Files
test/intern/cycles/subd/interpolation.cpp
Brecht Van Lommel c448bf16e5 Cycles: Multithread adaptive subdivision dicing
* Perform attribute interpolation as part of dicing.
* Remove temporary subd uv and face index attributes.

On a MacBook M3 with 12 P-cores and 4 E-cores, these changes overall give
a 10x-14x speedup on various scenes. Note that splitting is still single
threaded and can be expensive, and UV subdivision can be optimized more.

Pull Request: https://projects.blender.org/blender/blender/pulls/136411
2025-03-24 09:42:47 +01:00

568 lines
21 KiB
C++

/* SPDX-FileCopyrightText: 2011-2024 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include "subd/interpolation.h"
#include "scene/attribute.h"
#include "scene/mesh.h"
#include "util/color.h"
CCL_NAMESPACE_BEGIN
/* Classes for interpolation to use float math for byte value, for precision. */
template<typename T> struct SubdFloat {
using Type = T;
using AccumType = T;
static Type read(const Type &value)
{
return value;
}
static Type output(const Type &value)
{
return value;
}
};
struct SubdByte {
using Type = uchar4;
using AccumType = float4;
static AccumType read(const Type &value)
{
return color_uchar4_to_float4(value);
}
static Type output(const AccumType &value)
{
return color_float4_to_uchar4(value);
}
};
#ifdef WITH_OPENSUBDIV
SubdAttributeInterpolation::SubdAttributeInterpolation(Mesh &mesh,
OsdMesh &osd_mesh,
OsdData &osd_data)
#else
SubdAttributeInterpolation::SubdAttributeInterpolation(Mesh &mesh)
#endif
: mesh(mesh)
#ifdef WITH_OPENSUBDIV
,
osd_mesh(osd_mesh),
osd_data(osd_data)
#endif
{
}
void SubdAttributeInterpolation::setup()
{
if (mesh.get_num_subd_faces() == 0) {
return;
}
for (const Attribute &subd_attr : mesh.subd_attributes.attributes) {
if (!support_interp_attribute(subd_attr)) {
continue;
}
Attribute &mesh_attr = mesh.attributes.copy(subd_attr);
setup_attribute(subd_attr, mesh_attr);
}
}
bool SubdAttributeInterpolation::support_interp_attribute(const Attribute &attr) const
{
// TODO: Recompute UV tangent
switch (attr.std) {
/* Smooth normals are computed from derivatives, for linear interpolate. */
case ATTR_STD_VERTEX_NORMAL:
case ATTR_STD_MOTION_VERTEX_NORMAL:
if (mesh.get_subdivision_type() == Mesh::SUBDIVISION_CATMULL_CLARK) {
return false;
}
break;
/* PTex coordinates will be computed by subdivision. */
case ATTR_STD_PTEX_FACE_ID:
case ATTR_STD_PTEX_UV:
return false;
default:
break;
}
/* Skip element types that should not exist for subd attributes anyway. */
switch (attr.element) {
case ATTR_ELEMENT_VERTEX:
case ATTR_ELEMENT_CORNER:
case ATTR_ELEMENT_CORNER_BYTE:
case ATTR_ELEMENT_VERTEX_MOTION:
case ATTR_ELEMENT_FACE:
break;
default:
return false;
}
return true;
}
void SubdAttributeInterpolation::setup_attribute(const Attribute &subd_attr, Attribute &mesh_attr)
{
if (subd_attr.element == ATTR_ELEMENT_CORNER_BYTE) {
setup_attribute_type<SubdByte>(subd_attr, mesh_attr);
}
else if (Attribute::same_storage(subd_attr.type, TypeFloat)) {
setup_attribute_type<SubdFloat<float>>(subd_attr, mesh_attr);
}
else if (Attribute::same_storage(subd_attr.type, TypeFloat2)) {
setup_attribute_type<SubdFloat<float2>>(subd_attr, mesh_attr);
}
else if (Attribute::same_storage(subd_attr.type, TypeVector)) {
setup_attribute_type<SubdFloat<float3>>(subd_attr, mesh_attr);
}
else if (Attribute::same_storage(subd_attr.type, TypeFloat4)) {
setup_attribute_type<SubdFloat<float4>>(subd_attr, mesh_attr);
}
}
