Files
test/source/blender/blenkernel/intern/mesh_boolean_convert.cc
Sergey Sharybin c1bc70b711 Cleanup: Add a copyright notice to files and use SPDX format
A lot of files were missing copyright field in the header and
the Blender Foundation contributed to them in a sense of bug
fixing and general maintenance.

This change makes it explicit that those files are at least
partially copyrighted by the Blender Foundation.

Note that this does not make it so the Blender Foundation is
the only holder of the copyright in those files, and developers
who do not have a signed contract with the foundation still
hold the copyright as well.

Another aspect of this change is using SPDX format for the
header. We already used it for the license specification,
and now we state it for the copyright as well, following the
FAQ:

    https://reuse.software/faq/
2023-05-31 16:19:06 +02:00

870 lines
35 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BKE_attribute.hh"
#include "BKE_customdata.h"
#include "BKE_material.h"
#include "BKE_mesh.hh"
#include "BKE_mesh_boolean_convert.hh"
#include "BLI_alloca.h"
#include "BLI_array.hh"
#include "BLI_math.h"
#include "BLI_math_matrix.hh"
#include "BLI_mesh_boolean.hh"
#include "BLI_mesh_intersect.hh"
#include "BLI_span.hh"
#include "BLI_task.hh"
#include "BLI_virtual_array.hh"
namespace blender::meshintersect {
#ifdef WITH_GMP
constexpr int estimated_max_facelen = 100; /* Used for initial size of some Vectors. */
/* Snap entries that are near 0 or 1 or -1 to those values.
* Sometimes Blender's rotation matrices for multiples of 90 degrees have
* tiny numbers where there should be zeros. That messes makes some things
* every so slightly non-coplanar when users expect coplanarity,
* so this is a hack to clean up such matrices.
* Would be better to change the transformation code itself.
*/
static float4x4 clean_transform(const float4x4 &mat)
{
float4x4 cleaned;
const float fuzz = 1e-6f;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
float f = mat[i][j];
if (fabsf(f) <= fuzz) {
f = 0.0f;
}
else if (fabsf(f - 1.0f) <= fuzz) {
f = 1.0f;
}
else if (fabsf(f + 1.0f) <= fuzz) {
f = -1.0f;
}
cleaned[i][j] = f;
}
}
return cleaned;
}
/* `MeshesToIMeshInfo` keeps track of information used when combining a number
* of `Mesh`es into a single `IMesh` for doing boolean on.
* Mostly this means keeping track of the index offsets for various mesh elements. */
class MeshesToIMeshInfo {
public:
/* The input meshes, */
Span<const Mesh *> meshes;
/* Numbering the vertices of the meshes in order of meshes,
* at what offset does the vertex range for mesh[i] start? */
Array<int> mesh_vert_offset;
/* Similarly for edges of meshes. */
Array<int> mesh_edge_offset;
/* Similarly for polys of meshes. */
Array<int> mesh_poly_offset;
/* For each Mesh vertex in all the meshes (with concatenated indexing),
* what is the IMesh Vert* allocated for it in the input IMesh? */
Array<const Vert *> mesh_to_imesh_vert;
/* Similarly for each Mesh poly. */
Array<Face *> mesh_to_imesh_face;
/* Transformation matrix to transform a coordinate in the corresponding
* Mesh to the local space of the first Mesh. */
Array<float4x4> to_target_transform;
/* For each input mesh, whether or not their transform is negative. */
Array<bool> has_negative_transform;
/* For each input mesh, how to remap the material slot numbers to
* the material slots in the first mesh. */
Span<Array<short>> material_remaps;
/* Total number of input mesh vertices. */
int tot_meshes_verts;
/* Total number of input mesh edges. */
int tot_meshes_edges;
/* Total number of input mesh polys. */
int tot_meshes_polys;
int input_mesh_for_imesh_vert(int imesh_v) const;
int input_mesh_for_imesh_edge(int imesh_e) const;
int input_mesh_for_imesh_face(int imesh_f) const;
const IndexRange input_mpoly_for_orig_index(int orig_index,
const Mesh **r_orig_mesh,
int *r_orig_mesh_index,
int *r_index_in_orig_mesh) const;
