In forward path tracing, when we pass volume bounding meshes, we accumulate `volume_bounds_bounce`. We should match this behaviour in NEE instead of accumulating `transparent_bounce`. Pull Request: https://projects.blender.org/blender/blender/pulls/137556
677 lines
23 KiB
C
677 lines
23 KiB
C
/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 */
|
|
|
|
#ifdef __HIPRT__
|
|
|
|
struct RayPayload {
|
|
KernelGlobals kg;
|
|
RaySelfPrimitives self;
|
|
uint visibility;
|
|
int prim_type;
|
|
float ray_time;
|
|
};
|
|
|
|
/* Some ray types might use the same intersection function for regular and shadow intersections,
|
|
* but have different filter functions for them. To make this code simpler subclass from
|
|
* RayPayload.
|
|
*
|
|
* NOTE: This assumes that reinterpret_cast from void pointer to RayPayload works correctly. */
|
|
struct ShadowPayload : RayPayload {
|
|
int in_state;
|
|
uint max_transparent_hits;
|
|
uint num_transparent_hits;
|
|
uint *r_num_recorded_hits;
|
|
float *r_throughput;
|
|
};
|
|
|
|
struct LocalPayload {
|
|
KernelGlobals kg;
|
|
RaySelfPrimitives self;
|
|
float ray_time;
|
|
int local_object;
|
|
uint max_hits;
|
|
uint *lcg_state;
|
|
LocalIntersection *local_isect;
|
|
};
|
|
|
|
# define SET_HIPRT_RAY(RAY_RT, RAY) \
|
|
RAY_RT.direction = RAY->D; \
|
|
RAY_RT.origin = RAY->P; \
|
|
RAY_RT.maxT = RAY->tmax; \
|
|
RAY_RT.minT = RAY->tmin;
|
|
|
|
# define GET_TRAVERSAL_STACK() \
|
|
Stack stack(kg->global_stack_buffer, kg->shared_stack); \
|
|
Instance_Stack instance_stack;
|
|
|
|
# define GET_TRAVERSAL_ANY_HIT(FUNCTION_TABLE, RAY_TYPE, RAY_TIME) \
|
|
hiprtSceneTraversalAnyHitCustomStack<Stack, Instance_Stack> traversal( \
|
|
(hiprtScene)kernel_data.device_bvh, \
|
|
ray_hip, \
|
|
stack, \
|
|
instance_stack, \
|
|
visibility, \
|
|
hiprtTraversalHintDefault, \
|
|
&payload, \
|
|
kernel_params.FUNCTION_TABLE, \
|
|
RAY_TYPE, \
|
|
RAY_TIME);
|
|
|
|
# define GET_TRAVERSAL_CLOSEST_HIT(FUNCTION_TABLE, RAY_TYPE, RAY_TIME) \
|
|
hiprtSceneTraversalClosestCustomStack<Stack, Instance_Stack> traversal( \
|
|
(hiprtScene)kernel_data.device_bvh, \
|
|
ray_hip, \
|
|
stack, \
|
|
instance_stack, \
|
|
visibility, \
|
|
hiprtTraversalHintDefault, \
|
|
&payload, \
|
|
kernel_params.FUNCTION_TABLE, \
|
|
RAY_TYPE, \
|
|
RAY_TIME);
|
|
|
|
ccl_device_inline void set_intersect_point(KernelGlobals kg,
|
|
const hiprtHit &hit,
|
|
ccl_private Intersection *isect)
|
|
{
|
|
const int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
|
|
isect->type = kernel_data_fetch(objects, object_id).primitive_type;
|
|
|
|
isect->t = hit.t;
|
|
isect->prim = hit.primID + prim_offset;
|
|
isect->object = object_id;
|
|
isect->u = hit.uv.x;
|
|
isect->v = hit.uv.y;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Custom intersection functions.