template<typename T>
void SubdAttributeInterpolation::setup_attribute_vertex_linear(const Attribute &subd_attr,
Attribute &mesh_attr,
const int motion_step)
{
SubdAttribute attr;
const typename T::Type *subd_data = reinterpret_cast<const typename T::Type *>(
subd_attr.data()) +
motion_step * mesh.get_num_subd_base_verts();
typename T::Type *mesh_data = reinterpret_cast<typename T::Type *>(mesh_attr.data()) +
motion_step * mesh.get_verts().size();
assert(mesh_data != nullptr);
attr.interp = [this, subd_data, mesh_data](const int /*patch_index*/,
const int face_index,
const int corner,
const int *vert_index,
const float2 *vert_uv,
const int vert_num) {
/* Interpolate values at vertices. */
const int *subd_face_corners = mesh.get_subd_face_corners().data();
Mesh::SubdFace face = mesh.get_subd_face(face_index);
if (face.is_quad()) {
/* Simple case for quads. */
const typename T::AccumType value0 = T::read(
subd_data[subd_face_corners[face.start_corner + 0]]);
const typename T::AccumType value1 = T::read(
subd_data[subd_face_corners[face.start_corner + 1]]);
const typename T::AccumType value2 = T::read(
subd_data[subd_face_corners[face.start_corner + 2]]);
const typename T::AccumType value3 = T::read(
subd_data[subd_face_corners[face.start_corner + 3]]);
for (int i = 0; i < vert_num; i++) {
const float2 uv = vert_uv[i];
const typename T::AccumType value = interp(
interp(value0, value1, uv.x), interp(value3, value2, uv.x), uv.y);
mesh_data[vert_index[i]] = T::output(value);
}
}
else {
/* Other n-gons are split into n quads. */
/* Compute value at center of polygon. */
typename T::AccumType value_center = T::read(
subd_data[subd_face_corners[face.start_corner]]);
for (int j = 1; j < face.num_corners; j++) {
value_center += T::read(subd_data[subd_face_corners[face.start_corner + j]]);
}
value_center /= (float)face.num_corners;
/* Compute value at corner at adjacent vertices. */
const typename T::AccumType value_corner = T::read(
subd_data[subd_face_corners[face.start_corner + corner]]);
const typename T::AccumType value_prev =
0.5f * (value_corner +
T::read(subd_data[subd_face_corners[face.start_corner +
mod(corner - 1, face.num_corners)]]));
const typename T::AccumType value_next =
0.5f * (value_corner +
T::read(subd_data[subd_face_corners[face.start_corner +
mod(corner + 1, face.num_corners)]]));
for (int i = 0; i < vert_num; i++) {
const float2 uv = vert_uv[i];
/* Interpolate. */
const typename T::AccumType value = interp(
interp(value_corner, value_next, uv.x), interp(value_prev, value_center, uv.x), uv.y);
mesh_data[vert_index[i]] = T::output(value);
}
}
};
vertex_attributes.push_back(std::move(attr));
}
#ifdef WITH_OPENSUBDIV
template<typename T>
void SubdAttributeInterpolation::setup_attribute_vertex_smooth(const Attribute &subd_attr,
Attribute &mesh_attr,
const int motion_step)
{
SubdAttribute attr;
// TODO: Avoid computing derivative weights when not needed
// TODO: overhead of FindPatch and EvaluateBasis with vertex position
const int num_refiner_verts = osd_data.refiner->GetNumVerticesTotal();
const int num_local_points = osd_data.patch_table->GetNumLocalPoints();
const int num_base_verts = mesh.get_num_subd_base_verts();
/* Refine attribute data to get patch coordinates. */
attr.refined_data.resize((num_refiner_verts + num_local_points) * sizeof(typename T::AccumType));
typename T::AccumType *subd_data = reinterpret_cast<typename T::AccumType *>(
attr.refined_data.data());
