_inline float3 ray_offset(const float3 P, const float3 Ng)
{
const float int_scale = 256.0f;
const int3 of_i = make_int3(
(int)(int_scale * Ng.x), (int)(int_scale * Ng.y), (int)(int_scale * Ng.z));
const float3 p_i = make_float3(
__int_as_float(__float_as_int(P.x) + ((P.x < 0) ? -of_i.x : of_i.x)),
__int_as_float(__float_as_int(P.y) + ((P.y < 0) ? -of_i.y : of_i.y)),
__int_as_float(__float_as_int(P.z) + ((P.z < 0) ? -of_i.z : of_i.z)));
const float origin = 1.0f / 32.0f;
const float float_scale = 1.0f / 65536.0f;
return make_float3(fabsf(P.x) < origin ? P.x + float_scale * Ng.x : p_i.x,
fabsf(P.y) < origin ? P.y + float_scale * Ng.y : p_i.y,
fabsf(P.z) < origin ? P.z + float_scale * Ng.z : p_i.z);
}
#ifndef __KERNEL_GPU__
ccl_device int intersections_compare(const void *a, const void *b)
{
const Intersection *isect_a = (const Intersection *)a;
const Intersection *isect_b = (const Intersection *)b;
if (isect_a->t < isect_b->t) {
return -1;
}
if (isect_a->t > isect_b->t) {
return 1;
}
return 0;
}
#endif
/* For subsurface scattering, only sorting a small amount of intersections
* so bubble sort is fine for CPU and GPU. */
ccl_device_inline void sort_intersections_and_normals(ccl_private Intersection *hits,
ccl_private float3 *Ng,
uint num_hits)
{
bool swapped;
do {
swapped = false;
for (int j = 0; j < num_hits - 1; ++j) {
if (hits[j].t > hits[j + 1].t) {
Intersection tmp_hit = hits[j];
float3 tmp_Ng = Ng[j];
hits[j] = hits[j + 1];
Ng[j] = Ng[j + 1];
hits[j + 1] = tmp_hit;
Ng[j + 1] = tmp_Ng;
swapped = true;
}
}
--num_hits;
} while (swapped);
}
/* Utility to quickly get flags from an intersection. */
ccl_device_forceinline int intersection_get_shader_flags(KernelGlobals kg,
const int prim,
const int type)
{
int shader = 0;
if (type & PRIMITIVE_TRIANGLE) {
shader = kernel_data_fetch(tri_shader, prim);
}
#ifdef __POINTCLOUD__
else if (type & PRIMITIVE_POINT) {
shader = kernel_data_fetch(points_shader, prim);
}
#endif
#ifdef __HAIR__
else if (type & PRIMITIVE_CURVE) {
shader = kernel_data_fetch(curves, prim).shader_id;
}
#endif
return kernel_data_fetch(shaders, (shader & SHADER_MASK)).flags;
}
ccl_device_forceinline int intersection_get_shader_from_isect_prim(KernelGlobals kg,
const int prim,
const int isect_type)
{
int shader = 0;
if (isect_type & PRIMITIVE_TRIANGLE) {
shader = kernel_data_fetch(tri_shader, prim);
}
#ifdef __POINTCLOUD__
else if (isect_type & PRIMITIVE_POINT) {
shader = kernel_data_fetch(points_shader, prim);
}
#endif
#ifdef __HAIR__
else if (isect_type & PRIMITIVE_CURVE) {
shader = kernel_data_fetch(curves, prim).shader_id;
}
#endif
return shader & SHADER_MASK;
}
ccl_device_forceinline int intersection_get_shader(
KernelGlobals kg, const ccl_private Intersection *ccl_restrict isect)
{
return intersection_get_shader_from_isect_prim(kg, isect->prim, isect->type);
}
ccl_device_forceinline int intersection_get_object_flags(
KernelGlobals kg, const ccl_private Intersection *ccl_restrict isect)
{
return kernel_data_fetch(object_flag, isect->object);
}
/* TODO: find a better (faster) solution for this. Maybe store offset per object for
* attributes needed in intersection? */
ccl_device_inline int intersection_find_attribute(KernelGlobals kg,
const int object,
const uint id)
{
uint attr_offset = kernel_data_fetch(objects, object).attribute_map_offset;
AttributeMap attr_map = kernel_data_fetch(attributes_map, attr_offset);
while (attr_map.id != id) {
if (UNLIKELY(attr_map.id == ATTR_STD_NONE)) {
