Files
test/source/blender/render/intern/zbuf.cc
Bastien Montagne 9f697c7cc6 Cleanup: render: Replace 'void' MEM_[cm]allocN with templated, type-safe MEM_[cm]allocN<T>.
The main issue of 'type-less' standard C allocations is that there is no check on
allocated type possible.

This is a serious source of annoyance (and crashes) when making some
low-level structs non-trivial, as tracking down all usages of these
structs in higher-level other structs and their allocation is... really
painful.

MEM_[cm]allocN<T> templates on the other hand do check that the
given type is trivial, at build time (static assert), which makes such issue...
trivial to catch.

NOTE: New code should strive to use MEM_new (i.e. allocation and
construction) as much as possible, even for trivial PoD types.

Pull Request: https://projects.blender.org/blender/blender/pulls/135813
2025-03-12 10:31:06 +01:00

240 lines
5.6 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup render
*
* \note Some of this logic has been duplicated in `COM_VectorBlurOperation.cc`
* changes here may also apply also apply to that file.
*/
/*---------------------------------------------------------------------------*/
/* Common includes */
/*---------------------------------------------------------------------------*/
#include <algorithm>
#include <cstring>
#include "MEM_guardedalloc.h"
#include "BLI_math_base.h"
/* own includes */
#include "zbuf.h"
/* could enable at some point but for now there are far too many conversions */
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
/* ****************** Spans ******************************* */
void zbuf_alloc_span(ZSpan *zspan, int rectx, int recty)
{
memset(zspan, 0, sizeof(ZSpan));
zspan->rectx = rectx;
zspan->recty = recty;
zspan->span1 = MEM_malloc_arrayN<float>(recty, "zspan");
zspan->span2 = MEM_malloc_arrayN<float>(recty, "zspan");
}
void zbuf_free_span(ZSpan *zspan)
{
if (zspan) {
MEM_SAFE_FREE(zspan->span1);
MEM_SAFE_FREE(zspan->span2);
}
}
/* reset range for clipping */
static void zbuf_init_span(ZSpan *zspan)
{
zspan->miny1 = zspan->miny2 = zspan->recty + 1;
zspan->maxy1 = zspan->maxy2 = -1;
zspan->minp1 = zspan->maxp1 = zspan->minp2 = zspan->maxp2 = nullptr;
}
static void zbuf_add_to_span(ZSpan *zspan, const float v1[2], const float v2[2])
{
const float *minv, *maxv;
float *span;
float xx1, dx0, xs0;
int y, my0, my2;
if (v1[1] < v2[1]) {
minv = v1;
maxv = v2;
}
else {
minv = v2;
maxv = v1;
}
my0 = ceil(minv[1]);
my2 = floor(maxv[1]);
if (my2 < 0 || my0 >= zspan->recty) {
return;
}
/* clip top */
if (my2 >= zspan->recty) {
my2 = zspan->recty - 1;
}
/* clip bottom */
my0 = std::max(my0, 0);
if (my0 > my2) {
return;
}
/* if (my0>my2) should still fill in, that way we get spans that skip nicely */
xx1 = maxv[1] - minv[1];
if (xx1 > FLT_EPSILON) {
dx0 = (minv[0] - maxv[0]) / xx1;
xs0 = dx0 * (minv[1] - my2) + minv[0];
}
else {
dx0 = 0.0f;
xs0 = min_ff(minv[0], maxv[0]);