void input_mvert_for_orig_index(int orig_index,
const Mesh **r_orig_mesh,
int *r_index_in_orig_mesh) const;
void input_medge_for_orig_index(int orig_index,
const Mesh **r_orig_mesh,
int *r_index_in_orig_mesh) const;
};
/* Given an index `imesh_v` in the `IMesh`, return the index of the
* input `Mesh` that contained the vertex that it came from. */
int MeshesToIMeshInfo::input_mesh_for_imesh_vert(int imesh_v) const
{
int n = int(mesh_vert_offset.size());
for (int i = 0; i < n - 1; ++i) {
if (imesh_v < mesh_vert_offset[i + 1]) {
return i;
}
}
return n - 1;
}
/* Given an index `imesh_e` used as an original index in the `IMesh`,
* return the index of the input `Mesh` that contained the vertex that it came from. */
int MeshesToIMeshInfo::input_mesh_for_imesh_edge(int imesh_e) const
{
int n = int(mesh_edge_offset.size());
for (int i = 0; i < n - 1; ++i) {
if (imesh_e < mesh_edge_offset[i + 1]) {
return i;
}
}
return n - 1;
}
/* Given an index `imesh_f` in the `IMesh`, return the index of the
* input `Mesh` that contained the polygon that it came from. */
int MeshesToIMeshInfo::input_mesh_for_imesh_face(int imesh_f) const
{
int n = int(mesh_poly_offset.size());
for (int i = 0; i < n - 1; ++i) {
if (imesh_f < mesh_poly_offset[i + 1]) {
return i;
}
}
return n - 1;
}
/* Given an index of an original face in the `IMesh`, find out the input
* `Mesh` that it came from and return it in `*r_orig_mesh`,
* and also return the index of that `Mesh` in `*r_orig_mesh_index`.
* Finally, return the index of the corresponding polygon in that `Mesh`
* in `*r_index_in_orig_mesh`. */
const IndexRange MeshesToIMeshInfo::input_mpoly_for_orig_index(int orig_index,
const Mesh **r_orig_mesh,
int *r_orig_mesh_index,
int *r_index_in_orig_mesh) const
{
int orig_mesh_index = input_mesh_for_imesh_face(orig_index);
BLI_assert(0 <= orig_mesh_index && orig_mesh_index < meshes.size());
const Mesh *me = meshes[orig_mesh_index];
const OffsetIndices polys = me->polys();
int index_in_mesh = orig_index - mesh_poly_offset[orig_mesh_index];
BLI_assert(0 <= index_in_mesh && index_in_mesh < me->totpoly);
const IndexRange poly = polys[index_in_mesh];
if (r_orig_mesh) {
*r_orig_mesh = me;
}
if (r_orig_mesh_index) {
*r_orig_mesh_index = orig_mesh_index;
}
if (r_index_in_orig_mesh) {
*r_index_in_orig_mesh = index_in_mesh;
}
return poly;
}
/* Given an index of an original vertex in the `IMesh`, find out the input
* `Mesh` that it came from and return it in `*r_orig_mesh`.
* Also find the index of the vertex in that `Mesh` and return it in
* `*r_index_in_orig_mesh`. */
void MeshesToIMeshInfo::input_mvert_for_orig_index(int orig_index,
const Mesh **r_orig_mesh,
int *r_index_in_orig_mesh) const
{
int orig_mesh_index = input_mesh_for_imesh_vert(orig_index);
BLI_assert(0 <= orig_mesh_index && orig_mesh_index < meshes.size());
const Mesh *me = meshes[orig_mesh_index];
int index_in_mesh = orig_index - mesh_vert_offset[orig_mesh_index];
BLI_assert(0 <= index_in_mesh && index_in_mesh < me->totvert);
if (r_orig_mesh) {
*r_orig_mesh = me;
}
if (r_index_in_orig_mesh) {
*r_index_in_orig_mesh = index_in_mesh;
}
}
/* Similarly for edges. */
void MeshesToIMeshInfo::input_medge_for_orig_index(int orig_index,
const Mesh **r_orig_mesh,
int *r_index_in_orig_mesh) const
{
int orig_mesh_index = input_mesh_for_imesh_edge(orig_index);
BLI_assert(0 <= orig_mesh_index && orig_mesh_index < meshes.size());
const Mesh *me = meshes[orig_mesh_index];
int index_in_mesh = orig_index - mesh_edge_offset[orig_mesh_index];
BLI_assert(0 <= index_in_mesh && index_in_mesh < me->totedge);
if (r_orig_mesh) {
*r_orig_mesh = me;
}
if (r_index_in_orig_mesh) {
*r_index_in_orig_mesh = index_in_mesh;
}
}
/**
* Convert all of the meshes in `meshes` to an `IMesh` and return that.
* All of the coordinates are transformed into the local space of the
* first Mesh. To do this transformation, we also need the transformation
* obmats corresponding to the Meshes, so they are in the `obmats` argument.
