Files
test/intern/cycles/kernel/integrator/subsurface_disk.h
Brecht Van Lommel e813e46327 Cycles: Refactor lights to be objects
This is an intermediate steps towards making lights actual geometry.
Light is now a subclass of Geometry, which simplifies some code.

The geometry is not added to the BVH yet, which would be the next
step and improve light intersection performance with many lights.

This makes object attributes work on lights.

Co-authored-by: Lukas Stockner <lukas@lukasstockner.de>
Pull Request: https://projects.blender.org/blender/blender/pulls/134846
2025-02-24 23:44:14 +01:00

221 lines
6.9 KiB
C

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include "kernel/bvh/bvh.h"
#include "kernel/closure/bssrdf.h"
#include "kernel/geom/object.h"
#include "kernel/integrator/guiding.h"
#include "kernel/integrator/path_state.h"
#include "kernel/util/differential.h"
CCL_NAMESPACE_BEGIN
#ifdef __SUBSURFACE__
/* BSSRDF using disk based importance sampling.
*
* BSSRDF Importance Sampling, SIGGRAPH 2013
* http://library.imageworks.com/pdfs/imageworks-library-BSSRDF-sampling.pdf
*/
ccl_device_inline Spectrum subsurface_disk_eval(const Spectrum radius,
const float disk_r,
const float r)
{
const Spectrum eval = bssrdf_eval(radius, r);
const float pdf = bssrdf_pdf(radius, disk_r);
return (pdf > 0.0f) ? eval / pdf : zero_spectrum();
}
/* Subsurface scattering step, from a point on the surface to other
* nearby points on the same object. */
ccl_device_inline bool subsurface_disk(KernelGlobals kg,
IntegratorState state,
RNGState rng_state,
ccl_private Ray &ray,
ccl_private LocalIntersection &ss_isect)
{
float2 rand_disk = path_state_rng_2D(kg, &rng_state, PRNG_SUBSURFACE_DISK);
/* Read shading point info from integrator state. */
const float3 P = INTEGRATOR_STATE(state, ray, P);
const float ray_dP = INTEGRATOR_STATE(state, ray, dP);
const float time = INTEGRATOR_STATE(state, ray, time);
const float3 Ng = INTEGRATOR_STATE(state, subsurface, N);
const int object = INTEGRATOR_STATE(state, isect, object);
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
/* Read subsurface scattering parameters. */
const Spectrum radius = INTEGRATOR_STATE(state, subsurface, radius);
/* Pick random axis in local frame and point on disk. */
float3 disk_N;
float3 disk_T;
float3 disk_B;
float pick_pdf_N;
float pick_pdf_T;
float pick_pdf_B;
disk_N = Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
if (rand_disk.y < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
rand_disk.y *= 2.0f;
}
else if (rand_disk.y < 0.75f) {
const float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
rand_disk.y = (rand_disk.y - 0.5f) * 4.0f;
}
else {
const float3 tmp = disk_N;
disk_N = disk_B;
disk_B = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
rand_disk.y = (rand_disk.y - 0.75f) * 4.0f;
}
/* Sample point on disk. */
const float phi = M_2PI_F * rand_disk.y;
float disk_height;
float disk_r;
bssrdf_sample(radius, rand_disk.x, &disk_r, &disk_height);
const float3 disk_P = to_global(polar_to_cartesian(disk_r, phi), disk_T, disk_B);
/* Create ray. */
ray.P = P + disk_N * disk_height + disk_P;
ray.D = -disk_N;
ray.tmin = 0.0f;
ray.tmax = 2.0f * disk_height;
ray.dP = ray_dP;
ray.dD = differential_zero_compact();
ray.time = time;
ray.self.object = OBJECT_NONE;
ray.self.prim = PRIM_NONE;
ray.self.light_object = OBJECT_NONE;
