Precompiled Cycles kernels make up a considerable fraction of the total size of Blender builds nowadays. As we add more features and support for more architectures, this will only continue to increase. However, since these kernels tend to be quite compressible, we can save a lot of storage by storing them in compressed form and decompressing the required kernel(s) during loading. By using Zstandard compression with a high level, we can get decent compression ratios (~5x for the current kernels) while keeping decompression time low (about 30ms in the worse case in my tests). And since we already require zstd for Blender, this doesn't introduce a new dependency. While the main improvement is to the size of the extracted Blender installation (which is reduced by ~400-500MB currently), this also shrinks the download on Windows, since .zip's deflate compression is less effective. It doesn't help on Linux since we're already using .tar.xz there, but the smaller installed size is still a good thing. See #123522 for initial discussion. Pull Request: https://projects.blender.org/blender/blender/pulls/123557
1023 lines
29 KiB
C++
1023 lines
29 KiB
C++
/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 */
|
|
|
|
#ifdef WITH_CUDA
|
|
|
|
# include <climits>
|
|
# include <limits.h>
|
|
# include <stdio.h>
|
|
# include <stdlib.h>
|
|
# include <string.h>
|
|
|
|
# include "device/cuda/device_impl.h"
|
|
|
|
# include "util/debug.h"
|
|
# include "util/foreach.h"
|
|
# include "util/log.h"
|
|
# include "util/map.h"
|
|
# include "util/md5.h"
|
|
# include "util/path.h"
|
|
# include "util/string.h"
|
|
# include "util/system.h"
|
|
# include "util/time.h"
|
|
# include "util/types.h"
|
|
# include "util/windows.h"
|
|
|
|
# include "kernel/device/cuda/globals.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
class CUDADevice;
|
|
|
|
bool CUDADevice::have_precompiled_kernels()
|
|
{
|
|
string cubins_path = path_get("lib");
|
|
return path_exists(cubins_path);
|
|
}
|
|
|
|
BVHLayoutMask CUDADevice::get_bvh_layout_mask(uint /*kernel_features*/) const
|
|
{
|
|
return BVH_LAYOUT_BVH2;
|
|
}
|
|
|
|
void CUDADevice::set_error(const string &error)
|
|
{
|
|
Device::set_error(error);
|
|
|
|
if (first_error) {
|
|
fprintf(stderr, "\nRefer to the Cycles GPU rendering documentation for possible solutions:\n");
|
|
fprintf(stderr,
|
|
"https://docs.blender.org/manual/en/latest/render/cycles/gpu_rendering.html\n\n");
|
|
first_error = false;
|
|
}
|
|
}
|
|
|
|
CUDADevice::CUDADevice(const DeviceInfo &info, Stats &stats, Profiler &profiler, bool headless)
|
|
: GPUDevice(info, stats, profiler, headless)
|
|
{
|
|
/* Verify that base class types can be used with specific backend types */
|
|
static_assert(sizeof(texMemObject) == sizeof(CUtexObject));
|
|
static_assert(sizeof(arrayMemObject) == sizeof(CUarray));
|
|
|
|
first_error = true;
|
|
|
|
cuDevId = info.num;
|
|
cuDevice = 0;
|
|
cuContext = 0;
|
|
|
|
cuModule = 0;
|
|
|
|
need_texture_info = false;
|
|
|
|
pitch_alignment = 0;
|
|
|
|
/* Initialize CUDA. */
|
|
CUresult result = cuInit(0);
|
|
if (result != CUDA_SUCCESS) {
|
|
set_error(string_printf("Failed to initialize CUDA runtime (%s)", cuewErrorString(result)));
|
|
return;
|
|
}
|
|
|
|
/* Setup device and context. */
|
|
result = cuDeviceGet(&cuDevice, cuDevId);
|
|
if (result != CUDA_SUCCESS) {
|
|
set_error(string_printf("Failed to get CUDA device handle from ordinal (%s)",
|
|
cuewErrorString(result)));
|
|
return;
|
|
}
|
|
|
|
/* CU_CTX_MAP_HOST for mapping host memory when out of device memory.