|
|
*/
|
|
|
|
ccl_device_inline bool curve_custom_intersect(const hiprtRay &ray,
|
|
RayPayload *payload,
|
|
hiprtHit &hit)
|
|
|
|
{
|
|
/* Could also cast shadow payload to get the elements needed to do the intersection no need to
|
|
* write a separate function for shadow intersection. */
|
|
|
|
KernelGlobals kg = payload->kg;
|
|
|
|
const int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
|
|
/* `data_offset.x`: where the data (prim id, type )for the geometry of the current object begins
|
|
* the prim_id that is in hiprtHit hit is local to the particular geometry so we add the above
|
|
* `ofstream` to map prim id in hiprtHit to the one compatible to what next stage expects
|
|
* `data_offset.y`: the offset that has to be added to a local primitive to get the global
|
|
* `primitive id = kernel_data_fetch(object_prim_offset, object_id);` */
|
|
const int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
|
|
|
|
const int prim_offset = data_offset.y;
|
|
|
|
const int2 prim_info = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x);
|
|
const int curve_index = prim_info.x;
|
|
const int key_value = prim_info.y;
|
|
|
|
# ifdef __SHADOW_LINKING__
|
|
if (intersection_skip_shadow_link(kg, payload->self, object_id)) {
|
|
return false; /* Ignore hit - continue traversal. */
|
|
}
|
|
# endif
|
|
|
|
if (intersection_skip_self_shadow(payload->self, object_id, curve_index + prim_offset)) {
|
|
return false;
|
|
}
|
|
|
|
const float ray_time = payload->ray_time;
|
|
|
|
if ((key_value & PRIMITIVE_MOTION) && kernel_data.bvh.use_bvh_steps) {
|
|
const int time_offset = kernel_data_fetch(prim_time_offset, object_id);
|
|
const float2 prims_time = kernel_data_fetch(prims_time, hit.primID + time_offset);
|
|
if (ray_time < prims_time.x || ray_time > prims_time.y) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Intersection isect;
|
|
const bool b_hit = curve_intersect(kg,
|
|
&isect,
|
|
ray.origin,
|
|
ray.direction,
|
|
ray.minT,
|
|
ray.maxT,
|
|
object_id,
|
|
curve_index + prim_offset,
|
|
ray_time,
|
|
key_value);
|
|
if (b_hit) {
|
|
hit.uv.x = isect.u;
|
|
hit.uv.y = isect.v;
|
|
hit.t = isect.t;
|
|
hit.primID = isect.prim;
|
|
payload->prim_type = isect.type; /* packed_curve_type */
|
|
}
|
|
|
|
return b_hit;
|
|
}
|
|
|
|
ccl_device_inline bool motion_triangle_custom_intersect(const hiprtRay &ray,
|
|
RayPayload *payload,
|
|
hiprtHit &hit)
|
|
{
|
|
KernelGlobals kg = payload->kg;
|
|
const int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
|
|
const int prim_id_local = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).x;
|
|
const int prim_id_global = prim_id_local + prim_offset;
|
|
|
|
if (intersection_skip_self_shadow(payload->self, object_id, prim_id_global)) {
|
|
return false;
|
|
}
|
|
|
|
Intersection isect;
|
|
const bool b_hit = motion_triangle_intersect(kg,
|
|
&isect,
|
|
ray.origin,
|
|
ray.direction,
|
|
ray.minT,
|
|
ray.maxT,
|
|
payload->ray_time,
|
|
payload->visibility,
|
|
object_id,
|
|
prim_id_global,
|
|
hit.instanceID);
|
|
|
|
if (b_hit) {
|
|
hit.uv.x = isect.u;
|
|
hit.uv.y = isect.v;
|
|
hit.t = isect.t;
|
|
hit.primID = isect.prim;
|
|
payload->prim_type = isect.type;
|
|
}
|
|
|
|
return b_hit;
|
|
}
|
|
|
|
ccl_device_inline bool motion_triangle_custom_local_intersect(const hiprtRay &ray,
|
|
LocalPayload *payload,
|
|
hiprtHit &hit)
|
|
{
|
|
# ifdef __OBJECT_MOTION__
|
|
KernelGlobals kg = payload->kg;
|
|
|
|
const int object_id = payload->local_object;
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
const int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
|
|
|
|
