Files
test/source/blender/draw/intern/draw_command.hh
Clément Foucault caac241c84 GPU: Make Shader Specialization Constant API Thread Safe
This allows multiple threads to request different specializations without
locking usage of all specialized shaders program when a new specialization
is being compiled.

The specialization constants are bundled in a structure that is being
passed to the `Shader::bind()` method. The structure is owned by the
calling thread and only used by the `Shader::bind()`.
Only querying for the specialized shader (Map lookup) is locking the shader
usage.

The variant compilation is now also locking and ensured that
multiple thread trying to compile the same variant will never result
in race condition.

Note that this removes the `is_dirty` optimization. This can be added
back if this becomes a bottleneck in the future. Otherwise, the
performance impact is not noticeable.

Pull Request: https://projects.blender.org/blender/blender/pulls/136991
2025-05-19 17:42:55 +02:00

761 lines
25 KiB
C++

/* SPDX-FileCopyrightText: 2022 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup draw
*
* Commands stored inside draw passes. Converted into GPU commands upon pass submission.
*
* Draw calls (primitive rendering commands) are managed by either `DrawCommandBuf` or
* `DrawMultiBuf`. See implementation details at their definition.
*/
#include "BKE_global.hh"
#include "BLI_map.hh"
#include "BLI_math_base.h"
#include "DRW_gpu_wrapper.hh"
#include "GPU_index_buffer.hh"
#include "draw_command_shared.hh"
#include "draw_handle.hh"
#include "draw_state.hh"
#include "draw_view.hh"
/* Forward declarations. */
namespace blender::draw::detail {
template<typename T, int64_t block_size> class SubPassVector;
template<typename DrawCommandBufType> class PassBase;
} // namespace blender::draw::detail
namespace blender::draw::command {
class DrawCommandBuf;
class DrawMultiBuf;
/* -------------------------------------------------------------------- */
/** \name Recording State
* \{ */
/**
* Command recording state.
* Keep track of several states and avoid redundant state changes.
*/
struct RecordingState {
gpu::shader::SpecializationConstants specialization_constants;
/* True if specialization_constants was set. */
bool specialization_constants_in_use = false;
/* True if the bound shader uses specialization. */
bool shader_use_specialization = false;
GPUShader *shader = nullptr;
bool front_facing = true;
bool inverted_view = false;
DRWState pipeline_state = DRW_STATE_NO_DRAW;
int clip_plane_count = 0;
/** Used for gl_BaseInstance workaround. */
GPUStorageBuf *resource_id_buf = nullptr;
/** Used for pass simple resource ID. Starts at 1 as 0 is the identity handle. */
int instance_offset = 1;
void front_facing_set(bool facing)
{
/* Facing is inverted if view is not in expected handedness. */
facing = this->inverted_view == facing;
/* Remove redundant changes. */
if (assign_if_different(this->front_facing, facing)) {
GPU_front_facing(!facing);
}
}
void cleanup()
{
if (front_facing == false) {
GPU_front_facing(false);
}
if (G.debug & G_DEBUG_GPU) {
GPU_storagebuf_debug_unbind_all();
GPU_texture_image_unbind_all();
GPU_texture_unbind_all();
GPU_uniformbuf_debug_unbind_all();
}
}
const gpu::shader::SpecializationConstants *specialization_constants_get()
{
return shader_use_specialization ? &specialization_constants : nullptr;
}
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Regular Commands
* \{ */
enum class Type : uint8_t {
/**
* None Type commands are either uninitialized or are repurposed as data storage.
* They are skipped during submission.
*/
None = 0,
/** Commands stored as Undetermined in regular command buffer. */
Barrier,
Clear,
ClearMulti,
Dispatch,
DispatchIndirect,
Draw,
DrawIndirect,
FramebufferBind,
PushConstant,
SpecializeConstant,
ResourceBind,
ShaderBind,
SubPassTransition,
StateSet,
StencilSet,
/** Special commands stored in separate buffers. */
SubPass,
DrawMulti,
};
/**
* The index of the group is implicit since it is known by the one who want to
* access it. This also allows to have an indexed object to split the command
* stream.