if (UNLIKELY(attr_map.element == 0)) {
return (int)ATTR_STD_NOT_FOUND;
}
/* Chain jump to a different part of the table. */
attr_offset = attr_map.offset;
}
else {
attr_offset += ATTR_PRIM_TYPES;
}
attr_map = kernel_data_fetch(attributes_map, attr_offset);
}
/* return result */
return (attr_map.element == ATTR_ELEMENT_NONE) ? (int)ATTR_STD_NOT_FOUND : attr_map.offset;
}
/* Transparent Shadows */
/* Cut-off value to stop transparent shadow tracing when practically opaque. */
#define CURVE_SHADOW_TRANSPARENCY_CUTOFF 0.001f
ccl_device_inline float intersection_curve_shadow_transparency(
KernelGlobals kg, const int object, const int prim, const int type, const float u)
{
/* Find attribute. */
const int offset = intersection_find_attribute(kg, object, ATTR_STD_SHADOW_TRANSPARENCY);
if (offset == ATTR_STD_NOT_FOUND) {
/* If no shadow transparency attribute, assume opaque. */
return 0.0f;
}
/* Interpolate transparency between curve keys. */
const KernelCurve kcurve = kernel_data_fetch(curves, prim);
const int k0 = kcurve.first_key + PRIMITIVE_UNPACK_SEGMENT(type);
const int k1 = k0 + 1;
const float f0 = kernel_data_fetch(attributes_float, offset + k0);
const float f1 = kernel_data_fetch(attributes_float, offset + k1);
return (1.0f - u) * f0 + u * f1;
}
ccl_device_inline bool intersection_skip_self(const ccl_ray_data RaySelfPrimitives &self,
const int object,
const int prim)
{
return (self.prim == prim) && (self.object == object);
}
ccl_device_inline bool intersection_skip_self_shadow(const ccl_ray_data RaySelfPrimitives &self,
const int object,
const int prim)
{
return ((self.prim == prim) && (self.object == object)) ||
((self.light_prim == prim) && (self.light_object == object));
}
ccl_device_inline bool intersection_skip_self_local(const ccl_ray_data RaySelfPrimitives &self,
const int prim)
{
return (self.prim == prim);
}
#ifdef __SHADOW_LINKING__
ccl_device_inline uint64_t
ray_get_shadow_set_membership(KernelGlobals kg, const ccl_ray_data RaySelfPrimitives &self)
{
if (self.light_object != OBJECT_NONE) {
return kernel_data_fetch(objects, self.light_object).shadow_set_membership;
}
return LIGHT_LINK_MASK_ALL;
}
#endif
ccl_device_inline bool intersection_skip_shadow_link(KernelGlobals kg,
const ccl_ray_data RaySelfPrimitives &self,
const int isect_object)
{
#ifdef __SHADOW_LINKING__
if (!(kernel_data.kernel_features & KERNEL_FEATURE_SHADOW_LINKING)) {
return false;
}
const uint64_t set_membership = ray_get_shadow_set_membership(kg, self);
if (set_membership == LIGHT_LINK_MASK_ALL) {
return false;
}
const uint blocker_set = kernel_data_fetch(objects, isect_object).blocker_shadow_set;
return ((uint64_t(1) << uint64_t(blocker_set)) & set_membership) == 0;
#else
return false;
#endif
}
/* Check whether an intersection denoted by its object and primitive is to be skipped due to it
* being already recoded.
* The situation when primitive is already recoded happens when BVH spatial splits are used. */
ccl_device_forceinline bool intersection_skip_shadow_already_recoded(KernelGlobals kg,
IntegratorShadowState state,
const int object,
const int prim,
const int num_hits)
{
const int num_recorded_hits = min(num_hits, int(INTEGRATOR_SHADOW_ISECT_SIZE));
for (int i = 0; i < num_recorded_hits; ++i) {
const int isect_object = INTEGRATOR_STATE_ARRAY(state, shadow_isect, i, object);
const int isect_prim = INTEGRATOR_STATE_ARRAY(state, shadow_isect, i, prim);
if (object == isect_object && prim == isect_prim) {
return true;
}
}
return false;
}
CCL_NAMESPACE_END