const typename T::Type *base_src = reinterpret_cast<const typename T::Type *>(subd_attr.data()) +
num_base_verts * motion_step;
typename T::AccumType *base_dst = subd_data;
for (int i = 0; i < num_base_verts; i++) {
base_dst[i] = T::read(base_src[i]);
}
Far::PrimvarRefiner primvar_refiner(*osd_data.refiner);
typename T::AccumType *src = subd_data;
for (int i = 0; i < osd_data.refiner->GetMaxLevel(); i++) {
typename T::AccumType *dest = src + osd_data.refiner->GetLevel(i).GetNumVertices();
primvar_refiner.Interpolate(
i + 1, (OsdValue<typename T::AccumType> *)src, (OsdValue<typename T::AccumType> *&)dest);
src = dest;
}
if (num_local_points) {
osd_data.patch_table->ComputeLocalPointValues(
(OsdValue<typename T::AccumType> *)subd_data,
(OsdValue<typename T::AccumType> *)(subd_data + num_refiner_verts));
}
/* Evaluate patches at limit. */
typename T::Type *mesh_data = reinterpret_cast<typename T::Type *>(mesh_attr.data()) +
mesh.get_verts().size() * motion_step;
assert(mesh_data != nullptr);
/* Compute motion normals alongside positions. */
float3 *mesh_normal_data = nullptr;
if constexpr (std::is_same_v<typename T::Type, float3>) {
if (mesh_attr.std == ATTR_STD_MOTION_VERTEX_POSITION) {
Attribute *attr_normal = mesh.attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
mesh_normal_data = attr_normal->data_float3() + mesh.get_verts().size() * motion_step;
}
}
attr.interp = [this, subd_data, mesh_data, mesh_normal_data](const int patch_index,
const int /*face_index*/,
const int /*corner*/,
const int *vert_index,
const float2 *vert_uv,
const int vert_num) {
for (int i = 0; i < vert_num; i++) {
/* Compute patch weights. */
const float2 uv = vert_uv[i];
const Far::PatchTable::PatchHandle &handle = *osd_data.patch_map->FindPatch(
patch_index, (double)uv.x, (double)uv.y);
float p_weights[20], du_weights[20], dv_weights[20];
osd_data.patch_table->EvaluateBasis(handle, uv.x, uv.y, p_weights, du_weights, dv_weights);
Far::ConstIndexArray cv = osd_data.patch_table->GetPatchVertices(handle);
/* Compution position. */
typename T::AccumType value = subd_data[cv[0]] * p_weights[0];
for (int k = 1; k < cv.size(); k++) {
value += subd_data[cv[k]] * p_weights[k];
}
mesh_data[vert_index[i]] = T::output(value);
/* Optionally compute normal. */
if (mesh_normal_data) {
if constexpr (std::is_same_v<typename T::Type, float3>) {
float3 du = zero_float3();
float3 dv = zero_float3();
for (int k = 0; k < cv.size(); k++) {
const float3 p = subd_data[cv[k]];
du += p * du_weights[k];
dv += p * dv_weights[k];
}
mesh_normal_data[vert_index[i]] = safe_normalize_fallback(cross(du, dv),
make_float3(0.0f, 0.0f, 1.0f));
}
}
}
};
vertex_attributes.push_back(std::move(attr));
}
#endif
template<typename T>
void SubdAttributeInterpolation::setup_attribute_corner_linear(const Attribute &subd_attr,
Attribute &mesh_attr)
{
SubdAttribute attr;
/* Interpolate values at corners. */
const typename T::Type *subd_data = reinterpret_cast<const typename T::Type *>(subd_attr.data());
typename T::Type *mesh_data = reinterpret_cast<typename T::Type *>(mesh_attr.data());
assert(mesh_data != nullptr);
attr.interp = [this, subd_data, mesh_data](const int /*patch_index*/,
const int face_index,
const int corner,
const int *triangle_index,
const float2 *triangle_uv,
const int triangle_num) {
Mesh::SubdFace face = mesh.get_subd_face(face_index);
if (face.is_quad()) {
/* Simple case for quads. */
const typename T::AccumType value0 = T::read(subd_data[face.start_corner + 0]);