|
|
* CU_CTX_LMEM_RESIZE_TO_MAX for reserving local memory ahead of render,
|
|
* so we can predict which memory to map to host. */
|
|
int value;
|
|
cuda_assert(cuDeviceGetAttribute(&value, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, cuDevice));
|
|
can_map_host = value != 0;
|
|
|
|
cuda_assert(cuDeviceGetAttribute(
|
|
&pitch_alignment, CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT, cuDevice));
|
|
|
|
if (can_map_host) {
|
|
init_host_memory();
|
|
}
|
|
|
|
int active = 0;
|
|
unsigned int ctx_flags = 0;
|
|
cuda_assert(cuDevicePrimaryCtxGetState(cuDevice, &ctx_flags, &active));
|
|
|
|
/* Configure primary context only once. */
|
|
if (active == 0) {
|
|
ctx_flags |= CU_CTX_LMEM_RESIZE_TO_MAX;
|
|
result = cuDevicePrimaryCtxSetFlags(cuDevice, ctx_flags);
|
|
if (result != CUDA_SUCCESS && result != CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE) {
|
|
set_error(string_printf("Failed to configure CUDA context (%s)", cuewErrorString(result)));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Create context. */
|
|
result = cuDevicePrimaryCtxRetain(&cuContext, cuDevice);
|
|
|
|
if (result != CUDA_SUCCESS) {
|
|
set_error(string_printf("Failed to retain CUDA context (%s)", cuewErrorString(result)));
|
|
return;
|
|
}
|
|
|
|
int major, minor;
|
|
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
|
|
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
|
|
cuDevArchitecture = major * 100 + minor * 10;
|
|
}
|
|
|
|
CUDADevice::~CUDADevice()
|
|
{
|
|
texture_info.free();
|
|
if (cuModule) {
|
|
cuda_assert(cuModuleUnload(cuModule));
|
|
}
|
|
cuda_assert(cuDevicePrimaryCtxRelease(cuDevice));
|
|
}
|
|
|
|
bool CUDADevice::support_device(const uint /*kernel_features*/)
|
|
{
|
|
int major, minor;
|
|
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
|
|
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
|
|
|
|
/* We only support sm_30 and above */
|
|
if (major < 3) {
|
|
set_error(string_printf(
|
|
"CUDA backend requires compute capability 3.0 or up, but found %d.%d.", major, minor));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CUDADevice::check_peer_access(Device *peer_device)
|
|
{
|
|
if (peer_device == this) {
|
|
return false;
|
|
}
|
|
if (peer_device->info.type != DEVICE_CUDA && peer_device->info.type != DEVICE_OPTIX) {
|
|
return false;
|
|
}
|
|
|
|
CUDADevice *const peer_device_cuda = static_cast<CUDADevice *>(peer_device);
|
|
|
|
int can_access = 0;
|
|
cuda_assert(cuDeviceCanAccessPeer(&can_access, cuDevice, peer_device_cuda->cuDevice));
|
|
if (can_access == 0) {
|
|
return false;
|
|
}
|
|
|
|
// Ensure array access over the link is possible as well (for 3D textures)
|
|
cuda_assert(cuDeviceGetP2PAttribute(&can_access,
|
|
CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED,
|
|
cuDevice,
|
|
peer_device_cuda->cuDevice));
|
|
if (can_access == 0) {
|
|
return false;
|
|
}
|
|
|
|
// Enable peer access in both directions
|
|
{
|
|
const CUDAContextScope scope(this);
|
|
CUresult result = cuCtxEnablePeerAccess(peer_device_cuda->cuContext, 0);
|
|
if (result != CUDA_SUCCESS && result != CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED) {
|
|
set_error(string_printf("Failed to enable peer access on CUDA context (%s)",
|
|
cuewErrorString(result)));
|
|
return false;
|
|
}
|
|
}
|
|
{
|
|
const CUDAContextScope scope(peer_device_cuda);
|
|
CUresult result = cuCtxEnablePeerAccess(cuContext, 0);
|
|
if (result != CUDA_SUCCESS && result != CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED) {
|
|
set_error(string_printf("Failed to enable peer access on CUDA context (%s)",
|
|
cuewErrorString(result)));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CUDADevice::use_adaptive_compilation()
|
|
{
|
|
return DebugFlags().cuda.adaptive_compile;
|
|
}
|
|
|
|
/* Common NVCC flags which stays the same regardless of shading model,
|
|
* kernel sources md5 and only depends on compiler or compilation settings.
