This release deprecated the Parameterization API and the new Manifolds API is to be used instead. This is what was done in the Libmv as part of this change. Additionally, remove the bundling scripts. Nowadays those are only leading to a duplicated work to maintain. No measurable changes on user side is expected.
372 lines
15 KiB
C++
372 lines
15 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2019 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: keir@google.com (Keir Mierle)
|
|
// sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#ifndef CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_
|
|
#define CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_
|
|
|
|
#include <array>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "ceres/internal/disable_warnings.h"
|
|
#include "ceres/internal/export.h"
|
|
#include "ceres/internal/port.h"
|
|
|
|
namespace ceres {
|
|
|
|
// WARNING: LocalParameterizations are deprecated. They will be removed from
|
|
// Ceres Solver in version 2.2.0. Please use Manifolds instead.
|
|
|
|
// Purpose: Sometimes parameter blocks x can overparameterize a problem
|
|
//
|
|
// min f(x)
|
|
// x
|
|
//
|
|
// In that case it is desirable to choose a parameterization for the
|
|
// block itself to remove the null directions of the cost. More
|
|
// generally, if x lies on a manifold of a smaller dimension than the
|
|
// ambient space that it is embedded in, then it is numerically and
|
|
// computationally more effective to optimize it using a
|
|
// parameterization that lives in the tangent space of that manifold
|
|
// at each point.
|
|
//
|
|
// For example, a sphere in three dimensions is a 2 dimensional
|
|
// manifold, embedded in a three dimensional space. At each point on
|
|
// the sphere, the plane tangent to it defines a two dimensional
|
|
// tangent space. For a cost function defined on this sphere, given a
|
|
// point x, moving in the direction normal to the sphere at that point
|
|
// is not useful. Thus a better way to do a local optimization is to
|
|
// optimize over two dimensional vector delta in the tangent space at
|
|
// that point and then "move" to the point x + delta, where the move
|
|
// operation involves projecting back onto the sphere. Doing so
|
|
// removes a redundant dimension from the optimization, making it
|
|
// numerically more robust and efficient.
|
|
//
|
|
// More generally we can define a function
|
|
//
|
|
// x_plus_delta = Plus(x, delta),
|
|
//
|
|
// where x_plus_delta has the same size as x, and delta is of size
|
|
// less than or equal to x. The function Plus, generalizes the
|
|
// definition of vector addition. Thus it satisfies the identify
|
|
//
|
|
// Plus(x, 0) = x, for all x.
|
|
//
|
|
// A trivial version of Plus is when delta is of the same size as x
|
|
// and
|
|
//
|
|
// Plus(x, delta) = x + delta
|
|
//
|
|
// A more interesting case if x is two dimensional vector, and the
|
|
// user wishes to hold the first coordinate constant. Then, delta is a
|
|
// scalar and Plus is defined as
|
|
//
|
|
// Plus(x, delta) = x + [0] * delta
|
|
// [1]
|
|
//
|
|
// An example that occurs commonly in Structure from Motion problems
|
|
// is when camera rotations are parameterized using Quaternion. There,
|
|
// it is useful to only make updates orthogonal to that 4-vector
|
|
// defining the quaternion. One way to do this is to let delta be a 3
|
|
// dimensional vector and define Plus to be
|
|
//
|
|
// Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x
|
|
//
|
|
// The multiplication between the two 4-vectors on the RHS is the
|
|
// standard quaternion product.
|
|
//
|
|
// Given f and a point x, optimizing f can now be restated as
|
|
//
|
|
// min f(Plus(x, delta))
|
|
// delta
|
|
//
|
|
// Given a solution delta to this problem, the optimal value is then
|
|
// given by
|
|
//
|
|
// x* = Plus(x, delta)
|
|
//
|
|
// The class LocalParameterization defines the function Plus and its
|
|
// Jacobian which is needed to compute the Jacobian of f w.r.t delta.
|
|
class CERES_DEPRECATED_WITH_MSG(
|
|
"LocalParameterizations will be removed from the Ceres Solver API in "
|
|
"version 2.2.0. Use Manifolds instead.")
|
|
CERES_EXPORT LocalParameterization {
|
|
public:
|
|
virtual ~LocalParameterization();
|
|
|
|
// Generalization of the addition operation,
|
|
//
|
|
// x_plus_delta = Plus(x, delta)
|
|
//
|
|
// with the condition that Plus(x, 0) = x.
|
|
//
|
|
virtual bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const = 0;
|
|
|
|
// The jacobian of Plus(x, delta) w.r.t delta at delta = 0.
|
|
//
|
|
// jacobian is a row-major GlobalSize() x LocalSize() matrix.
|
|
virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
|
|
|
|
// local_matrix = global_matrix * jacobian
|
|
//
|
|
// global_matrix is a num_rows x GlobalSize row major matrix.
|
|
// local_matrix is a num_rows x LocalSize row major matrix.
