NanoVDB is a platform-independent sparse volume data structure that makes it possible to use OpenVDB volumes on the GPU. This patch uses it for volume rendering in Cycles, replacing the previous usage of dense 3D textures. Since it has a big impact on memory usage and performance and changes the OpenVDB branch used for the rest of Blender as well, this is not enabled by default yet, which will happen only after 2.82 was branched off. To enable it, build both dependencies and Blender itself with the "WITH_NANOVDB" CMake option. Reviewed By: brecht Differential Revision: https://developer.blender.org/D8794
347 lines
11 KiB
C
347 lines
11 KiB
C
/*
|
|
* Copyright 2016 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifdef WITH_NANOVDB
|
|
# include "nanovdb/CNanoVDB.h"
|
|
# include "nanovdb/util/CSampleFromVoxels.h"
|
|
#endif
|
|
|
|
/* For OpenCL we do manual lookup and interpolation. */
|
|
|
|
ccl_device_inline ccl_global TextureInfo *kernel_tex_info(KernelGlobals *kg, uint id)
|
|
{
|
|
const uint tex_offset = id
|
|
#define KERNEL_TEX(type, name) +1
|
|
#include "kernel/kernel_textures.h"
|
|
;
|
|
|
|
return &((ccl_global TextureInfo *)kg->buffers[0])[tex_offset];
|
|
}
|
|
|
|
#define tex_fetch(type, info, index) \
|
|
((ccl_global type *)(kg->buffers[info->cl_buffer] + info->data))[(index)]
|
|
|
|
ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
|
|
{
|
|
x %= width;
|
|
if (x < 0)
|
|
x += width;
|
|
return x;
|
|
}
|
|
|
|
ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
|
|
{
|
|
return clamp(x, 0, width - 1);
|
|
}
|
|
|
|
ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg,
|
|
const ccl_global TextureInfo *info,
|
|
int id,
|
|
int offset)
|
|
{
|
|
const int texture_type = info->data_type;
|
|
|
|
/* Float4 */
|
|
if (texture_type == IMAGE_DATA_TYPE_FLOAT4) {
|
|
return tex_fetch(float4, info, offset);
|
|
}
|
|
/* Byte4 */
|
|
else if (texture_type == IMAGE_DATA_TYPE_BYTE4) {
|
|
uchar4 r = tex_fetch(uchar4, info, offset);
|
|
float f = 1.0f / 255.0f;
|
|
return make_float4(r.x * f, r.y * f, r.z * f, r.w * f);
|
|
}
|
|
/* Ushort4 */
|
|
else if (texture_type == IMAGE_DATA_TYPE_USHORT4) {
|
|
ushort4 r = tex_fetch(ushort4, info, offset);
|
|
float f = 1.0f / 65535.f;
|
|
return make_float4(r.x * f, r.y * f, r.z * f, r.w * f);
|
|
}
|
|
/* Float */
|
|
else if (texture_type == IMAGE_DATA_TYPE_FLOAT) {
|
|
float f = tex_fetch(float, info, offset);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
/* UShort */
|
|
else if (texture_type == IMAGE_DATA_TYPE_USHORT) {
|
|
ushort r = tex_fetch(ushort, info, offset);
|
|
float f = r * (1.0f / 65535.0f);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
/* Byte */
|
|
#ifdef __KERNEL_CL_KHR_FP16__
|
|
/* half and half4 are optional in OpenCL */
|
|
else if (texture_type == IMAGE_DATA_TYPE_HALF) {
|
|
float f = tex_fetch(half, info, offset);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