* The 'original' indexes in the IMesh are the indexes you get by
* a scheme that offsets each vertex, edge, and polygon index by the sum of the
* vertices, edges, and polys in the preceding Meshes in the mesh span.
* The `*r_info class` is filled in with information needed to make the
* correspondence between the Mesh MVerts/MPolys and the IMesh Verts/Faces.
* All allocation of memory for the IMesh comes from `arena`.
*/
static IMesh meshes_to_imesh(Span<const Mesh *> meshes,
Span<const float4x4 *> obmats,
Span<Array<short>> material_remaps,
const float4x4 &target_transform,
IMeshArena &arena,
MeshesToIMeshInfo *r_info)
{
int nmeshes = meshes.size();
BLI_assert(nmeshes > 0);
r_info->meshes = meshes;
r_info->tot_meshes_verts = 0;
r_info->tot_meshes_polys = 0;
int &totvert = r_info->tot_meshes_verts;
int &totedge = r_info->tot_meshes_edges;
int &totpoly = r_info->tot_meshes_polys;
for (const Mesh *me : meshes) {
totvert += me->totvert;
totedge += me->totedge;
totpoly += me->totpoly;
}
/* Estimate the number of vertices and faces in the boolean output,
* so that the memory arena can reserve some space. It is OK if these
* estimates are wrong. */
const int estimate_num_outv = 3 * totvert;
const int estimate_num_outf = 4 * totpoly;
arena.reserve(estimate_num_outv, estimate_num_outf);
r_info->mesh_to_imesh_vert.reinitialize(totvert);
r_info->mesh_to_imesh_face.reinitialize(totpoly);
r_info->mesh_vert_offset.reinitialize(nmeshes);
r_info->mesh_edge_offset.reinitialize(nmeshes);
r_info->mesh_poly_offset.reinitialize(nmeshes);
r_info->to_target_transform.reinitialize(nmeshes);
r_info->has_negative_transform.reinitialize(nmeshes);
r_info->material_remaps = material_remaps;
int v = 0;
int e = 0;
int f = 0;
/* Put these Vectors here, with a size unlikely to need resizing,
* so that the loop to make new Faces will likely not need to allocate
* over and over. */
Vector<const Vert *, estimated_max_facelen> face_vert;
Vector<int, estimated_max_facelen> face_edge_orig;
/* To convert the coordinates of meshes 1, 2, etc. into the local space
* of the target, multiply each transform by the inverse of the
* target matrix. Exact Boolean works better if these matrices are 'cleaned'
* -- see the comment for the `clean_transform` function, above. */
const float4x4 inv_target_mat = math::invert(clean_transform(target_transform));
/* For each input `Mesh`, make `Vert`s and `Face`s for the corresponding
* vertices and polygons, and keep track of the original indices (using the
* concatenating offset scheme) inside the `Vert`s and `Face`s.
* When making `Face`s, we also put in the original indices for edges that
* make up the polygons using the same scheme. */
for (int mi : meshes.index_range()) {
const Mesh *me = meshes[mi];
r_info->mesh_vert_offset[mi] = v;
r_info->mesh_edge_offset[mi] = e;
r_info->mesh_poly_offset[mi] = f;
/* Get matrix that transforms a coordinate in meshes[mi]'s local space
* to the target space. */
const float4x4 objn_mat = (obmats.is_empty() || obmats[mi] == nullptr) ?
float4x4::identity() :
clean_transform(*obmats[mi]);
r_info->to_target_transform[mi] = inv_target_mat * objn_mat;
r_info->has_negative_transform[mi] = math::is_negative(objn_mat);
/* All meshes 1 and up will be transformed into the local space of operand 0.