const int prim_id_local = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).x;
|
|
const int prim_id_global = prim_id_local + prim_offset;
|
|
|
|
if (intersection_skip_self_local(payload->self, prim_id_global)) {
|
|
return false;
|
|
}
|
|
|
|
return motion_triangle_intersect_local(kg,
|
|
payload->local_isect,
|
|
ray.origin,
|
|
ray.direction,
|
|
payload->ray_time,
|
|
object_id,
|
|
prim_id_global,
|
|
prim_id_local,
|
|
ray.minT,
|
|
ray.maxT,
|
|
payload->lcg_state,
|
|
payload->max_hits);
|
|
|
|
# else
|
|
return false;
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline bool motion_triangle_custom_volume_intersect(const hiprtRay &ray,
|
|
RayPayload *payload,
|
|
hiprtHit &hit)
|
|
{
|
|
# ifdef __OBJECT_MOTION__
|
|
KernelGlobals kg = payload->kg;
|
|
|
|
const int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int object_flag = kernel_data_fetch(object_flag, object_id);
|
|
|
|
if (!(object_flag & SD_OBJECT_HAS_VOLUME)) {
|
|
return false;
|
|
}
|
|
|
|
const int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
|
|
const int prim_id_local = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x).x;
|
|
const int prim_id_global = prim_id_local + prim_offset;
|
|
|
|
if (intersection_skip_self_shadow(payload->self, object_id, prim_id_global)) {
|
|
return false;
|
|
}
|
|
|
|
Intersection isect;
|
|
const bool b_hit = motion_triangle_intersect(kg,
|
|
&isect,
|
|
ray.origin,
|
|
ray.direction,
|
|
ray.minT,
|
|
ray.maxT,
|
|
payload->ray_time,
|
|
payload->visibility,
|
|
object_id,
|
|
prim_id_global,
|
|
prim_id_local);
|
|
|
|
if (b_hit) {
|
|
hit.uv.x = isect.u;
|
|
hit.uv.y = isect.v;
|
|
hit.t = isect.t;
|
|
hit.primID = isect.prim;
|
|
payload->prim_type = isect.type;
|
|
}
|
|
|
|
return b_hit;
|
|
# else
|
|
return false;
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline bool point_custom_intersect(const hiprtRay &ray,
|
|
RayPayload *payload,
|
|
hiprtHit &hit)
|
|
{
|
|
# if defined(__POINTCLOUD__)
|
|
KernelGlobals kg = payload->kg;
|
|
|
|
const int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int2 data_offset = kernel_data_fetch(custom_prim_info_offset, object_id);
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
|
|
const int2 prim_info = kernel_data_fetch(custom_prim_info, hit.primID + data_offset.x);
|
|
const int prim_id_local = prim_info.x;
|
|
const int prim_id_global = prim_id_local + prim_offset;
|
|
|
|
const int primitive_type = prim_info.y;
|
|
|
|
# ifdef __SHADOW_LINKING__
|
|
if (intersection_skip_shadow_link(kg, payload->self, object_id)) {
|
|
return false; /* Ignore hit - continue traversal */
|
|
}
|
|
# endif
|
|
|
|
if (intersection_skip_self_shadow(payload->self, object_id, prim_id_global)) {
|
|
return false;
|
|
}
|
|
|
|
const float ray_time = payload->ray_time;
|
|
|
|
if ((primitive_type & PRIMITIVE_MOTION_POINT) && kernel_data.bvh.use_bvh_steps) {
|
|
const int time_offset = kernel_data_fetch(prim_time_offset, object_id);
|
|
const float2 prims_time = kernel_data_fetch(prims_time, hit.primID + time_offset);
|
|
if (ray_time < prims_time.x || ray_time > prims_time.y) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Intersection isect;
|
|
const bool b_hit = point_intersect(kg,
|
|
&isect,
|
|
ray.origin,
|
|
ray.direction,
|
|
ray.minT,
|
|
ray.maxT,
|
|
object_id,
|
|
prim_id_global,
|
|
ray_time,
|
|
primitive_type);
|
|
|
|
if (b_hit) {
|
|
hit.uv.x = isect.u;
|
|
hit.uv.y = isect.v;
|
|
hit.t = isect.t;
|
|
hit.primID = isect.prim;
|
|
payload->prim_type = isect.type;
|
|
}
|
|
|
|
return b_hit;
|
|
# else
|
|
return false;
|
|
# endif
|
|
}
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Intersection filters.