*/
struct Header {
/** Command type. */
Type type;
/** Command index in command heap of this type. */
uint index;
};
struct ShaderBind {
GPUShader *shader;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct FramebufferBind {
GPUFrameBuffer **framebuffer;
void execute() const;
std::string serialize() const;
};
struct SubPassTransition {
/** \note uint8_t storing `GPUAttachmentState` for compactness. */
uint8_t depth_state;
/** \note 8 is GPU_FB_MAX_COLOR_ATTACHMENT. */
uint8_t color_states[8];
void execute() const;
std::string serialize() const;
};
struct ResourceBind {
GPUSamplerState sampler;
int slot;
bool is_reference;
enum class Type : uint8_t {
Sampler = 0,
BufferSampler,
Image,
UniformBuf,
StorageBuf,
UniformAsStorageBuf,
VertexAsStorageBuf,
IndexAsStorageBuf,
} type;
union {
/** TODO: Use draw::Texture|StorageBuffer|UniformBuffer as resources as they will give more
* debug info. */
GPUUniformBuf *uniform_buf;
GPUUniformBuf **uniform_buf_ref;
GPUStorageBuf *storage_buf;
GPUStorageBuf **storage_buf_ref;
/** NOTE: Texture is used for both Sampler and Image binds. */
GPUTexture *texture;
GPUTexture **texture_ref;
gpu::VertBuf *vertex_buf;
gpu::VertBuf **vertex_buf_ref;
gpu::IndexBuf *index_buf;
gpu::IndexBuf **index_buf_ref;
};
ResourceBind() = default;
ResourceBind(int slot_, GPUUniformBuf *res)
: slot(slot_), is_reference(false), type(Type::UniformBuf), uniform_buf(res){};
ResourceBind(int slot_, GPUUniformBuf **res)
: slot(slot_), is_reference(true), type(Type::UniformBuf), uniform_buf_ref(res){};
ResourceBind(int slot_, GPUStorageBuf *res)
: slot(slot_), is_reference(false), type(Type::StorageBuf), storage_buf(res){};
ResourceBind(int slot_, GPUStorageBuf **res)
: slot(slot_), is_reference(true), type(Type::StorageBuf), storage_buf_ref(res){};
ResourceBind(int slot_, GPUUniformBuf *res, Type /*type*/)
: slot(slot_), is_reference(false), type(Type::UniformAsStorageBuf), uniform_buf(res){};
ResourceBind(int slot_, GPUUniformBuf **res, Type /*type*/)
: slot(slot_), is_reference(true), type(Type::UniformAsStorageBuf), uniform_buf_ref(res){};
ResourceBind(int slot_, gpu::VertBuf *res, Type /*type*/)
: slot(slot_), is_reference(false), type(Type::VertexAsStorageBuf), vertex_buf(res){};
ResourceBind(int slot_, gpu::VertBuf **res, Type /*type*/)
: slot(slot_), is_reference(true), type(Type::VertexAsStorageBuf), vertex_buf_ref(res){};
ResourceBind(int slot_, gpu::IndexBuf *res, Type /*type*/)
: slot(slot_), is_reference(false), type(Type::IndexAsStorageBuf), index_buf(res){};
ResourceBind(int slot_, gpu::IndexBuf **res, Type /*type*/)
: slot(slot_), is_reference(true), type(Type::IndexAsStorageBuf), index_buf_ref(res){};
ResourceBind(int slot_, draw::Image *res)
: slot(slot_), is_reference(false), type(Type::Image), texture(draw::as_texture(res)){};
ResourceBind(int slot_, draw::Image **res)
: slot(slot_), is_reference(true), type(Type::Image), texture_ref(draw::as_texture(res)){};
ResourceBind(int slot_, GPUTexture *res, GPUSamplerState state)
: sampler(state), slot(slot_), is_reference(false), type(Type::Sampler), texture(res){};
ResourceBind(int slot_, GPUTexture **res, GPUSamplerState state)
: sampler(state), slot(slot_), is_reference(true), type(Type::Sampler), texture_ref(res){};
ResourceBind(int slot_, gpu::VertBuf *res)
: slot(slot_), is_reference(false), type(Type::BufferSampler), vertex_buf(res){};
ResourceBind(int slot_, gpu::VertBuf **res)
: slot(slot_), is_reference(true), type(Type::BufferSampler), vertex_buf_ref(res){};
void execute() const;
std::string serialize() const;
};
struct PushConstant {
int location;
uint8_t array_len;
uint8_t comp_len;
enum class Type : uint8_t {
IntValue = 0,
FloatValue,
IntReference,
FloatReference,
} type;
/**
* IMPORTANT: Data is at the end of the struct as it can span over the next commands.