* Historical behavior of the modifier has been to flip the faces of any meshes
* that would have a negative transform if you do that. */
bool need_face_flip = r_info->has_negative_transform[mi] != r_info->has_negative_transform[0];
Vector<Vert *> verts(me->totvert);
const Span<float3> vert_positions = me->vert_positions();
const OffsetIndices polys = me->polys();
const Span<int> corner_verts = me->corner_verts();
const Span<int> corner_edges = me->corner_edges();
/* Allocate verts
* Skip the matrix multiplication for each point when there is no transform for a mesh,
* for example when the first mesh is already in the target space. (Note the logic
* directly above, which uses an identity matrix with a null input transform). */
if (obmats.is_empty() || obmats[mi] == nullptr) {
threading::parallel_for(vert_positions.index_range(), 2048, [&](IndexRange range) {
for (int i : range) {
float3 co = vert_positions[i];
mpq3 mco = mpq3(co.x, co.y, co.z);
double3 dco(mco[0].get_d(), mco[1].get_d(), mco[2].get_d());
verts[i] = new Vert(mco, dco, NO_INDEX, i);
}
});
}
else {
threading::parallel_for(vert_positions.index_range(), 2048, [&](IndexRange range) {
for (int i : range) {
float3 co = math::transform_point(r_info->to_target_transform[mi], vert_positions[i]);
mpq3 mco = mpq3(co.x, co.y, co.z);
double3 dco(mco[0].get_d(), mco[1].get_d(), mco[2].get_d());
verts[i] = new Vert(mco, dco, NO_INDEX, i);
}
});
}
for (int i : vert_positions.index_range()) {
r_info->mesh_to_imesh_vert[v] = arena.add_or_find_vert(verts[i]);
++v;
}
for (const int poly_i : polys.index_range()) {
const IndexRange poly = polys[poly_i];
int flen = poly.size();
face_vert.resize(flen);
face_edge_orig.resize(flen);
for (int i = 0; i < flen; ++i) {
const int corner_i = poly[i];
int mverti = r_info->mesh_vert_offset[mi] + corner_verts[corner_i];
const Vert *fv = r_info->mesh_to_imesh_vert[mverti];
if (need_face_flip) {
face_vert[flen - i - 1] = fv;
int iedge = i < flen - 1 ? flen - i - 2 : flen - 1;
face_edge_orig[iedge] = e + corner_edges[corner_i];
}
else {
face_vert[i] = fv;
face_edge_orig[i] = e + corner_edges[corner_i];
}
}
r_info->mesh_to_imesh_face[f] = arena.add_face(face_vert, f, face_edge_orig);
++f;
}
e += me->totedge;
}
return IMesh(r_info->mesh_to_imesh_face);
}
/* Copy vertex attributes, including customdata, from `orig_mv` to `mv`.
* `mv` is in `dest_mesh` with index `mv_index`.
* The `orig_mv` vertex came from Mesh `orig_me` and had index `index_in_orig_me` there. */
static void copy_vert_attributes(Mesh *dest_mesh,
const Mesh *orig_me,
int mv_index,
int index_in_orig_me)
{
/* For all layers in the orig mesh, copy the layer information. */
CustomData *target_cd = &dest_mesh->vdata;
const CustomData *source_cd = &orig_me->vdata;
for (int source_layer_i = 0; source_layer_i < source_cd->totlayer; ++source_layer_i) {
const eCustomDataType ty = eCustomDataType(source_cd->layers[source_layer_i].type);
if (StringRef(source_cd->layers->name) == "position") {
continue;
}
const char *name = source_cd->layers[source_layer_i].name;
int target_layer_i = CustomData_get_named_layer_index(target_cd, ty, name);
/* Not all layers were merged in target: some are marked CD_FLAG_NOCOPY
* and some are not in the CD_MASK_MESH.vdata. */
if (target_layer_i != -1) {
CustomData_copy_data_layer(
source_cd, target_cd, source_layer_i, target_layer_i, index_in_orig_me, mv_index, 1);
}
}
}
/* Similar to copy_vert_attributes but for poly attributes. */
static void copy_poly_attributes(Mesh *dest_mesh,
const Mesh *orig_me,
int poly_index,
int index_in_orig_me,
Span<short> material_remap,
MutableSpan<int> dst_material_indices)
{
CustomData *target_cd = &dest_mesh->pdata;
const CustomData *source_cd = &orig_me->pdata;
for (int source_layer_i = 0; source_layer_i < source_cd->totlayer; ++source_layer_i) {
const eCustomDataType ty = eCustomDataType(source_cd->layers[source_layer_i].type);
const char *name = source_cd->layers[source_layer_i].name;
int target_layer_i = CustomData_get_named_layer_index(target_cd, ty, name);
if (target_layer_i != -1) {
CustomData_copy_data_layer(
source_cd, target_cd, source_layer_i, target_layer_i, index_in_orig_me, poly_index, 1);
}
}
/* Fix material indices after they have been transferred as a generic attribute. */
const VArray<int> src_material_indices = *orig_me->attributes().lookup_or_default<int>(