}
/* empty span */
if (zspan->maxp1 == nullptr) {
span = zspan->span1;
}
else { /* does it complete left span? */
if (maxv == zspan->minp1 || minv == zspan->maxp1) {
span = zspan->span1;
}
else {
span = zspan->span2;
}
}
if (span == zspan->span1) {
// printf("left span my0 %d my2 %d\n", my0, my2);
if (zspan->minp1 == nullptr || zspan->minp1[1] > minv[1]) {
zspan->minp1 = minv;
}
if (zspan->maxp1 == nullptr || zspan->maxp1[1] < maxv[1]) {
zspan->maxp1 = maxv;
}
zspan->miny1 = std::min(my0, zspan->miny1);
zspan->maxy1 = std::max(my2, zspan->maxy1);
}
else {
// printf("right span my0 %d my2 %d\n", my0, my2);
if (zspan->minp2 == nullptr || zspan->minp2[1] > minv[1]) {
zspan->minp2 = minv;
}
if (zspan->maxp2 == nullptr || zspan->maxp2[1] < maxv[1]) {
zspan->maxp2 = maxv;
}
zspan->miny2 = std::min(my0, zspan->miny2);
zspan->maxy2 = std::max(my2, zspan->maxy2);
}
for (y = my2; y >= my0; y--, xs0 += dx0) {
/* xs0 is the X-coordinate! */
span[y] = xs0;
}
}
/*-----------------------------------------------------------*/
/* Functions */
/*-----------------------------------------------------------*/
void zspan_scanconvert(ZSpan *zspan,
void *handle,
float *v1,
float *v2,
float *v3,
void (*func)(void *, int, int, float, float))
{
float x0, y0, x1, y1, x2, y2, z0, z1, z2;
float u, v, uxd, uyd, vxd, vyd, uy0, vy0, xx1;
const float *span1, *span2;
int i, j, x, y, sn1, sn2, rectx = zspan->rectx, my0, my2;
/* init */
zbuf_init_span(zspan);
/* set spans */
zbuf_add_to_span(zspan, v1, v2);
zbuf_add_to_span(zspan, v2, v3);
zbuf_add_to_span(zspan, v3, v1);
/* clipped */
if (zspan->minp2 == nullptr || zspan->maxp2 == nullptr) {
return;
}
my0 = max_ii(zspan->miny1, zspan->miny2);
my2 = min_ii(zspan->maxy1, zspan->maxy2);
// printf("my %d %d\n", my0, my2);
if (my2 < my0) {
return;
}
/* ZBUF DX DY, in floats still */
x1 = v1[0] - v2[0];
x2 = v2[0] - v3[0];
y1 = v1[1] - v2[1];
y2 = v2[1] - v3[1];
z1 = 1.0f; /* (u1 - u2) */
z2 = 0.0f; /* (u2 - u3) */
x0 = y1 * z2 - z1 * y2;
y0 = z1 * x2 - x1 * z2;
z0 = x1 * y2 - y1 * x2;
if (z0 == 0.0f) {
return;
}
xx1 = (x0 * v1[0] + y0 * v1[1]) / z0 + 1.0f;
uxd = -double(x0) / double(z0);
uyd = -double(y0) / double(z0);
uy0 = double(my2) * uyd + double(xx1);
z1 = -1.0f; /* (v1 - v2) */
z2 = 1.0f; /* (v2 - v3) */
x0 = y1 * z2 - z1 * y2;
y0 = z1 * x2 - x1 * z2;
xx1 = (x0 * v1[0] + y0 * v1[1]) / z0;
vxd = -double(x0) / double(z0);
vyd = -double(y0) / double(z0);
vy0 = double(my2) * vyd + double(xx1);
/* correct span */
span1 = zspan->span1 + my2;
span2 = zspan->span2 + my2;
for (i = 0, y = my2; y >= my0; i++, y--, span1--, span2--) {
sn1 = floor(min_ff(*span1, *span2));
sn2 = floor(max_ff(*span1, *span2));
sn1++;
if (sn2 >= rectx) {
sn2 = rectx - 1;
}
sn1 = std::max(sn1, 0);
u = ((double(sn1) * uxd) + uy0) - (i * uyd);
v = ((double(sn1) * vxd) + vy0) - (i * vyd);
for (j = 0, x = sn1; x <= sn2; j++, x++) {
func(handle, x, y, u + (j * uxd), v + (j * vxd));
}
}
}