|
|
*/
|
|
string CUDADevice::compile_kernel_get_common_cflags(const uint kernel_features)
|
|
{
|
|
const int machine = system_cpu_bits();
|
|
const string source_path = path_get("source");
|
|
const string include_path = source_path;
|
|
string cflags = string_printf(
|
|
"-m%d "
|
|
"--ptxas-options=\"-v\" "
|
|
"--use_fast_math "
|
|
"-DNVCC "
|
|
"-I\"%s\"",
|
|
machine,
|
|
include_path.c_str());
|
|
if (use_adaptive_compilation()) {
|
|
cflags += " -D__KERNEL_FEATURES__=" + to_string(kernel_features);
|
|
}
|
|
const char *extra_cflags = getenv("CYCLES_CUDA_EXTRA_CFLAGS");
|
|
if (extra_cflags) {
|
|
cflags += string(" ") + string(extra_cflags);
|
|
}
|
|
|
|
# ifdef WITH_NANOVDB
|
|
cflags += " -DWITH_NANOVDB";
|
|
# endif
|
|
|
|
# ifdef WITH_CYCLES_DEBUG
|
|
cflags += " -DWITH_CYCLES_DEBUG";
|
|
# endif
|
|
|
|
return cflags;
|
|
}
|
|
|
|
string CUDADevice::compile_kernel(const string &common_cflags,
|
|
const char *name,
|
|
const char *base,
|
|
bool force_ptx)
|
|
{
|
|
/* Compute kernel name. */
|
|
int major, minor;
|
|
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevId);
|
|
cuDeviceGetAttribute(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevId);
|
|
|
|
/* Attempt to use kernel provided with Blender. */
|
|
if (!use_adaptive_compilation()) {
|
|
if (!force_ptx) {
|
|
const string cubin = path_get(string_printf("lib/%s_sm_%d%d.cubin.zst", name, major, minor));
|
|
VLOG_INFO << "Testing for pre-compiled kernel " << cubin << ".";
|
|
if (path_exists(cubin)) {
|
|
VLOG_INFO << "Using precompiled kernel.";
|
|
return cubin;
|
|
}
|
|
}
|
|
|
|
/* The driver can JIT-compile PTX generated for older generations, so find the closest one. */
|
|
int ptx_major = major, ptx_minor = minor;
|
|
while (ptx_major >= 3) {
|
|
const string ptx = path_get(
|
|
string_printf("lib/%s_compute_%d%d.ptx.zst", name, ptx_major, ptx_minor));
|
|
VLOG_INFO << "Testing for pre-compiled kernel " << ptx << ".";
|
|
if (path_exists(ptx)) {
|
|
VLOG_INFO << "Using precompiled kernel.";
|
|
return ptx;
|
|
}
|
|
|
|
if (ptx_minor > 0) {
|
|
ptx_minor--;
|
|
}
|
|
else {
|
|
ptx_major--;
|
|
ptx_minor = 9;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Try to use locally compiled kernel. */
|
|
string source_path = path_get("source");
|
|
const string source_md5 = path_files_md5_hash(source_path);
|
|
|
|
/* We include cflags into md5 so changing cuda toolkit or changing other
|
|
* compiler command line arguments makes sure cubin gets re-built.