else if (texture_type == IMAGE_DATA_TYPE_HALF4) {
|
|
half4 r = tex_fetch(half4, info, offset);
|
|
return make_float4(r.x, r.y, r.z, r.w);
|
|
}
|
|
#endif
|
|
else {
|
|
uchar r = tex_fetch(uchar, info, offset);
|
|
float f = r * (1.0f / 255.0f);
|
|
return make_float4(f, f, f, 1.0f);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float4 svm_image_texture_read_2d(KernelGlobals *kg, int id, int x, int y)
|
|
{
|
|
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
|
|
|
|
/* Wrap */
|
|
if (info->extension == EXTENSION_REPEAT) {
|
|
x = svm_image_texture_wrap_periodic(x, info->width);
|
|
y = svm_image_texture_wrap_periodic(y, info->height);
|
|
}
|
|
else {
|
|
x = svm_image_texture_wrap_clamp(x, info->width);
|
|
y = svm_image_texture_wrap_clamp(y, info->height);
|
|
}
|
|
|
|
int offset = x + info->width * y;
|
|
return svm_image_texture_read(kg, info, id, offset);
|
|
}
|
|
|
|
ccl_device_inline float4 svm_image_texture_read_3d(KernelGlobals *kg, int id, int x, int y, int z)
|
|
{
|
|
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
|
|
|
|
/* Wrap */
|
|
if (info->extension == EXTENSION_REPEAT) {
|
|
x = svm_image_texture_wrap_periodic(x, info->width);
|
|
y = svm_image_texture_wrap_periodic(y, info->height);
|
|
z = svm_image_texture_wrap_periodic(z, info->depth);
|
|
}
|
|
else {
|
|
x = svm_image_texture_wrap_clamp(x, info->width);
|
|
y = svm_image_texture_wrap_clamp(y, info->height);
|
|
z = svm_image_texture_wrap_clamp(z, info->depth);
|
|
}
|
|
|
|
int offset = x + info->width * y + info->width * info->height * z;
|
|
return svm_image_texture_read(kg, info, id, offset);
|
|
}
|
|
|
|
ccl_device_inline float svm_image_texture_frac(float x, int *ix)
|
|
{
|
|
int i = float_to_int(x) - ((x < 0.0f) ? 1 : 0);
|
|
*ix = i;
|
|
return x - (float)i;
|
|
}
|
|
|
|
#define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
|
|
{ \
|
|
u[0] = (((-1.0f / 6.0f) * t + 0.5f) * t - 0.5f) * t + (1.0f / 6.0f); \
|
|
u[1] = ((0.5f * t - 1.0f) * t) * t + (2.0f / 3.0f); \
|
|
u[2] = ((-0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f / 6.0f); \
|
|
u[3] = (1.0f / 6.0f) * t * t * t; \
|
|
} \
|
|
(void)0
|
|
|
|
ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
|
|
{
|
|
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
|
|
|
|
if (info->extension == EXTENSION_CLIP) {
|
|
if (x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
if (info->interpolation == INTERPOLATION_CLOSEST) {
|
|
/* Closest interpolation. */
|
|
int ix, iy;
|
|
svm_image_texture_frac(x * info->width, &ix);
|
|
svm_image_texture_frac(y * info->height, &iy);
|
|
|
|
return svm_image_texture_read_2d(kg, id, ix, iy);
|
|
}
|
|
else if (info->interpolation == INTERPOLATION_LINEAR) {
|
|
/* Bilinear interpolation. */
|
|
int ix, iy;
|
|
float tx = svm_image_texture_frac(x * info->width - 0.5f, &ix);
|
|
float ty = svm_image_texture_frac(y * info->height - 0.5f, &iy);
|
|
|
|