* These next commands are not real commands but just memory to hold the data and are not
* referenced by any Command::Header.
* This is a hack to support float4x4 copy.
*/
union {
int int1_value;
int2 int2_value;
int3 int3_value;
int4 int4_value;
float float1_value;
float2 float2_value;
float3 float3_value;
float4 float4_value;
const int *int_ref;
const int2 *int2_ref;
const int3 *int3_ref;
const int4 *int4_ref;
const float *float_ref;
const float2 *float2_ref;
const float3 *float3_ref;
const float4 *float4_ref;
const float4x4 *float4x4_ref;
};
PushConstant() = default;
PushConstant(int loc, const float &val)
: location(loc), array_len(1), comp_len(1), type(Type::FloatValue), float1_value(val){};
PushConstant(int loc, const float2 &val)
: location(loc), array_len(1), comp_len(2), type(Type::FloatValue), float2_value(val){};
PushConstant(int loc, const float3 &val)
: location(loc), array_len(1), comp_len(3), type(Type::FloatValue), float3_value(val){};
PushConstant(int loc, const float4 &val)
: location(loc), array_len(1), comp_len(4), type(Type::FloatValue), float4_value(val){};
PushConstant(int loc, const int &val)
: location(loc), array_len(1), comp_len(1), type(Type::IntValue), int1_value(val){};
PushConstant(int loc, const int2 &val)
: location(loc), array_len(1), comp_len(2), type(Type::IntValue), int2_value(val){};
PushConstant(int loc, const int3 &val)
: location(loc), array_len(1), comp_len(3), type(Type::IntValue), int3_value(val){};
PushConstant(int loc, const int4 &val)
: location(loc), array_len(1), comp_len(4), type(Type::IntValue), int4_value(val){};
PushConstant(int loc, const float *val, int arr)
: location(loc), array_len(arr), comp_len(1), type(Type::FloatReference), float_ref(val){};
PushConstant(int loc, const float2 *val, int arr)
: location(loc), array_len(arr), comp_len(2), type(Type::FloatReference), float2_ref(val){};
PushConstant(int loc, const float3 *val, int arr)
: location(loc), array_len(arr), comp_len(3), type(Type::FloatReference), float3_ref(val){};
PushConstant(int loc, const float4 *val, int arr)
: location(loc), array_len(arr), comp_len(4), type(Type::FloatReference), float4_ref(val){};
PushConstant(int loc, const float4x4 *val)
: location(loc), array_len(1), comp_len(16), type(Type::FloatReference), float4x4_ref(val){};
PushConstant(int loc, const int *val, int arr)
: location(loc), array_len(arr), comp_len(1), type(Type::IntReference), int_ref(val){};
PushConstant(int loc, const int2 *val, int arr)
: location(loc), array_len(arr), comp_len(2), type(Type::IntReference), int2_ref(val){};
PushConstant(int loc, const int3 *val, int arr)
: location(loc), array_len(arr), comp_len(3), type(Type::IntReference), int3_ref(val){};
PushConstant(int loc, const int4 *val, int arr)
: location(loc), array_len(arr), comp_len(4), type(Type::IntReference), int4_ref(val){};
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct SpecializeConstant {
/* Shader to set the constant in. */
GPUShader *shader;
/* Value of the constant or a reference to it. */
union {
int int_value;
uint uint_value;
float float_value;
bool bool_value;
const int *int_ref;
const uint *uint_ref;
const float *float_ref;
const bool *bool_ref;
};
int location;
enum class Type : uint8_t {
IntValue = 0,
UintValue,
FloatValue,
BoolValue,
IntReference,
UintReference,
FloatReference,
BoolReference,
} type;
SpecializeConstant() = default;
SpecializeConstant(GPUShader *sh, int loc, const float &val)
: shader(sh), float_value(val), location(loc), type(Type::FloatValue){};
SpecializeConstant(GPUShader *sh, int loc, const int &val)
: shader(sh), int_value(val), location(loc), type(Type::IntValue){};
SpecializeConstant(GPUShader *sh, int loc, const uint &val)
: shader(sh), uint_value(val), location(loc), type(Type::UintValue){};
SpecializeConstant(GPUShader *sh, int loc, const bool &val)
: shader(sh), bool_value(val), location(loc), type(Type::BoolValue){};