"material_index", ATTR_DOMAIN_FACE, 0);
const int src_index = src_material_indices[index_in_orig_me];
if (material_remap.index_range().contains(src_index)) {
const int remapped_index = material_remap[src_index];
dst_material_indices[poly_index] = remapped_index >= 0 ? remapped_index : src_index;
}
else {
dst_material_indices[poly_index] = src_index;
}
BLI_assert(dst_material_indices[poly_index] >= 0);
}
/* Similar to copy_vert_attributes but for edge attributes. */
static void copy_edge_attributes(Mesh *dest_mesh,
const Mesh *orig_me,
int medge_index,
int index_in_orig_me)
{
CustomData *target_cd = &dest_mesh->edata;
const CustomData *source_cd = &orig_me->edata;
for (int source_layer_i = 0; source_layer_i < source_cd->totlayer; ++source_layer_i) {
const eCustomDataType ty = eCustomDataType(source_cd->layers[source_layer_i].type);
if (ty == CD_PROP_INT32_2D) {
if (STREQ(source_cd->layers[source_layer_i].name, ".edge_verts")) {
continue;
}
}
const char *name = source_cd->layers[source_layer_i].name;
int target_layer_i = CustomData_get_named_layer_index(target_cd, ty, name);
if (target_layer_i != -1) {
CustomData_copy_data_layer(
source_cd, target_cd, source_layer_i, target_layer_i, index_in_orig_me, medge_index, 1);
}
}
}
/**
* For #IMesh face `f`, with corresponding output Mesh poly `poly`,
* where the original Mesh poly is `orig_poly`, coming from the Mesh
* `orig_me`, which has index `orig_me_index` in `mim`:
* fill in the `orig_loops` Array with corresponding indices of MLoops from `orig_me`
* where they have the same start and end vertices; for cases where that is
* not true, put -1 in the `orig_loops` slot.
* For now, we only try to do this if `poly` and `orig_poly` have the same size.
* Return the number of non-null MLoops filled in.
*/
static int fill_orig_loops(const Face *f,
const IndexRange orig_poly,
const Mesh *orig_me,
int orig_me_index,
MeshesToIMeshInfo &mim,
MutableSpan<int> r_orig_loops)
{
r_orig_loops.fill(-1);
const Span<int> orig_corner_verts = orig_me->corner_verts();
int orig_mplen = orig_poly.size();
if (f->size() != orig_mplen) {
return 0;
}
BLI_assert(r_orig_loops.size() == orig_mplen);
/* We'll look for the case where the first vertex in f has an original vertex
* that is the same as one in orig_me (after correcting for offset in mim meshes).
* Then see that loop and any subsequent ones have the same start and end vertex.
* This may miss some cases of partial alignment, but that's OK since discovering
* aligned loops is only an optimization to avoid some re-interpolation.
*/
int first_orig_v = f->vert[0]->orig;
if (first_orig_v == NO_INDEX) {
return 0;
}
/* It is possible that the original vert was merged with another in another mesh. */
if (orig_me_index != mim.input_mesh_for_imesh_vert(first_orig_v)) {
return 0;
}
int orig_me_vert_offset = mim.mesh_vert_offset[orig_me_index];
int first_orig_v_in_orig_me = first_orig_v - orig_me_vert_offset;
BLI_assert(0 <= first_orig_v_in_orig_me && first_orig_v_in_orig_me < orig_me->totvert);
/* Assume all vertices in an mpoly are unique. */
int offset = -1;
for (int i = 0; i < orig_mplen; ++i) {
int loop_i = i + orig_poly.start();
if (orig_corner_verts[loop_i] == first_orig_v_in_orig_me) {
offset = i;
break;
}
}
if (offset == -1) {
return 0;
}
int num_orig_loops_found = 0;
for (int mp_loop_index = 0; mp_loop_index < orig_mplen; ++mp_loop_index) {
int orig_mp_loop_index = (mp_loop_index + offset) % orig_mplen;
const int vert_i = orig_corner_verts[orig_poly.start() + orig_mp_loop_index];
int fv_orig = f->vert[mp_loop_index]->orig;
if (fv_orig != NO_INDEX) {
fv_orig -= orig_me_vert_offset;
if (fv_orig < 0 || fv_orig >= orig_me->totvert) {
fv_orig = NO_INDEX;
}
}
if (vert_i == fv_orig) {
const int vert_next =
orig_corner_verts[orig_poly.start() + ((orig_mp_loop_index + 1) % orig_mplen)];
int fvnext_orig = f->vert[(mp_loop_index + 1) % orig_mplen]->orig;
if (fvnext_orig != NO_INDEX) {
fvnext_orig -= orig_me_vert_offset;
if (fvnext_orig < 0 || fvnext_orig >= orig_me->totvert) {
fvnext_orig = NO_INDEX;
}
}
if (vert_next == fvnext_orig) {
r_orig_loops[mp_loop_index] = orig_poly.start() + orig_mp_loop_index;
++num_orig_loops_found;
}
}
}
return num_orig_loops_found;
}
/* Fill `cos_2d` with the 2d coordinates found by projection polygon `poly` along
* its normal. Also fill in r_axis_mat with the matrix that does that projection.