|
|
*/
|
|
const string kernel_md5 = util_md5_string(source_md5 + common_cflags);
|
|
|
|
const char *const kernel_ext = force_ptx ? "ptx" : "cubin";
|
|
const char *const kernel_arch = force_ptx ? "compute" : "sm";
|
|
const string cubin_file = string_printf(
|
|
"cycles_%s_%s_%d%d_%s.%s", name, kernel_arch, major, minor, kernel_md5.c_str(), kernel_ext);
|
|
const string cubin = path_cache_get(path_join("kernels", cubin_file));
|
|
VLOG_INFO << "Testing for locally compiled kernel " << cubin << ".";
|
|
if (path_exists(cubin)) {
|
|
VLOG_INFO << "Using locally compiled kernel.";
|
|
return cubin;
|
|
}
|
|
|
|
# ifdef _WIN32
|
|
if (!use_adaptive_compilation() && have_precompiled_kernels()) {
|
|
if (major < 3) {
|
|
set_error(
|
|
string_printf("CUDA backend requires compute capability 3.0 or up, but found %d.%d. "
|
|
"Your GPU is not supported.",
|
|
major,
|
|
minor));
|
|
}
|
|
else {
|
|
set_error(
|
|
string_printf("CUDA binary kernel for this graphics card compute "
|
|
"capability (%d.%d) not found.",
|
|
major,
|
|
minor));
|
|
}
|
|
return string();
|
|
}
|
|
# endif
|
|
|
|
/* Compile. */
|
|
const char *const nvcc = cuewCompilerPath();
|
|
if (nvcc == NULL) {
|
|
set_error(
|
|
"CUDA nvcc compiler not found. "
|
|
"Install CUDA toolkit in default location.");
|
|
return string();
|
|
}
|
|
|
|
const int nvcc_cuda_version = cuewCompilerVersion();
|
|
VLOG_INFO << "Found nvcc " << nvcc << ", CUDA version " << nvcc_cuda_version << ".";
|
|
if (nvcc_cuda_version < 101) {
|
|
printf(
|
|
"Unsupported CUDA version %d.%d detected, "
|
|
"you need CUDA 10.1 or newer.\n",
|
|
nvcc_cuda_version / 10,
|
|
nvcc_cuda_version % 10);
|
|
return string();
|
|
}
|
|
else if (!(nvcc_cuda_version >= 102 && nvcc_cuda_version < 130)) {
|
|
printf(
|
|
"CUDA version %d.%d detected, build may succeed but only "
|
|
"CUDA 10.1 to 12 are officially supported.\n",
|
|
nvcc_cuda_version / 10,
|
|
nvcc_cuda_version % 10);
|
|
}
|
|
|
|
double starttime = time_dt();
|
|
|
|
path_create_directories(cubin);
|
|
|
|
source_path = path_join(path_join(source_path, "kernel"),
|
|
path_join("device", path_join(base, string_printf("%s.cu", name))));
|
|
|
|
string command = string_printf(
|
|
"\"%s\" "
|
|
"-arch=%s_%d%d "
|
|
"--%s \"%s\" "
|
|
"-o \"%s\" "
|
|
"%s",
|
|
nvcc,
|
|
kernel_arch,
|
|
major,
|
|
minor,
|
|
kernel_ext,
|
|
source_path.c_str(),
|
|
cubin.c_str(),
|
|
common_cflags.c_str());
|
|
|
|
printf("Compiling %sCUDA kernel ...\n%s\n",
|
|
(use_adaptive_compilation()) ? "adaptive " : "",
|
|
command.c_str());
|
|
|
|
# ifdef _WIN32
|
|
command = "call " + command;
|
|
# endif
|
|
if (system(command.c_str()) != 0) {
|
|
set_error(
|
|
"Failed to execute compilation command, "
|
|
"see console for details.");
|
|
return string();
|
|
}
|
|
|
|
/* Verify if compilation succeeded */
|
|
if (!path_exists(cubin)) {
|
|
set_error(
|
|
"CUDA kernel compilation failed, "
|
|
"see console for details.");
|
|
return string();
|
|
}
|
|
|
|
printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);
|
|
|
|
return cubin;
|
|
}
|
|
|
|
bool CUDADevice::load_kernels(const uint kernel_features)
|
|
{
|
|
/* TODO(sergey): Support kernels re-load for CUDA devices adaptive compile.
|
|
*
|
|
* Currently re-loading kernel will invalidate memory pointers,
|
|
* causing problems in cuCtxSynchronize.