SpecializeConstant(GPUShader *sh, int loc, const float *val)
: shader(sh), float_ref(val), location(loc), type(Type::FloatReference){};
SpecializeConstant(GPUShader *sh, int loc, const int *val)
: shader(sh), int_ref(val), location(loc), type(Type::IntReference){};
SpecializeConstant(GPUShader *sh, int loc, const uint *val)
: shader(sh), uint_ref(val), location(loc), type(Type::UintReference){};
SpecializeConstant(GPUShader *sh, int loc, const bool *val)
: shader(sh), bool_ref(val), location(loc), type(Type::BoolReference){};
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct Draw {
gpu::Batch *batch;
uint16_t instance_len;
uint8_t expand_prim_type; /* #GPUPrimType */
uint8_t expand_prim_len;
uint32_t vertex_first;
uint32_t vertex_len;
ResourceHandle handle;
Draw() = default;
Draw(gpu::Batch *batch,
uint instance_len,
uint vertex_len,
uint vertex_first,
GPUPrimType expanded_prim_type,
uint expanded_prim_len,
ResourceHandle handle)
{
BLI_assert(batch != nullptr);
this->batch = batch;
this->handle = handle;
this->instance_len = uint16_t(min_uu(instance_len, USHRT_MAX));
this->vertex_len = vertex_len;
this->vertex_first = vertex_first;
this->expand_prim_type = expanded_prim_type;
this->expand_prim_len = expanded_prim_len;
}
bool is_primitive_expansion() const
{
return expand_prim_type != GPU_PRIM_NONE;
}
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct DrawMulti {
gpu::Batch *batch;
DrawMultiBuf *multi_draw_buf;
uint group_first;
uint uuid;
void execute(RecordingState &state) const;
std::string serialize(const std::string &line_prefix) const;
};
struct DrawIndirect {
gpu::Batch *batch;
GPUStorageBuf **indirect_buf;
ResourceHandle handle;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct Dispatch {
bool is_reference;
union {
int3 size;
int3 *size_ref;
};
Dispatch() = default;
Dispatch(int3 group_len) : is_reference(false), size(group_len){};
Dispatch(int3 *group_len) : is_reference(true), size_ref(group_len){};
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct DispatchIndirect {
GPUStorageBuf **indirect_buf;
void execute(RecordingState &state) const;
std::string serialize() const;
};
struct Barrier {
eGPUBarrier type;
void execute() const;
std::string serialize() const;
};
struct Clear {
uint8_t clear_channels; /* #eGPUFrameBufferBits. But want to save some bits. */
uint8_t stencil;
float depth;
float4 color;
void execute() const;
std::string serialize() const;
};
struct ClearMulti {
/** \note This should be a Span<float4> but we need have to only have trivial types here. */
const float4 *colors;
int colors_len;
void execute() const;
std::string serialize() const;
};
struct StateSet {
DRWState new_state;
int clip_plane_count;
void execute(RecordingState &state) const;
std::string serialize() const;
/* Set state of the GPU module manually. */
static void set(DRWState state = DRW_STATE_DEFAULT);
};
struct StencilSet {
uint write_mask;
uint compare_mask;
uint reference;
void execute() const;
std::string serialize() const;
};
union Undetermined {
ShaderBind shader_bind;
ResourceBind resource_bind;
FramebufferBind framebuffer_bind;
SubPassTransition subpass_transition;
PushConstant push_constant;
SpecializeConstant specialize_constant;
Draw draw;
DrawMulti draw_multi;
DrawIndirect draw_indirect;
Dispatch dispatch;
DispatchIndirect dispatch_indirect;
Barrier barrier;
Clear clear;
ClearMulti clear_multi;
StateSet state_set;
StencilSet stencil_set;
};
/** Try to keep the command size as low as possible for performance. */
BLI_STATIC_ASSERT(sizeof(Undetermined) <= 24, "One of the command type is too large.")
/** \} */
/* -------------------------------------------------------------------- */
/** \name Draw Commands
*
* A draw command buffer used to issue single draw commands without instance merging or any
* other optimizations.
*
* It still uses a ResourceIdBuf to keep the same shader interface as multi draw commands.