ray.self.light_prim = PRIM_NONE;
/* Intersect with the same object. if multiple intersections are found it
* will use at most BSSRDF_MAX_HITS hits, a random subset of all hits. */
uint lcg_state = lcg_state_init(
rng_state.rng_pixel, rng_state.rng_offset, rng_state.sample, 0x68bc21eb);
const int max_hits = BSSRDF_MAX_HITS;
scene_intersect_local(kg, &ray, &ss_isect, object, &lcg_state, max_hits);
const int num_eval_hits = min(ss_isect.num_hits, max_hits);
if (num_eval_hits == 0) {
return false;
}
/* Sort for consistent renders between CPU and GPU, independent of the BVH
* traversal algorithm. */
sort_intersections_and_normals(ss_isect.hits, ss_isect.Ng, num_eval_hits);
Spectrum weights[BSSRDF_MAX_HITS]; /* TODO: zero? */
float sum_weights = 0.0f;
for (int hit = 0; hit < num_eval_hits; hit++) {
/* Get geometric normal. */
const int object = ss_isect.hits[hit].object;
const int object_flag = kernel_data_fetch(object_flag, object);
float3 hit_Ng = ss_isect.Ng[hit];
if (path_flag & PATH_RAY_SUBSURFACE_BACKFACING) {
hit_Ng = -hit_Ng;
}
if (object_negative_scale_applied(object_flag)) {
hit_Ng = -hit_Ng;
}
if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
/* Transform normal to world space. */
Transform itfm;
object_fetch_transform_motion_test(kg, object, time, &itfm);
hit_Ng = normalize(transform_direction_transposed(&itfm, hit_Ng));
}
/* Quickly retrieve P and Ng without setting up ShaderData. */
const float3 hit_P = ray.P + ray.D * ss_isect.hits[hit].t;
/* Probability densities for local frame axes. */
const float pdf_N = pick_pdf_N * fabsf(dot(disk_N, hit_Ng));
const float pdf_T = pick_pdf_T * fabsf(dot(disk_T, hit_Ng));
const float pdf_B = pick_pdf_B * fabsf(dot(disk_B, hit_Ng));
/* Multiple importance sample between 3 axes, power heuristic
* found to be slightly better than balance heuristic. pdf_N
* in the MIS weight and denominator cancelled out. */
float w = pdf_N / (sqr(pdf_N) + sqr(pdf_T) + sqr(pdf_B));
if (ss_isect.num_hits > max_hits) {
w *= ss_isect.num_hits / (float)max_hits;
}
/* Real distance to sampled point. */
const float r = len(hit_P - P);
/* Evaluate profiles. */
const Spectrum weight = subsurface_disk_eval(radius, disk_r, r) * w;
/* Store result. */
ss_isect.Ng[hit] = hit_Ng;
weights[hit] = weight;
sum_weights += average(fabs(weight));
}
if (sum_weights == 0.0f) {
return false;
}
/* Use importance resampling, sampling one of the hits proportional to weight. */
const float rand_resample = path_state_rng_1D(kg, &rng_state, PRNG_SUBSURFACE_DISK_RESAMPLE);
const float r = rand_resample * sum_weights;
float partial_sum = 0.0f;
for (int hit = 0; hit < num_eval_hits; hit++) {
const Spectrum weight = weights[hit];
const float sample_weight = average(fabs(weight));
const float next_sum = partial_sum + sample_weight;
if (r < next_sum) {
/* Return exit point. */
const Spectrum resampled_weight = weight * sum_weights / sample_weight;
INTEGRATOR_STATE_WRITE(state, path, throughput) *= resampled_weight;
ss_isect.hits[0] = ss_isect.hits[hit];
ss_isect.Ng[0] = ss_isect.Ng[hit];
ray.P = ray.P + ray.D * ss_isect.hits[hit].t;
ray.D = ss_isect.Ng[hit];
ray.tmin = 0.0f;
ray.tmax = 1.0f;
guiding_record_bssrdf_bounce(
kg, state, 1.0f, Ng, -Ng, resampled_weight, INTEGRATOR_STATE(state, subsurface, albedo));
return true;
}
partial_sum = next_sum;
}
return false;
}
#endif /* __SUBSURFACE__ */
CCL_NAMESPACE_END