const typename T::AccumType value1 = T::read(subd_data[face.start_corner + 1]);
const typename T::AccumType value2 = T::read(subd_data[face.start_corner + 2]);
const typename T::AccumType value3 = T::read(subd_data[face.start_corner + 3]);
for (size_t i = 0; i < triangle_num; i++) {
for (int j = 0; j < 3; j++) {
const float2 uv = triangle_uv[(i * 3) + j];
const typename T::AccumType value = interp(
interp(value0, value1, uv.x), interp(value3, value2, uv.x), uv.y);
mesh_data[triangle_index[i] * 3 + j] = T::output(value);
}
}
}
else {
/* Other n-gons are split into n quads. */
/* Compute value at center of polygon. */
typename T::AccumType value_center = T::read(subd_data[face.start_corner]);
for (int j = 1; j < face.num_corners; j++) {
value_center += T::read(subd_data[face.start_corner + j]);
}
/* Compute value at corner at adjacent vertices. */
const typename T::AccumType value_corner = T::read(subd_data[face.start_corner + corner]);
const typename T::AccumType value_prev =
0.5f * (value_corner +
T::read(subd_data[face.start_corner + mod(corner - 1, face.num_corners)]));
const typename T::AccumType value_next =
0.5f * (value_corner +
T::read(subd_data[face.start_corner + mod(corner + 1, face.num_corners)]));
for (size_t i = 0; i < triangle_num; i++) {
for (int j = 0; j < 3; j++) {
const float2 uv = triangle_uv[(i * 3) + j];
/* Interpolate. */
const typename T::AccumType value = interp(interp(value_corner, value_next, uv.x),
interp(value_prev, value_center, uv.x),
uv.y);
mesh_data[triangle_index[i] * 3 + j] = T::output(value);
}
}
}
};
triangle_attributes.push_back(std::move(attr));
}
#ifdef WITH_OPENSUBDIV
template<typename T>
void SubdAttributeInterpolation::setup_attribute_corner_smooth(Attribute &mesh_attr,
const int channel,
const vector<char> &merged_values)
{
SubdAttribute attr;
// TODO: Avoid computing derivative weights when not needed
const int num_refiner_fvars = osd_data.refiner->GetNumFVarValuesTotal(channel);
const int num_local_points = osd_data.patch_table->GetNumLocalPointsFaceVarying(channel);
const int num_base_fvars = osd_data.refiner->GetLevel(0).GetNumFVarValues(channel);
/* Refine attribute data to get patch coordinates. */
attr.refined_data.resize((num_refiner_fvars + num_local_points) * sizeof(typename T::AccumType));
typename T::AccumType *refined_data = reinterpret_cast<typename T::AccumType *>(
attr.refined_data.data());
const typename T::Type *base_src = reinterpret_cast<const typename T::Type *>(
merged_values.data());
typename T::AccumType *base_dst = refined_data;
for (int i = 0; i < num_base_fvars; i++) {
base_dst[i] = T::read(base_src[i]);
}
Far::PrimvarRefiner primvar_refiner(*osd_data.refiner);
typename T::AccumType *src = refined_data;
for (int i = 0; i < osd_data.refiner->GetMaxLevel(); i++) {
typename T::AccumType *dest = src + osd_data.refiner->GetLevel(i).GetNumFVarValues(channel);
primvar_refiner.InterpolateFaceVarying(i + 1,
(OsdValue<typename T::AccumType> *)src,
(OsdValue<typename T::AccumType> *&)dest,
channel);
src = dest;
}
if (num_local_points) {
osd_data.patch_table->ComputeLocalPointValuesFaceVarying(
(OsdValue<typename T::AccumType> *)refined_data,
(OsdValue<typename T::AccumType> *)(refined_data + num_refiner_fvars),
channel);
}
/* Evaluate patches at limit. */
const typename T::AccumType *subd_data = refined_data;
typename T::Type *mesh_data = reinterpret_cast<typename T::Type *>(mesh_attr.data());
assert(mesh_data != nullptr);