* But before projecting, also transform the 3d coordinate by multiplying by trans_mat.
* `cos_2d` should have room for `poly.size()` entries. */
static void get_poly2d_cos(const Mesh *me,
const IndexRange poly,
float (*cos_2d)[2],
const float4x4 &trans_mat,
float r_axis_mat[3][3])
{
const Span<float3> positions = me->vert_positions();
const Span<int> corner_verts = me->corner_verts();
const Span<int> poly_verts = corner_verts.slice(poly);
/* Project coordinates to 2d in cos_2d, using normal as projection axis. */
const float3 axis_dominant = bke::mesh::poly_normal_calc(positions, poly_verts);
axis_dominant_v3_to_m3(r_axis_mat, axis_dominant);
for (const int i : poly_verts.index_range()) {
float3 co = positions[poly_verts[i]];
co = math::transform_point(trans_mat, co);
*reinterpret_cast<float2 *>(&cos_2d[i]) = (float3x3(r_axis_mat) * co).xy();
}
}
/* For the loops of `poly`, see if the face is unchanged from `orig_poly`, and if so,
* copy the Loop attributes from corresponding loops to corresponding loops.
* Otherwise, interpolate the Loop attributes in the face `orig_poly`. */
static void copy_or_interp_loop_attributes(Mesh *dest_mesh,
const Face *f,
const IndexRange poly,
const IndexRange orig_poly,
const Mesh *orig_me,
int orig_me_index,
MeshesToIMeshInfo &mim)
{
Array<int> orig_loops(poly.size());
int norig = fill_orig_loops(f, orig_poly, orig_me, orig_me_index, mim, orig_loops);
/* We may need these arrays if we have to interpolate Loop attributes rather than just copy.
* Right now, trying Array<float[2]> complains, so declare cos_2d a different way. */
float(*cos_2d)[2];
Array<float> weights;
Array<const void *> src_blocks_ofs;
float axis_mat[3][3];
if (norig != poly.size()) {
/* We will need to interpolate. Make `cos_2d` hold 2d-projected coordinates of `orig_poly`,
* which are transformed into object 0's local space before projecting.
* At this point we cannot yet calculate the interpolation weights, as they depend on
* the coordinate where interpolation is to happen, but we can allocate the needed arrays,
* so they don't have to be allocated per-layer. */
cos_2d = (float(*)[2])BLI_array_alloca(cos_2d, orig_poly.size());
weights = Array<float>(orig_poly.size());
src_blocks_ofs = Array<const void *>(orig_poly.size());
get_poly2d_cos(orig_me, orig_poly, cos_2d, mim.to_target_transform[orig_me_index], axis_mat);
}
CustomData *target_cd = &dest_mesh->ldata;
const Span<float3> dst_positions = dest_mesh->vert_positions();
const Span<int> dst_corner_verts = dest_mesh->corner_verts();
for (int i = 0; i < poly.size(); ++i) {
int loop_index = poly[i];
int orig_loop_index = norig > 0 ? orig_loops[i] : -1;
const CustomData *source_cd = &orig_me->ldata;
if (orig_loop_index == -1) {
/* Will need interpolation weights for this loop's vertex's coordinates.
* The coordinate needs to be projected into 2d, just like the interpolating polygon's
* coordinates were. The `dest_mesh` coordinates are already in object 0 local space. */
float co[2];
mul_v2_m3v3(co, axis_mat, dst_positions[dst_corner_verts[loop_index]]);
interp_weights_poly_v2(weights.data(), cos_2d, orig_poly.size(), co);
}
for (int source_layer_i = 0; source_layer_i < source_cd->totlayer; ++source_layer_i) {
const eCustomDataType ty = eCustomDataType(source_cd->layers[source_layer_i].type);
if (STR_ELEM(source_cd->layers[source_layer_i].name, ".corner_vert", ".corner_edge")) {
continue;
}
const char *name = source_cd->layers[source_layer_i].name;
int target_layer_i = CustomData_get_named_layer_index(target_cd, ty, name);
if (target_layer_i == -1) {
continue;
}
if (orig_loop_index != -1) {
CustomData_copy_data_layer(
source_cd, target_cd, source_layer_i, target_layer_i, orig_loop_index, loop_index, 1);
}
else {
/* NOTE: although CustomData_bmesh_interp_n function has bmesh in its name, nothing about
* it is BMesh-specific. We can't use CustomData_interp because it assumes that
* all source layers exist in the dest.