|
|
*/
|
|
|
|
ccl_device_inline bool closest_intersection_filter(const hiprtRay &ray,
|
|
RayPayload *payload,
|
|
const hiprtHit &hit)
|
|
{
|
|
const int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
const int prim = hit.primID + prim_offset;
|
|
|
|
# ifdef __SHADOW_LINKING__
|
|
if (intersection_skip_shadow_link(payload->kg, payload->self, object_id)) {
|
|
return true; /* Ignore hit - continue traversal. */
|
|
}
|
|
# endif
|
|
|
|
if (intersection_skip_self_shadow(payload->self, object_id, prim)) {
|
|
return true; /* Ignore hit - continue traversal. */
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ccl_device_inline bool shadow_intersection_filter(const hiprtRay &ray,
|
|
ShadowPayload *payload,
|
|
const hiprtHit &hit)
|
|
|
|
{
|
|
KernelGlobals kg = payload->kg;
|
|
|
|
uint num_transparent_hits = payload->num_transparent_hits;
|
|
const uint max_transparent_hits = payload->max_transparent_hits;
|
|
const int state = payload->in_state;
|
|
const RaySelfPrimitives &self = payload->self;
|
|
|
|
const int object = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object);
|
|
const int prim = hit.primID + prim_offset;
|
|
|
|
const float ray_tmax = hit.t;
|
|
|
|
# ifdef __SHADOW_LINKING__
|
|
if (intersection_skip_shadow_link(kg, self, object)) {
|
|
return true; /* Ignore hit - continue traversal */
|
|
}
|
|
# endif
|
|
|
|
# ifdef __VISIBILITY_FLAG__
|
|
if ((kernel_data_fetch(objects, object).visibility & payload->visibility) == 0) {
|
|
return true; /* No hit - continue traversal. */
|
|
}
|
|
# endif
|
|
|
|
if (intersection_skip_self_shadow(self, object, prim)) {
|
|
return true; /* No hit -continue traversal. */
|
|
}
|
|
|
|
if (intersection_skip_shadow_already_recoded(
|
|
kg, state, object, prim, *payload->r_num_recorded_hits))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
const float u = hit.uv.x;
|
|
const float v = hit.uv.y;
|
|
const int primitive_type = kernel_data_fetch(objects, object).primitive_type;
|
|
|
|
# ifndef __TRANSPARENT_SHADOWS__
|
|
return false;
|
|
# else
|
|
const int flags = intersection_get_shader_flags(kg, prim, primitive_type);
|
|
if (!(flags & SD_HAS_TRANSPARENT_SHADOW)) {
|
|
return false;
|
|
}
|
|
|
|
num_transparent_hits += !(flags & SD_HAS_ONLY_VOLUME);
|
|
if (num_transparent_hits > max_transparent_hits) {
|
|
return false;
|
|
}
|
|
|
|
uint record_index = *payload->r_num_recorded_hits;
|
|
|
|
payload->num_transparent_hits = num_transparent_hits;
|
|
*(payload->r_num_recorded_hits) += 1;
|
|
|
|
const uint max_record_hits = INTEGRATOR_SHADOW_ISECT_SIZE;
|
|
if (record_index >= max_record_hits) {
|
|
float max_recorded_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, 0, t);
|
|
uint max_recorded_hit = 0;
|
|
|
|
for (int i = 1; i < max_record_hits; i++) {
|
|
const float isect_t = INTEGRATOR_STATE_ARRAY(state, shadow_isect, i, t);
|
|
if (isect_t > max_recorded_t) {
|
|
max_recorded_t = isect_t;
|
|
max_recorded_hit = i;
|
|
}
|
|
}
|
|
|
|
if (ray_tmax >= max_recorded_t) {
|
|
return true;
|
|
}
|
|
|
|
record_index = max_recorded_hit;
|
|
}
|
|
|
|
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, u) = u;
|
|
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, v) = v;
|
|
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, t) = ray_tmax;
|
|
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, prim) = prim;
|
|
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, object) = object;