|
|
// jacobian(x) is the matrix returned by ComputeJacobian at x.
|
|
//
|
|
// This is only used by GradientProblem. For most normal uses, it is
|
|
// okay to use the default implementation.
|
|
virtual bool MultiplyByJacobian(const double* x,
|
|
const int num_rows,
|
|
const double* global_matrix,
|
|
double* local_matrix) const;
|
|
|
|
// Size of x.
|
|
virtual int GlobalSize() const = 0;
|
|
|
|
// Size of delta.
|
|
virtual int LocalSize() const = 0;
|
|
};
|
|
|
|
// Some basic parameterizations
|
|
|
|
// Identity Parameterization: Plus(x, delta) = x + delta
|
|
class CERES_DEPRECATED_WITH_MSG("Use EuclideanManifold instead.")
|
|
CERES_EXPORT IdentityParameterization : public LocalParameterization {
|
|
public:
|
|
explicit IdentityParameterization(int size);
|
|
bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const override;
|
|
bool ComputeJacobian(const double* x, double* jacobian) const override;
|
|
bool MultiplyByJacobian(const double* x,
|
|
const int num_cols,
|
|
const double* global_matrix,
|
|
double* local_matrix) const override;
|
|
int GlobalSize() const override { return size_; }
|
|
int LocalSize() const override { return size_; }
|
|
|
|
private:
|
|
const int size_;
|
|
};
|
|
|
|
// Hold a subset of the parameters inside a parameter block constant.
|
|
class CERES_DEPRECATED_WITH_MSG("Use SubsetManifold instead.")
|
|
CERES_EXPORT SubsetParameterization : public LocalParameterization {
|
|
public:
|
|
explicit SubsetParameterization(int size,
|
|
const std::vector<int>& constant_parameters);
|
|
bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const override;
|
|
bool ComputeJacobian(const double* x, double* jacobian) const override;
|
|
bool MultiplyByJacobian(const double* x,
|
|
const int num_cols,
|
|
const double* global_matrix,
|
|
double* local_matrix) const override;
|
|
int GlobalSize() const override {
|
|
return static_cast<int>(constancy_mask_.size());
|
|
}
|
|
int LocalSize() const override { return local_size_; }
|
|
|
|
private:
|
|
const int local_size_;
|
|
std::vector<char> constancy_mask_;
|
|
};
|
|
|
|
// Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x
|
|
// with * being the quaternion multiplication operator. Here we assume
|
|
// that the first element of the quaternion vector is the real (cos
|
|
// theta) part.
|
|
class CERES_DEPRECATED_WITH_MSG("Use QuaternionManifold instead.")
|
|
CERES_EXPORT QuaternionParameterization : public LocalParameterization {
|
|
public:
|
|
bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const override;
|
|
bool ComputeJacobian(const double* x, double* jacobian) const override;
|
|
int GlobalSize() const override { return 4; }
|
|
int LocalSize() const override { return 3; }
|
|
};
|
|
|
|
// Implements the quaternion local parameterization for Eigen's representation
|
|
// of the quaternion. Eigen uses a different internal memory layout for the
|
|
// elements of the quaternion than what is commonly used. Specifically, Eigen
|
|
// stores the elements in memory as [x, y, z, w] where the real part is last
|
|
// whereas it is typically stored first. Note, when creating an Eigen quaternion
|
|
// through the constructor the elements are accepted in w, x, y, z order. Since
|
|
// Ceres operates on parameter blocks which are raw double pointers this
|
|
// difference is important and requires a different parameterization.
|
|
//
|
|
// Plus(x, delta) = [sin(|delta|) delta / |delta|, cos(|delta|)] * x
|
|
// with * being the quaternion multiplication operator.
|
|
class CERES_DEPRECATED_WITH_MSG("Use EigenQuaternionManifold instead.")
|
|
CERES_EXPORT EigenQuaternionParameterization
|
|
: public ceres::LocalParameterization {
|
|
public:
|
|
bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const override;
|
|
bool ComputeJacobian(const double* x, double* jacobian) const override;
|
|
int GlobalSize() const override { return 4; }
|
|
int LocalSize() const override { return 3; }
|
|
};
|
|
|
|
// This provides a parameterization for homogeneous vectors which are commonly
|
|
// used in Structure from Motion problems. One example where they are used is
|
|
// in representing points whose triangulation is ill-conditioned. Here it is
|
|
// advantageous to use an over-parameterization since homogeneous vectors can
|
|
// represent points at infinity.
|
|
//
|
|
// The plus operator is defined as
|
|
// Plus(x, delta) =
|
|
// [sin(0.5 * |delta|) * delta / |delta|, cos(0.5 * |delta|)] * x
|
|
//
|
|
// with * defined as an operator which applies the update orthogonal to x to
|
|
// remain on the sphere. We assume that the last element of x is the scalar
|
|
// component. The size of the homogeneous vector is required to be greater than
|
|
// 1.