|
|
*/
|
|
if (cuModule) {
|
|
if (use_adaptive_compilation()) {
|
|
VLOG_INFO
|
|
<< "Skipping CUDA kernel reload for adaptive compilation, not currently supported.";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* check if cuda init succeeded */
|
|
if (cuContext == 0) {
|
|
return false;
|
|
}
|
|
|
|
/* check if GPU is supported */
|
|
if (!support_device(kernel_features)) {
|
|
return false;
|
|
}
|
|
|
|
/* get kernel */
|
|
const char *kernel_name = "kernel";
|
|
string cflags = compile_kernel_get_common_cflags(kernel_features);
|
|
string cubin = compile_kernel(cflags, kernel_name);
|
|
if (cubin.empty()) {
|
|
return false;
|
|
}
|
|
|
|
/* open module */
|
|
CUDAContextScope scope(this);
|
|
|
|
string cubin_data;
|
|
CUresult result;
|
|
|
|
if (path_read_compressed_text(cubin, cubin_data)) {
|
|
result = cuModuleLoadData(&cuModule, cubin_data.c_str());
|
|
}
|
|
else {
|
|
result = CUDA_ERROR_FILE_NOT_FOUND;
|
|
}
|
|
|
|
if (result != CUDA_SUCCESS) {
|
|
set_error(string_printf(
|
|
"Failed to load CUDA kernel from '%s' (%s)", cubin.c_str(), cuewErrorString(result)));
|
|
}
|
|
|
|
if (result == CUDA_SUCCESS) {
|
|
kernels.load(this);
|
|
reserve_local_memory(kernel_features);
|
|
}
|
|
|
|
return (result == CUDA_SUCCESS);
|
|
}
|
|
|
|
void CUDADevice::reserve_local_memory(const uint kernel_features)
|
|
{
|
|
/* Together with CU_CTX_LMEM_RESIZE_TO_MAX, this reserves local memory
|
|
* needed for kernel launches, so that we can reliably figure out when
|
|
* to allocate scene data in mapped host memory. */
|
|
size_t total = 0, free_before = 0, free_after = 0;
|
|
|
|
{
|
|
CUDAContextScope scope(this);
|
|
cuMemGetInfo(&free_before, &total);
|
|
}
|
|
|
|
{
|
|
/* Use the biggest kernel for estimation. */
|
|
const DeviceKernel test_kernel = (kernel_features & KERNEL_FEATURE_NODE_RAYTRACE) ?
|
|
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE :
|
|
(kernel_features & KERNEL_FEATURE_MNEE) ?
|
|
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE :
|
|
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE;
|
|
|
|
/* Launch kernel, using just 1 block appears sufficient to reserve memory for all
|
|
* multiprocessors. It would be good to do this in parallel for the multi GPU case
|
|
* still to make it faster. */
|
|
CUDADeviceQueue queue(this);
|
|
|
|
device_ptr d_path_index = 0;
|
|
device_ptr d_render_buffer = 0;
|
|
int d_work_size = 0;
|
|
DeviceKernelArguments args(&d_path_index, &d_render_buffer, &d_work_size);
|
|
|
|
queue.init_execution();
|
|
queue.enqueue(test_kernel, 1, args);
|
|
queue.synchronize();
|
|
}
|
|
|
|
{
|
|
CUDAContextScope scope(this);
|
|
cuMemGetInfo(&free_after, &total);
|
|
}
|
|
|
|
VLOG_INFO << "Local memory reserved " << string_human_readable_number(free_before - free_after)
|
|
<< " bytes. (" << string_human_readable_size(free_before - free_after) << ")";
|
|
|
|
# if 0
|
|
/* For testing mapped host memory, fill up device memory. */
|
|
const size_t keep_mb = 1024;
|
|
|
|
while (free_after > keep_mb * 1024 * 1024LL) {
|
|
CUdeviceptr tmp;
|
|
cuda_assert(cuMemAlloc(&tmp, 10 * 1024 * 1024LL));
|
|
cuMemGetInfo(&free_after, &total);
|
|
}
|
|
# endif
|
|
}
|
|
|
|
void CUDADevice::get_device_memory_info(size_t &total, size_t &free)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