|
|
INTEGRATOR_STATE_ARRAY_WRITE(state, shadow_isect, record_index, type) = primitive_type;
|
|
|
|
return true;
|
|
# endif /* __TRANSPARENT_SHADOWS__ */
|
|
}
|
|
|
|
ccl_device_inline bool shadow_intersection_filter_curves(const hiprtRay &ray,
|
|
ShadowPayload *payload,
|
|
const hiprtHit &hit)
|
|
|
|
{
|
|
KernelGlobals kg = payload->kg;
|
|
|
|
uint num_transparent_hits = payload->num_transparent_hits;
|
|
const uint num_recorded_hits = *(payload->r_num_recorded_hits);
|
|
const uint max_transparent_hits = payload->max_transparent_hits;
|
|
const RaySelfPrimitives &self = payload->self;
|
|
|
|
const int object = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int prim = hit.primID;
|
|
|
|
const float ray_tmax = hit.t;
|
|
|
|
# ifdef __SHADOW_LINKING__
|
|
/* It doesn't seem like this is necessary. */
|
|
if (intersection_skip_shadow_link(kg, self, object)) {
|
|
return true; /* Ignore hit - continue traversal. */
|
|
}
|
|
# endif
|
|
|
|
# ifdef __VISIBILITY_FLAG__
|
|
if ((kernel_data_fetch(objects, object).visibility & payload->visibility) == 0) {
|
|
return true; /* No hit - continue traversal. */
|
|
}
|
|
# endif
|
|
|
|
if (intersection_skip_self_shadow(self, object, prim)) {
|
|
return true; /* No hit -continue traversal. */
|
|
}
|
|
|
|
/* FIXME: transparent curves are not recorded, this check doesn't work. */
|
|
if (intersection_skip_shadow_already_recoded(
|
|
kg, payload->in_state, object, prim, num_recorded_hits))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
const float u = hit.uv.x;
|
|
const float v = hit.uv.y;
|
|
|
|
if (u == 0.0f || u == 1.0f) {
|
|
return true; /* Continue traversal. */
|
|
}
|
|
|
|
const int primitive_type = payload->prim_type;
|
|
|
|
# ifndef __TRANSPARENT_SHADOWS__
|
|
return false;
|
|
# else
|
|
const int flags = intersection_get_shader_flags(kg, prim, primitive_type);
|
|
if (!(flags & SD_HAS_TRANSPARENT_SHADOW)) {
|
|
return false;
|
|
}
|
|
|
|
num_transparent_hits += !(flags & SD_HAS_ONLY_VOLUME);
|
|
if (num_transparent_hits > max_transparent_hits) {
|
|
return false;
|
|
}
|
|
|
|
float throughput = *payload->r_throughput;
|
|
throughput *= intersection_curve_shadow_transparency(kg, object, prim, primitive_type, u);
|
|
*payload->r_throughput = throughput;
|
|
payload->num_transparent_hits = num_transparent_hits;
|
|
|
|
if (throughput < CURVE_SHADOW_TRANSPARENCY_CUTOFF) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
# endif /* __TRANSPARENT_SHADOWS__ */
|
|
}
|
|
|
|
ccl_device_inline bool local_intersection_filter(const hiprtRay &ray,
|
|
LocalPayload *payload,
|
|
const hiprtHit &hit)
|
|
{
|
|
# ifdef __BVH_LOCAL__
|
|
KernelGlobals kg = payload->kg;
|
|
|
|
const int object_id = payload->local_object;
|
|
const uint max_hits = payload->max_hits;
|
|
|
|
/* Triangle primitive uses hardware intersection, other primitives do custom intersection
|
|
* which does reservoir sampling for intersections. For the custom primitives only check
|
|
* whether we can stop traversal early on. The rest of the checks here only do for the
|
|
* regular triangles. */
|
|
const int primitive_type = kernel_data_fetch(objects, object_id).primitive_type;
|
|
if (primitive_type != PRIMITIVE_TRIANGLE) {
|
|
if (max_hits == 0) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
const int prim = hit.primID + prim_offset;
|
|
# ifndef __RAY_OFFSET__
|
|