attr.interp = [this, subd_data, mesh_data, channel](const int patch_index,
const int /*face_index*/,
const int /*corner*/,
const int *triangle_index,
const float2 *triangle_uv,
const int triangle_num) {
for (size_t i = 0; i < triangle_num; i++) {
for (int j = 0; j < 3; j++) {
/* Compute patch weights. */
const float2 uv = triangle_uv[(i * 3) + j];
const Far::PatchTable::PatchHandle &handle = *osd_data.patch_map->FindPatch(
patch_index, (double)uv.x, (double)uv.y);
float p_weights[20], du_weights[20], dv_weights[20];
osd_data.patch_table->EvaluateBasisFaceVarying(handle,
uv.x,
uv.y,
p_weights,
du_weights,
dv_weights,
nullptr,
nullptr,
nullptr,
channel);
Far::ConstIndexArray cv = osd_data.patch_table->GetPatchFVarValues(handle, channel);
/* Compution position. */
typename T::AccumType value = subd_data[cv[0]] * p_weights[0];
for (int k = 1; k < cv.size(); k++) {
value += subd_data[cv[k]] * p_weights[k];
}
mesh_data[triangle_index[i] * 3 + j] = T::output(value);
}
}
};
triangle_attributes.push_back(std::move(attr));
}
#endif
template<typename T>
void SubdAttributeInterpolation::setup_attribute_face(const Attribute &subd_attr,
Attribute &mesh_attr)
{
/* Copy value from face to triangle .*/
SubdAttribute attr;
const typename T::Type *subd_data = reinterpret_cast<const typename T::Type *>(subd_attr.data());
typename T::Type *mesh_data = reinterpret_cast<typename T::Type *>(mesh_attr.data());
assert(mesh_data != nullptr);
attr.interp = [subd_data, mesh_data](const int /*patch_index*/,
const int face_index,
const int /*corner*/,
const int *triangle_index,
const float2 * /*triangle_uv*/,
const int triangle_num) {
for (int i = 0; i < triangle_num; i++) {
mesh_data[triangle_index[i]] = subd_data[face_index];
}
};
triangle_attributes.push_back(std::move(attr));
}
template<typename T>
void SubdAttributeInterpolation::setup_attribute_type(const Attribute &subd_attr,
Attribute &mesh_attr)
{
switch (subd_attr.element) {
case ATTR_ELEMENT_VERTEX: {
#ifdef WITH_OPENSUBDIV
if (mesh.get_subdivision_type() == Mesh::SUBDIVISION_CATMULL_CLARK) {
/* Only smoothly interpolation known position-like attributes. */
switch (subd_attr.std) {
case ATTR_STD_GENERATED:
case ATTR_STD_POSITION_UNDEFORMED:
case ATTR_STD_POSITION_UNDISPLACED:
setup_attribute_vertex_smooth<T>(subd_attr, mesh_attr);
break;
default:
setup_attribute_vertex_linear<T>(subd_attr, mesh_attr);
break;
}
}
else
#endif
{
setup_attribute_vertex_linear<T>(subd_attr, mesh_attr);
}
break;
}
case ATTR_ELEMENT_CORNER:
case ATTR_ELEMENT_CORNER_BYTE: {
#ifdef WITH_OPENSUBDIV
if (osd_mesh.use_smooth_fvar(subd_attr)) {
for (const auto &merged_fvar : osd_mesh.merged_fvars) {
if (&merged_fvar.attr == &subd_attr) {
if constexpr (std::is_same_v<typename T::Type, float2>) {
setup_attribute_corner_smooth<T>(mesh_attr, merged_fvar.channel, merged_fvar.values);
return;
}
}
}
}
#endif
setup_attribute_corner_linear<T>(subd_attr, mesh_attr);
break;
}
case ATTR_ELEMENT_VERTEX_MOTION: {
/* Interpolate each motion step individually. */
for (int step = 0; step < mesh.get_motion_steps() - 1; step++) {
#ifdef WITH_OPENSUBDIV
if (mesh.get_subdivision_type() == Mesh::SUBDIVISION_CATMULL_CLARK) {
setup_attribute_vertex_smooth<T>(subd_attr, mesh_attr, step);
}
else
#endif
{
setup_attribute_vertex_linear<T>(subd_attr, mesh_attr, step);
}
}
break;
}
case ATTR_ELEMENT_FACE: {
setup_attribute_face<T>(subd_attr, mesh_attr);
break;
}
default:
break;
}
}
CCL_NAMESPACE_END