cuMemGetInfo(&free, &total);
|
|
}
|
|
|
|
bool CUDADevice::alloc_device(void *&device_pointer, size_t size)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
CUresult mem_alloc_result = cuMemAlloc((CUdeviceptr *)&device_pointer, size);
|
|
return mem_alloc_result == CUDA_SUCCESS;
|
|
}
|
|
|
|
void CUDADevice::free_device(void *device_pointer)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
cuda_assert(cuMemFree((CUdeviceptr)device_pointer));
|
|
}
|
|
|
|
bool CUDADevice::alloc_host(void *&shared_pointer, size_t size)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
CUresult mem_alloc_result = cuMemHostAlloc(
|
|
&shared_pointer, size, CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED);
|
|
return mem_alloc_result == CUDA_SUCCESS;
|
|
}
|
|
|
|
void CUDADevice::free_host(void *shared_pointer)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
cuMemFreeHost(shared_pointer);
|
|
}
|
|
|
|
void CUDADevice::transform_host_pointer(void *&device_pointer, void *&shared_pointer)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
cuda_assert(cuMemHostGetDevicePointer_v2((CUdeviceptr *)&device_pointer, shared_pointer, 0));
|
|
}
|
|
|
|
void CUDADevice::copy_host_to_device(void *device_pointer, void *host_pointer, size_t size)
|
|
{
|
|
const CUDAContextScope scope(this);
|
|
|
|
cuda_assert(cuMemcpyHtoD((CUdeviceptr)device_pointer, host_pointer, size));
|
|
}
|
|
|
|
void CUDADevice::mem_alloc(device_memory &mem)
|
|
{
|
|
if (mem.type == MEM_TEXTURE) {
|
|
assert(!"mem_alloc not supported for textures.");
|
|
}
|
|
else if (mem.type == MEM_GLOBAL) {
|
|
assert(!"mem_alloc not supported for global memory.");
|
|
}
|
|
else {
|
|
generic_alloc(mem);
|
|
}
|
|
}
|
|
|
|
void CUDADevice::mem_copy_to(device_memory &mem)
|
|
{
|
|
if (mem.type == MEM_GLOBAL) {
|
|
global_free(mem);
|
|
global_alloc(mem);
|
|
}
|
|
else if (mem.type == MEM_TEXTURE) {
|
|
tex_free((device_texture &)mem);
|
|
tex_alloc((device_texture &)mem);
|
|
}
|
|
else {
|
|
if (!mem.device_pointer) {
|
|
generic_alloc(mem);
|
|
}
|
|
generic_copy_to(mem);
|
|
}
|
|
}
|
|
|
|
void CUDADevice::mem_copy_from(device_memory &mem, size_t y, size_t w, size_t h, size_t elem)
|
|
{
|
|
if (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) {
|
|
assert(!"mem_copy_from not supported for textures.");
|
|
}
|
|
else if (mem.host_pointer) {
|
|
const size_t size = elem * w * h;
|
|
const size_t offset = elem * y * w;
|
|
|
|
if (mem.device_pointer) {
|
|
const CUDAContextScope scope(this);
|
|
cuda_assert(cuMemcpyDtoH(
|
|
(char *)mem.host_pointer + offset, (CUdeviceptr)mem.device_pointer + offset, size));
|
|
}
|
|
else {
|
|
memset((char *)mem.host_pointer + offset, 0, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CUDADevice::mem_zero(device_memory &mem)
|
|
{
|
|
if (!mem.device_pointer) {
|
|
mem_alloc(mem);
|
|
}
|
|
if (!mem.device_pointer) {
|
|
return;
|
|
}
|
|
|
|
/* If use_mapped_host of mem is false, mem.device_pointer currently refers to device memory
|
|
* regardless of mem.host_pointer and mem.shared_pointer. */
|
|
thread_scoped_lock lock(device_mem_map_mutex);
|
|
if (!device_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
|
|
const CUDAContextScope scope(this);
|
|