if (intersection_skip_self_local(payload->self, prim)) {
|
|
return true; /* Continue search. */
|
|
}
|
|
# endif
|
|
|
|
if (max_hits == 0) {
|
|
return false; /* Stop search. */
|
|
}
|
|
|
|
const int hit_index = local_intersect_get_record_index(
|
|
payload->local_isect, hit.t, payload->lcg_state, max_hits);
|
|
if (hit_index == -1) {
|
|
return true; /* Continue search. */
|
|
}
|
|
|
|
Intersection *isect = &payload->local_isect->hits[hit_index];
|
|
isect->t = hit.t;
|
|
isect->u = hit.uv.x;
|
|
isect->v = hit.uv.y;
|
|
isect->prim = prim;
|
|
isect->object = object_id;
|
|
isect->type = primitive_type;
|
|
|
|
payload->local_isect->Ng[hit_index] = hit.normal;
|
|
|
|
return true;
|
|
# else
|
|
return false;
|
|
# endif
|
|
}
|
|
|
|
ccl_device_inline bool volume_intersection_filter(const hiprtRay &ray,
|
|
RayPayload *payload,
|
|
const hiprtHit &hit)
|
|
{
|
|
const int object_id = kernel_data_fetch(user_instance_id, hit.instanceID);
|
|
const int prim_offset = kernel_data_fetch(object_prim_offset, object_id);
|
|
const int prim = hit.primID + prim_offset;
|
|
const int object_flag = kernel_data_fetch(object_flag, object_id);
|
|
|
|
if (intersection_skip_self(payload->self, object_id, prim)) {
|
|
return true;
|
|
}
|
|
if ((object_flag & SD_OBJECT_HAS_VOLUME) == 0) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
HIPRT_DEVICE bool intersectFunc(const uint geom_type,
|
|
const uint ray_type,
|
|
const hiprtFuncTableHeader &tableHeader,
|
|
const hiprtRay &ray,
|
|
void *payload,
|
|
hiprtHit &hit)
|
|
{
|
|
const uint index = tableHeader.numGeomTypes * ray_type + geom_type;
|
|
switch (index) {
|
|
case Curve_Intersect_Function:
|
|
case Curve_Intersect_Shadow:
|
|
return curve_custom_intersect(ray, (RayPayload *)payload, hit);
|
|
case Motion_Triangle_Intersect_Function:
|
|
case Motion_Triangle_Intersect_Shadow:
|
|
return motion_triangle_custom_intersect(ray, (RayPayload *)payload, hit);
|
|
case Motion_Triangle_Intersect_Local:
|
|
return motion_triangle_custom_local_intersect(ray, (LocalPayload *)payload, hit);
|
|
case Motion_Triangle_Intersect_Volume:
|
|
return motion_triangle_custom_volume_intersect(ray, (RayPayload *)payload, hit);
|
|
case Point_Intersect_Function:
|
|
case Point_Intersect_Shadow:
|
|
return point_custom_intersect(ray, (RayPayload *)payload, hit);
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
HIPRT_DEVICE bool filterFunc(const uint geom_type,
|
|
const uint ray_type,
|
|
const hiprtFuncTableHeader &tableHeader,
|
|
const hiprtRay &ray,
|
|
void *payload,
|
|
const hiprtHit &hit)
|
|
{
|
|
const uint index = tableHeader.numGeomTypes * ray_type + geom_type;
|
|
switch (index) {
|
|
case Triangle_Filter_Closest:
|
|
return closest_intersection_filter(ray, (RayPayload *)payload, hit);
|
|
case Curve_Filter_Shadow:
|
|
return shadow_intersection_filter_curves(ray, (ShadowPayload *)payload, hit);
|
|
case Triangle_Filter_Shadow:
|
|
case Motion_Triangle_Filter_Shadow:
|
|
case Point_Filter_Shadow:
|
|
return shadow_intersection_filter(ray, (ShadowPayload *)payload, hit);
|
|
case Triangle_Filter_Local:
|
|
case Motion_Triangle_Filter_Local:
|
|
return local_intersection_filter(ray, (LocalPayload *)payload, hit);
|
|
case Triangle_Filter_Volume:
|
|
case Motion_Triangle_Filter_Volume:
|
|
return volume_intersection_filter(ray, (RayPayload *)payload, hit);
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif
|