* A non bmesh version could have the benefit of not copying data into src_blocks_ofs -
* using the contiguous data instead. TODO: add to the custom data API. */
int target_layer_type_index = CustomData_get_named_layer(target_cd, ty, name);
if (!CustomData_layer_has_interp(source_cd, source_layer_i)) {
continue;
}
int source_layer_type_index = source_layer_i - source_cd->typemap[ty];
BLI_assert(target_layer_type_index != -1 && source_layer_type_index >= 0);
const int size = CustomData_sizeof(ty);
for (int j = 0; j < orig_poly.size(); ++j) {
const void *layer = CustomData_get_layer_n(source_cd, ty, source_layer_type_index);
src_blocks_ofs[j] = POINTER_OFFSET(layer, size * (orig_poly[j]));
}
void *dst_layer = CustomData_get_layer_n_for_write(
target_cd, ty, target_layer_type_index, dest_mesh->totloop);
void *dst_block_ofs = POINTER_OFFSET(dst_layer, size * loop_index);
CustomData_bmesh_interp_n(target_cd,
src_blocks_ofs.data(),
weights.data(),
nullptr,
orig_poly.size(),
dst_block_ofs,
target_layer_i);
}
}
}
}
/**
* Make sure that there are custom data layers in the target mesh
* corresponding to all target layers in all of the operands after the first.
* (The target should already have layers for those in the first operand mesh).
* Edges done separately -- will have to be done later, after edges are made.
*/
static void merge_vertex_loop_poly_customdata_layers(Mesh *target, MeshesToIMeshInfo &mim)
{
for (int mesh_index = 1; mesh_index < mim.meshes.size(); ++mesh_index) {
const Mesh *me = mim.meshes[mesh_index];
if (me->totvert) {
CustomData_merge_layout(
&me->vdata, &target->vdata, CD_MASK_MESH.vmask, CD_SET_DEFAULT, target->totvert);
}
if (me->totloop) {
CustomData_merge_layout(
&me->ldata, &target->ldata, CD_MASK_MESH.lmask, CD_SET_DEFAULT, target->totloop);
}
if (me->totpoly) {
CustomData_merge_layout(
&me->pdata, &target->pdata, CD_MASK_MESH.pmask, CD_SET_DEFAULT, target->totpoly);
}
}
}
static void merge_edge_customdata_layers(Mesh *target, MeshesToIMeshInfo &mim)
{
for (int mesh_index = 0; mesh_index < mim.meshes.size(); ++mesh_index) {
const Mesh *me = mim.meshes[mesh_index];
if (me->totedge) {
CustomData_merge_layout(
&me->edata, &target->edata, CD_MASK_MESH.emask, CD_SET_DEFAULT, target->totedge);
}
}
}
/**
* Convert the output IMesh im to a Blender Mesh,
* using the information in mim to get all the attributes right.
*/
static Mesh *imesh_to_mesh(IMesh *im, MeshesToIMeshInfo &mim)
{
constexpr int dbg_level = 0;
im->populate_vert();
int out_totvert = im->vert_size();
int out_totpoly = im->face_size();
int out_totloop = 0;
for (const Face *f : im->faces()) {
out_totloop += f->size();
}
/* Will calculate edges later. */
Mesh *result = BKE_mesh_new_nomain_from_template(
mim.meshes[0], out_totvert, 0, out_totpoly, out_totloop);
merge_vertex_loop_poly_customdata_layers(result, mim);
/* Set the vertex coordinate values and other data. */
MutableSpan<float3> positions = result->vert_positions_for_write();
for (int vi : im->vert_index_range()) {
const Vert *v = im->vert(vi);
if (v->orig != NO_INDEX) {
const Mesh *orig_me;
int index_in_orig_me;
mim.input_mvert_for_orig_index(v->orig, &orig_me, &index_in_orig_me);
copy_vert_attributes(result, orig_me, vi, index_in_orig_me);
}
copy_v3fl_v3db(positions[vi], v->co);
}
/* Set the loop-start and total-loops for each output poly,
* and set the vertices in the appropriate loops. */
bke::SpanAttributeWriter<int> dst_material_indices =
result->attributes_for_write().lookup_or_add_for_write_only_span<int>("material_index",
ATTR_DOMAIN_FACE);
int cur_loop_index = 0;
MutableSpan<int> dst_corner_verts = result->corner_verts_for_write();
MutableSpan<int> dst_poly_offsets = result->poly_offsets_for_write();
for (int fi : im->face_index_range()) {
const Face *f = im->face(fi);
const Mesh *orig_me;
int index_in_orig_me;
int orig_me_index;
const IndexRange orig_poly = mim.input_mpoly_for_orig_index(
f->orig, &orig_me, &orig_me_index, &index_in_orig_me);
dst_poly_offsets[fi] = cur_loop_index;
for (int j : f->index_range()) {
const Vert *vf = f->vert[j];
const int vfi = im->lookup_vert(vf);
dst_corner_verts[cur_loop_index] = vfi;
++cur_loop_index;
}
copy_poly_attributes(result,
orig_me,
fi,
index_in_orig_me,
(mim.material_remaps.size() > 0) ?