*
* \{ */
class DrawCommandBuf {
friend Manager;
private:
using ResourceIdBuf = StorageArrayBuffer<uint, 128, false>;
using SubPassVector = detail::SubPassVector<detail::PassBase<DrawCommandBuf>, 16>;
/** Array of resource id. One per instance. Generated on GPU and send to GPU. */
ResourceIdBuf resource_id_buf_;
/** Used items in the resource_id_buf_. Not it's allocated length. */
uint resource_id_count_ = 0;
public:
void clear()
{
resource_id_buf_.trim_to_next_power_of_2(resource_id_count_);
};
void append_draw(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
gpu::Batch *batch,
uint instance_len,
uint vertex_len,
uint vertex_first,
ResourceHandleRange handle_range,
uint custom_id,
GPUPrimType expanded_prim_type,
uint16_t expanded_prim_len)
{
BLI_assert(batch != nullptr);
vertex_first = vertex_first != -1 ? vertex_first : 0;
instance_len = instance_len != -1 ? instance_len : 1;
BLI_assert_msg(custom_id == 0, "Custom ID is not supported in PassSimple");
UNUSED_VARS_NDEBUG(custom_id);
for (auto handle : handle_range.index_range()) {
int64_t index = commands.append_and_get_index({});
headers.append({Type::Draw, uint(index)});
commands[index].draw = {batch,
instance_len,
vertex_len,
vertex_first,
expanded_prim_type,
expanded_prim_len,
ResourceHandle(handle)};
}
}
void generate_commands(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
SubPassVector &sub_passes);
void bind(RecordingState &state);
private:
static void finalize_commands(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
SubPassVector &sub_passes,
uint &resource_id_count,
ResourceIdBuf &resource_id_buf);
};
/** \} */
/* -------------------------------------------------------------------- */
/** \name Multi Draw Commands
*
* For efficient rendering of large scene we strive to minimize the number of draw call and state
* changes. To this end, we group many rendering commands and sort them per render state using
* `DrawGroup` as a container. This is done automatically for any successive commands with the
* same state.
*
* A `DrawGroup` is the combination of a `gpu::Batch` (VBO state) and a `command::DrawMulti`
* (Pipeline State).
*
* Inside each `DrawGroup` all instances of a same `gpu::Batch` is merged into a single indirect
* command.
*
* To support this arbitrary reordering, we only need to know the offset of all the commands for a
* specific `DrawGroup`. This is done on CPU by doing a simple prefix sum. The result is pushed to
* GPU and used on CPU to issue the right command indirect.
*
* Each draw command is stored in an unsorted array of `DrawPrototype` and sent directly to the
* GPU.
*
* A command generation compute shader then go over each `DrawPrototype`. For each it adds it (or
* not depending on visibility) to the correct draw command using the offset of the `DrawGroup`
* computed on CPU. After that, it also outputs one resource ID for each instance inside a
* `DrawPrototype`.
*
* \{ */
class DrawMultiBuf {
friend Manager;
friend DrawMulti;
private:
using DrawGroupBuf = StorageArrayBuffer<DrawGroup, 16>;
using DrawPrototypeBuf = StorageArrayBuffer<DrawPrototype, 16>;
using DrawCommandBuf = StorageArrayBuffer<DrawCommand, 16, true>;
using ResourceIdBuf = StorageArrayBuffer<uint, 128, true>;
using DrawGroupKey = std::pair<uint, gpu::Batch *>;
using DrawGroupMap = Map<DrawGroupKey, uint>;
/** Maps a DrawMulti command and a gpu batch to their unique DrawGroup command. */
DrawGroupMap group_ids_;
/** DrawGroup Command heap. Uploaded to GPU for sorting. */
DrawGroupBuf group_buf_ = {"DrawGroupBuf"};
/** Command Prototypes. Unsorted */
DrawPrototypeBuf prototype_buf_ = {"DrawPrototypeBuf"};
/** Command list generated by the sorting / compaction steps. Lives on GPU. */
DrawCommandBuf command_buf_ = {"DrawCommandBuf"};
/** Array of resource id. One per instance. Lives on GPU. */
ResourceIdBuf resource_id_buf_ = {"ResourceIdBuf"};
/** Give unique ID to each header so we can use that as hash key. */
uint header_id_counter_ = 0;
/** Number of groups inside group_buf_. */