|
|
class CERES_DEPRECATED_WITH_MSG("Use SphereManifold instead.") CERES_EXPORT
|
|
HomogeneousVectorParameterization : public LocalParameterization {
|
|
public:
|
|
explicit HomogeneousVectorParameterization(int size);
|
|
bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const override;
|
|
bool ComputeJacobian(const double* x, double* jacobian) const override;
|
|
int GlobalSize() const override { return size_; }
|
|
int LocalSize() const override { return size_ - 1; }
|
|
|
|
private:
|
|
const int size_;
|
|
};
|
|
|
|
// This provides a parameterization for lines, where the line is
|
|
// over-parameterized by an origin point and a direction vector. So the
|
|
// parameter vector size needs to be two times the ambient space dimension,
|
|
// where the first half is interpreted as the origin point and the second half
|
|
// as the direction.
|
|
//
|
|
// The plus operator for the line direction is the same as for the
|
|
// HomogeneousVectorParameterization. The update of the origin point is
|
|
// perpendicular to the line direction before the update.
|
|
//
|
|
// This local parameterization is a special case of the affine Grassmannian
|
|
// manifold (see https://en.wikipedia.org/wiki/Affine_Grassmannian_(manifold))
|
|
// for the case Graff_1(R^n).
|
|
template <int AmbientSpaceDimension>
|
|
class CERES_DEPRECATED_WITH_MSG("Use LineManifold instead.")
|
|
LineParameterization : public LocalParameterization {
|
|
public:
|
|
static_assert(AmbientSpaceDimension >= 2,
|
|
"The ambient space must be at least 2");
|
|
|
|
bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const override;
|
|
bool ComputeJacobian(const double* x, double* jacobian) const override;
|
|
int GlobalSize() const override { return 2 * AmbientSpaceDimension; }
|
|
int LocalSize() const override { return 2 * (AmbientSpaceDimension - 1); }
|
|
};
|
|
|
|
// Construct a local parameterization by taking the Cartesian product
|
|
// of a number of other local parameterizations. This is useful, when
|
|
// a parameter block is the cartesian product of two or more
|
|
// manifolds. For example the parameters of a camera consist of a
|
|
// rotation and a translation, i.e., SO(3) x R^3.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// ProductParameterization product_param(new QuaterionionParameterization(),
|
|
// new IdentityParameterization(3));
|
|
//
|
|
// is the local parameterization for a rigid transformation, where the
|
|
// rotation is represented using a quaternion.
|
|
//
|
|
class CERES_DEPRECATED_WITH_MSG("Use ProductManifold instead.")
|
|
CERES_EXPORT ProductParameterization : public LocalParameterization {
|
|
public:
|
|
ProductParameterization(const ProductParameterization&) = delete;
|
|
ProductParameterization& operator=(const ProductParameterization&) = delete;
|
|
//
|
|
// NOTE: The constructor takes ownership of the input local
|
|
// parameterizations.
|
|
//
|
|
template <typename... LocalParams>
|
|
explicit ProductParameterization(LocalParams*... local_params)
|
|
: local_params_(sizeof...(LocalParams)) {
|
|
constexpr int kNumLocalParams = sizeof...(LocalParams);
|
|
static_assert(kNumLocalParams >= 2,
|
|
"At least two local parameterizations must be specified.");
|
|
|
|
using LocalParameterizationPtr = std::unique_ptr<LocalParameterization>;
|
|
|
|
// Wrap all raw pointers into std::unique_ptr for exception safety.
|
|
std::array<LocalParameterizationPtr, kNumLocalParams> local_params_array{
|
|
LocalParameterizationPtr(local_params)...};
|
|
|
|
// Initialize internal state.
|
|
for (int i = 0; i < kNumLocalParams; ++i) {
|
|
LocalParameterizationPtr& param = local_params_[i];
|
|
param = std::move(local_params_array[i]);
|
|
|
|
buffer_size_ =
|
|
std::max(buffer_size_, param->LocalSize() * param->GlobalSize());
|
|
global_size_ += param->GlobalSize();
|
|
local_size_ += param->LocalSize();
|
|
}
|
|
}
|
|
|
|
bool Plus(const double* x,
|
|
const double* delta,
|
|
double* x_plus_delta) const override;
|
|
bool ComputeJacobian(const double* x, double* jacobian) const override;
|
|
int GlobalSize() const override { return global_size_; }
|
|
int LocalSize() const override { return local_size_; }
|
|
|
|
private:
|
|
std::vector<std::unique_ptr<LocalParameterization>> local_params_;
|
|
int local_size_{0};
|
|
int global_size_{0};
|
|
int buffer_size_{0};
|
|
};
|
|
|
|
} // namespace ceres
|
|
|
|
// clang-format off
|
|
#include "ceres/internal/reenable_warnings.h"
|
|
// clang-format on
|
|
|
|
#include "ceres/internal/line_parameterization.h"
|
|
|
|
#endif // CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_
|