cuda_assert(cuMemsetD8((CUdeviceptr)mem.device_pointer, 0, mem.memory_size()));
|
|
}
|
|
else if (mem.host_pointer) {
|
|
memset(mem.host_pointer, 0, mem.memory_size());
|
|
}
|
|
}
|
|
|
|
void CUDADevice::mem_free(device_memory &mem)
|
|
{
|
|
if (mem.type == MEM_GLOBAL) {
|
|
global_free(mem);
|
|
}
|
|
else if (mem.type == MEM_TEXTURE) {
|
|
tex_free((device_texture &)mem);
|
|
}
|
|
else {
|
|
generic_free(mem);
|
|
}
|
|
}
|
|
|
|
device_ptr CUDADevice::mem_alloc_sub_ptr(device_memory &mem, size_t offset, size_t /*size*/)
|
|
{
|
|
return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
|
|
}
|
|
|
|
void CUDADevice::const_copy_to(const char *name, void *host, size_t size)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
CUdeviceptr mem;
|
|
size_t bytes;
|
|
|
|
cuda_assert(cuModuleGetGlobal(&mem, &bytes, cuModule, "kernel_params"));
|
|
assert(bytes == sizeof(KernelParamsCUDA));
|
|
|
|
/* Update data storage pointers in launch parameters. */
|
|
# define KERNEL_DATA_ARRAY(data_type, data_name) \
|
|
if (strcmp(name, #data_name) == 0) { \
|
|
cuda_assert(cuMemcpyHtoD(mem + offsetof(KernelParamsCUDA, data_name), host, size)); \
|
|
return; \
|
|
}
|
|
KERNEL_DATA_ARRAY(KernelData, data)
|
|
KERNEL_DATA_ARRAY(IntegratorStateGPU, integrator_state)
|
|
# include "kernel/data_arrays.h"
|
|
# undef KERNEL_DATA_ARRAY
|
|
}
|
|
|
|
void CUDADevice::global_alloc(device_memory &mem)
|
|
{
|
|
if (mem.is_resident(this)) {
|
|
generic_alloc(mem);
|
|
generic_copy_to(mem);
|
|
}
|
|
|
|
const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer));
|
|
}
|
|
|
|
void CUDADevice::global_free(device_memory &mem)
|
|
{
|
|
if (mem.is_resident(this) && mem.device_pointer) {
|
|
generic_free(mem);
|
|
}
|
|
}
|
|
|
|
void CUDADevice::tex_alloc(device_texture &mem)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
size_t dsize = datatype_size(mem.data_type);
|
|
size_t size = mem.memory_size();
|
|
|
|
CUaddress_mode address_mode = CU_TR_ADDRESS_MODE_WRAP;
|
|
switch (mem.info.extension) {
|
|
case EXTENSION_REPEAT:
|
|
address_mode = CU_TR_ADDRESS_MODE_WRAP;
|
|
break;
|
|
case EXTENSION_EXTEND:
|
|
address_mode = CU_TR_ADDRESS_MODE_CLAMP;
|
|
break;
|
|
case EXTENSION_CLIP:
|
|
address_mode = CU_TR_ADDRESS_MODE_BORDER;
|
|
break;
|
|
case EXTENSION_MIRROR:
|
|
address_mode = CU_TR_ADDRESS_MODE_MIRROR;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
CUfilter_mode filter_mode;
|
|
if (mem.info.interpolation == INTERPOLATION_CLOSEST) {
|
|
filter_mode = CU_TR_FILTER_MODE_POINT;
|
|
}
|
|
else {
|
|
filter_mode = CU_TR_FILTER_MODE_LINEAR;
|
|
}
|
|
|
|
/* Image Texture Storage */
|
|
/* Cycles expects to read all texture data as normalized float values in
|
|
* kernel/device/gpu/image.h. But storing all data as floats would be very inefficient due to the
|
|
* huge size of float textures. So in the code below, we define different texture types including
|
|
* integer types, with the aim of using CUDA's default promotion behavior of integer data to
|
|
* floating point data in the range [0, 1], as noted in the CUDA documentation on
|
|
* cuTexObjectCreate API Call.
|
|
* Note that 32-bit integers are not supported by this promotion behavior and cannot be used
|
|
* with Cycles's current implementation in kernel/device/gpu/image.h.