mim.material_remaps[orig_me_index].as_span() :
Span<short>(),
dst_material_indices.span);
copy_or_interp_loop_attributes(result,
f,
IndexRange(dst_poly_offsets[fi], f->size()),
orig_poly,
orig_me,
orig_me_index,
mim);
}
dst_material_indices.finish();
/* BKE_mesh_calc_edges will calculate and populate all the
* MEdges from the MPolys. */
BKE_mesh_calc_edges(result, false, false);
merge_edge_customdata_layers(result, mim);
/* Now that the MEdges are populated, we can copy over the required attributes and custom layers.
*/
const OffsetIndices dst_polys = result->polys();
const Span<int> dst_corner_edges = result->corner_edges();
for (int fi : im->face_index_range()) {
const Face *f = im->face(fi);
const IndexRange poly = dst_polys[fi];
for (int j : f->index_range()) {
if (f->edge_orig[j] != NO_INDEX) {
const Mesh *orig_me;
int index_in_orig_me;
mim.input_medge_for_orig_index(f->edge_orig[j], &orig_me, &index_in_orig_me);
int e_index = dst_corner_edges[poly[j]];
copy_edge_attributes(result, orig_me, e_index, index_in_orig_me);
}
}
}
if (dbg_level > 0) {
BKE_mesh_validate(result, true, true);
}
return result;
}
#endif // WITH_GMP
Mesh *direct_mesh_boolean(Span<const Mesh *> meshes,
Span<const float4x4 *> transforms,
const float4x4 &target_transform,
Span<Array<short>> material_remaps,
const bool use_self,
const bool hole_tolerant,
const int boolean_mode,
Vector<int> *r_intersecting_edges)
{
#ifdef WITH_GMP
BLI_assert(transforms.is_empty() || meshes.size() == transforms.size());
BLI_assert(material_remaps.size() == 0 || material_remaps.size() == meshes.size());
if (meshes.size() <= 0) {
return nullptr;
}
const int dbg_level = 0;
if (dbg_level > 0) {
std::cout << "\nDIRECT_MESH_INTERSECT, nmeshes = " << meshes.size() << "\n";
}
MeshesToIMeshInfo mim;
IMeshArena arena;
IMesh m_in = meshes_to_imesh(meshes, transforms, material_remaps, target_transform, arena, &mim);
std::function<int(int)> shape_fn = [&mim](int f) {
for (int mi = 0; mi < mim.mesh_poly_offset.size() - 1; ++mi) {
if (f < mim.mesh_poly_offset[mi + 1]) {
return mi;
}
}
return int(mim.mesh_poly_offset.size()) - 1;
};
IMesh m_out = boolean_mesh(m_in,
static_cast<BoolOpType>(boolean_mode),
meshes.size(),
shape_fn,
use_self,
hole_tolerant,
nullptr,
&arena);
if (dbg_level > 0) {
std::cout << m_out;
write_obj_mesh(m_out, "m_out");
}
Mesh *result = imesh_to_mesh(&m_out, mim);
/* Store intersecting edge indices. */
if (r_intersecting_edges != nullptr) {
const OffsetIndices polys = result->polys();
const Span<int> corner_edges = result->corner_edges();
for (int fi : m_out.face_index_range()) {
const Face &face = *m_out.face(fi);
const IndexRange poly = polys[fi];
for (int i : face.index_range()) {
if (face.is_intersect[i]) {
int e_index = corner_edges[poly[i]];
r_intersecting_edges->append(e_index);
}
}
}
}
return result;
#else // WITH_GMP
UNUSED_VARS(meshes,
transforms,
material_remaps,
target_transform,
use_self,
hole_tolerant,
boolean_mode,
r_intersecting_edges);
return nullptr;
#endif // WITH_GMP
}
} // namespace blender::meshintersect