uint group_count_ = 0;
/** Number of prototype command inside prototype_buf_. */
uint prototype_count_ = 0;
/** Used items in the resource_id_buf_. Not it's allocated length. */
uint resource_id_count_ = 0;
public:
void clear()
{
group_buf_.trim_to_next_power_of_2(group_count_);
/* Two commands per group (inverted and non-inverted scale). */
command_buf_.trim_to_next_power_of_2(group_count_ * 2);
prototype_buf_.trim_to_next_power_of_2(prototype_count_);
resource_id_buf_.trim_to_next_power_of_2(resource_id_count_);
header_id_counter_ = 0;
group_count_ = 0;
prototype_count_ = 0;
group_ids_.clear();
}
void append_draw(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
gpu::Batch *batch,
uint instance_len,
uint vertex_len,
uint vertex_first,
ResourceHandleRange handle_range,
uint custom_id,
GPUPrimType expanded_prim_type,
uint16_t expanded_prim_len)
{
BLI_assert(batch != nullptr);
/* Custom draw-calls cannot be batched and will produce one group per draw. */
const bool custom_group = ((vertex_first != 0 && vertex_first != -1) || vertex_len != -1);
BLI_assert(vertex_len != 0);
vertex_len = vertex_len == -1 ? 0 : vertex_len;
instance_len = instance_len != -1 ? instance_len : 1;
/* If there was some state changes since previous call, we have to create another command. */
if (headers.is_empty() || headers.last().type != Type::DrawMulti) {
uint index = commands.append_and_get_index({});
headers.append({Type::DrawMulti, index});
commands[index].draw_multi = {batch, this, (uint)-1, header_id_counter_++};
}
DrawMulti &cmd = commands.last().draw_multi;
uint &group_id = group_ids_.lookup_or_add(DrawGroupKey(cmd.uuid, batch), uint(-1));
bool inverted = handle_range.handle_first.has_inverted_handedness();
for (auto handle : handle_range.index_range()) {
DrawPrototype &draw = prototype_buf_.get_or_resize(prototype_count_++);
draw.res_handle = uint32_t(handle);
draw.custom_id = custom_id;
draw.instance_len = instance_len;
draw.group_id = group_id;
if (group_id == uint(-1) || custom_group) {
uint new_group_id = group_count_++;
draw.group_id = new_group_id;
DrawGroup &group = group_buf_.get_or_resize(new_group_id);
group.next = cmd.group_first;
group.len = instance_len;
group.front_facing_len = inverted ? 0 : instance_len;
group.front_facing_counter = 0;
group.back_facing_counter = 0;
group.desc.vertex_len = vertex_len;
group.desc.vertex_first = vertex_first;
group.desc.gpu_batch = batch;
group.desc.expand_prim_type = expanded_prim_type;
group.desc.expand_prim_len = expanded_prim_len;
BLI_assert_msg(expanded_prim_len < (1 << 3),
"Not enough bits to store primitive expansion");
/* Custom group are not to be registered in the group_ids_. */
if (!custom_group) {
group_id = new_group_id;
}
/* For serialization only. Reset before use on GPU. */
(inverted ? group.back_facing_counter : group.front_facing_counter)++;
/* Append to list. */
cmd.group_first = new_group_id;
}
else {
DrawGroup &group = group_buf_[group_id];
group.len += instance_len;
group.front_facing_len += inverted ? 0 : instance_len;
/* For serialization only. Reset before use on GPU. */
(inverted ? group.back_facing_counter : group.front_facing_counter)++;
/* NOTE: We assume that primitive expansion is coupled to the shader itself. Meaning we
* rely on shader bind to isolate the expanded draws into their own group (as there could
* be regular draws and extended draws using the same batch mixed inside the same pass).
* This will cause issues if this assumption is broken. Also it is very hard to detect this
* case for error checking. At least we can check that expansion settings don't change
* inside a group. */
BLI_assert(group.desc.expand_prim_type == expanded_prim_type);
BLI_assert(group.desc.expand_prim_len == expanded_prim_len);
}
}
}
void generate_commands(Vector<Header, 0> &headers,
Vector<Undetermined, 0> &commands,
VisibilityBuf &visibility_buf,
int visibility_word_per_draw,
int view_len,
bool use_custom_ids);
void bind(RecordingState &state);
};
/** \} */
}; // namespace blender::draw::command