float4 r;
|
|
r = (1.0f - ty) * (1.0f - tx) * svm_image_texture_read_2d(kg, id, ix, iy);
|
|
r += (1.0f - ty) * tx * svm_image_texture_read_2d(kg, id, ix + 1, iy);
|
|
r += ty * (1.0f - tx) * svm_image_texture_read_2d(kg, id, ix, iy + 1);
|
|
r += ty * tx * svm_image_texture_read_2d(kg, id, ix + 1, iy + 1);
|
|
return r;
|
|
}
|
|
else {
|
|
/* Bicubic interpolation. */
|
|
int ix, iy;
|
|
float tx = svm_image_texture_frac(x * info->width - 0.5f, &ix);
|
|
float ty = svm_image_texture_frac(y * info->height - 0.5f, &iy);
|
|
|
|
float u[4], v[4];
|
|
SET_CUBIC_SPLINE_WEIGHTS(u, tx);
|
|
SET_CUBIC_SPLINE_WEIGHTS(v, ty);
|
|
|
|
float4 r = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
for (int y = 0; y < 4; y++) {
|
|
for (int x = 0; x < 4; x++) {
|
|
float weight = u[x] * v[y];
|
|
r += weight * svm_image_texture_read_2d(kg, id, ix + x - 1, iy + y - 1);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float3 P, int interp)
|
|
{
|
|
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
|
|
|
|
if (info->use_transform_3d) {
|
|
Transform tfm = info->transform_3d;
|
|
P = transform_point(&tfm, P);
|
|
}
|
|
|
|
const float x = P.x;
|
|
const float y = P.y;
|
|
const float z = P.z;
|
|
|
|
if (info->extension == EXTENSION_CLIP) {
|
|
if (x < 0.0f || y < 0.0f || z < 0.0f || x > 1.0f || y > 1.0f || z > 1.0f) {
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
uint interpolation = (interp == INTERPOLATION_NONE) ? info->interpolation : interp;
|
|
|
|
#ifdef WITH_NANOVDB
|
|
if (info->data_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT) {
|
|
ccl_global cnanovdb_griddata *grid =
|
|
(ccl_global cnanovdb_griddata *)(kg->buffers[info->cl_buffer] + info->data);
|
|
const ccl_global cnanovdb_rootdataF *root = cnanovdb_treedata_rootF(
|
|
cnanovdb_griddata_tree(grid));
|
|
|
|
cnanovdb_Vec3F xyz;
|
|
xyz.mVec[0] = root->mBBox_min.mVec[0] +
|
|
x * (root->mBBox_max.mVec[0] - root->mBBox_min.mVec[0]);
|
|
xyz.mVec[1] = root->mBBox_min.mVec[1] +
|
|
y * (root->mBBox_max.mVec[1] - root->mBBox_min.mVec[1]);
|
|
xyz.mVec[2] = root->mBBox_min.mVec[2] +
|
|
z * (root->mBBox_max.mVec[2] - root->mBBox_min.mVec[2]);
|
|
|
|
cnanovdb_readaccessor acc;
|
|
cnanovdb_readaccessor_init(&acc, root);
|
|
|
|
float value;
|
|
switch (interpolation) {
|
|
default:
|
|
case INTERPOLATION_LINEAR:
|
|
value = cnanovdb_sampleF_trilinear(&acc, &xyz);
|
|
break;
|
|
case INTERPOLATION_CLOSEST:
|
|
value = cnanovdb_sampleF_nearest(&acc, &xyz);
|
|
break;
|
|
}
|
|
return make_float4(value, value, value, 1.0f);
|
|
}
|
|
if (info->data_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
|
|
ccl_global cnanovdb_griddata *grid =
|
|
(ccl_global cnanovdb_griddata *)(kg->buffers[info->cl_buffer] + info->data);
|
|
const ccl_global cnanovdb_rootdataF3 *root = cnanovdb_treedata_rootF3(
|
|
cnanovdb_griddata_tree(grid));
|
|
|
|
cnanovdb_Vec3F xyz;
|
|
xyz.mVec[0] = root->mBBox_min.mVec[0] +
|
|
x * (root->mBBox_max.mVec[0] - root->mBBox_min.mVec[0]);
|
|
xyz.mVec[1] = root->mBBox_min.mVec[1] +
|
|
y * (root->mBBox_max.mVec[1] - root->mBBox_min.mVec[1]);
|
|
xyz.mVec[2] = root->mBBox_min.mVec[2] +
|
|
z * (root->mBBox_max.mVec[2] - root->mBBox_min.mVec[2]);
|
|
|
|
cnanovdb_readaccessor acc;
|
|
cnanovdb_readaccessor_init(&acc, root);
|
|
|
|
cnanovdb_Vec3F value;
|
|
switch (interpolation) {
|
|
default:
|
|
case INTERPOLATION_LINEAR:
|
|
value = cnanovdb_sampleF3_trilinear(&acc, &xyz);
|
|
break;
|
|
case INTERPOLATION_CLOSEST:
|
|
value = cnanovdb_sampleF3_nearest(&acc, &xyz);
|
|
break;
|
|
}
|
|
return make_float4(value.mVec[0], value.mVec[1], value.mVec[2], 1.0f);
|
|
}
|
|
#endif
|
|
|
|
if (interpolation == INTERPOLATION_CLOSEST) {
|
|
/* Closest interpolation. */
|
|
int ix, iy, iz;
|
|
svm_image_texture_frac(x * info->width, &ix);
|
|
svm_image_texture_frac(y * info->height, &iy);
|
|
svm_image_texture_frac(z * info->depth, &iz);
|
|
|
|
return svm_image_texture_read_3d(kg, id, ix, iy, iz);
|
|
}
|
|
else if (interpolation == INTERPOLATION_LINEAR) {
|
|
/* Bilinear interpolation. */
|
|
int ix, iy, iz;
|
|
float tx = svm_image_texture_frac(x * info->width - 0.5f, &ix);
|
|
float ty = svm_image_texture_frac(y * info->height - 0.5f, &iy);
|
|
float tz = svm_image_texture_frac(z * info->depth - 0.5f, &iz);
|
|
|
|
float4 r;
|
|
r = (1.0f - tz) * (1.0f - ty) * (1.0f - tx) * svm_image_texture_read_3d(kg, id, ix, iy, iz);
|
|
r += (1.0f - tz) * (1.0f - ty) * tx * svm_image_texture_read_3d(kg, id, ix + 1, iy, iz);
|
|
r += (1.0f - tz) * ty * (1.0f - tx) * svm_image_texture_read_3d(kg, id, ix, iy + 1, iz);
|
|
r += (1.0f - tz) * ty * tx * svm_image_texture_read_3d(kg, id, ix + 1, iy + 1, iz);
|
|
|
|
r += tz * (1.0f - ty) * (1.0f - tx) * svm_image_texture_read_3d(kg, id, ix, iy, iz + 1);
|
|
r += tz * (1.0f - ty) * tx * svm_image_texture_read_3d(kg, id, ix + 1, iy, iz + 1);
|
|
r += tz * ty * (1.0f - tx) * svm_image_texture_read_3d(kg, id, ix, iy + 1, iz + 1);
|
|
r += tz * ty * tx * svm_image_texture_read_3d(kg, id, ix + 1, iy + 1, iz + 1);
|
|
return r;
|
|
}
|
|
else {
|
|
/* Bicubic interpolation. */
|
|
int ix, iy, iz;
|
|
float tx = svm_image_texture_frac(x * info->width - 0.5f, &ix);
|
|
float ty = svm_image_texture_frac(y * info->height - 0.5f, &iy);
|
|
float tz = svm_image_texture_frac(z * info->depth - 0.5f, &iz);
|
|
|
|
float u[4], v[4], w[4];
|
|
SET_CUBIC_SPLINE_WEIGHTS(u, tx);
|
|
SET_CUBIC_SPLINE_WEIGHTS(v, ty);
|
|
SET_CUBIC_SPLINE_WEIGHTS(w, tz);
|
|
|
|
float4 r = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
for (int z = 0; z < 4; z++) {
|
|
for (int y = 0; y < 4; y++) {
|
|
for (int x = 0; x < 4; x++) {
|
|
float weight = u[x] * v[y] * w[z];
|
|
r += weight * svm_image_texture_read_3d(kg, id, ix + x - 1, iy + y - 1, iz + z - 1);
|
|
}
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
|
|
#undef SET_CUBIC_SPLINE_WEIGHTS
|