|
|
*/
|
|
CUarray_format_enum format;
|
|
switch (mem.data_type) {
|
|
case TYPE_UCHAR:
|
|
format = CU_AD_FORMAT_UNSIGNED_INT8;
|
|
break;
|
|
case TYPE_UINT16:
|
|
format = CU_AD_FORMAT_UNSIGNED_INT16;
|
|
break;
|
|
case TYPE_FLOAT:
|
|
format = CU_AD_FORMAT_FLOAT;
|
|
break;
|
|
case TYPE_HALF:
|
|
format = CU_AD_FORMAT_HALF;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
return;
|
|
}
|
|
|
|
Mem *cmem = NULL;
|
|
CUarray array_3d = NULL;
|
|
size_t src_pitch = mem.data_width * dsize * mem.data_elements;
|
|
size_t dst_pitch = src_pitch;
|
|
|
|
if (!mem.is_resident(this)) {
|
|
thread_scoped_lock lock(device_mem_map_mutex);
|
|
cmem = &device_mem_map[&mem];
|
|
cmem->texobject = 0;
|
|
|
|
if (mem.data_depth > 1) {
|
|
array_3d = (CUarray)mem.device_pointer;
|
|
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
|
|
}
|
|
else if (mem.data_height > 0) {
|
|
dst_pitch = align_up(src_pitch, pitch_alignment);
|
|
}
|
|
}
|
|
else if (mem.data_depth > 1) {
|
|
/* 3D texture using array, there is no API for linear memory. */
|
|
CUDA_ARRAY3D_DESCRIPTOR desc;
|
|
|
|
desc.Width = mem.data_width;
|
|
desc.Height = mem.data_height;
|
|
desc.Depth = mem.data_depth;
|
|
desc.Format = format;
|
|
desc.NumChannels = mem.data_elements;
|
|
desc.Flags = 0;
|
|
|
|
VLOG_WORK << "Array 3D allocate: " << mem.name << ", "
|
|
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
|
|
<< string_human_readable_size(mem.memory_size()) << ")";
|
|
|
|
cuda_assert(cuArray3DCreate(&array_3d, &desc));
|
|
|
|
if (!array_3d) {
|
|
return;
|
|
}
|
|
|
|
CUDA_MEMCPY3D param;
|
|
memset(¶m, 0, sizeof(param));
|
|
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
|
|
param.dstArray = array_3d;
|
|
param.srcMemoryType = CU_MEMORYTYPE_HOST;
|
|
param.srcHost = mem.host_pointer;
|
|
param.srcPitch = src_pitch;
|
|
param.WidthInBytes = param.srcPitch;
|
|
param.Height = mem.data_height;
|
|
param.Depth = mem.data_depth;
|
|
|
|
cuda_assert(cuMemcpy3D(¶m));
|
|
|
|
mem.device_pointer = (device_ptr)array_3d;
|
|
mem.device_size = size;
|
|
stats.mem_alloc(size);
|
|
|
|
thread_scoped_lock lock(device_mem_map_mutex);
|
|
cmem = &device_mem_map[&mem];
|
|
cmem->texobject = 0;
|
|
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
|
|
}
|
|
else if (mem.data_height > 0) {
|
|
/* 2D texture, using pitch aligned linear memory. */
|
|
dst_pitch = align_up(src_pitch, pitch_alignment);
|
|
size_t dst_size = dst_pitch * mem.data_height;
|
|
|
|
cmem = generic_alloc(mem, dst_size - mem.memory_size());
|
|
if (!cmem) {
|
|
return;
|
|
}
|
|
|
|
CUDA_MEMCPY2D param;
|
|
memset(¶m, 0, sizeof(param));
|
|
param.dstMemoryType = CU_MEMORYTYPE_DEVICE;
|
|
param.dstDevice = mem.device_pointer;
|
|
param.dstPitch = dst_pitch;
|
|
param.srcMemoryType = CU_MEMORYTYPE_HOST;
|
|
param.srcHost = mem.host_pointer;
|
|
param.srcPitch = src_pitch;
|
|
param.WidthInBytes = param.srcPitch;
|
|
param.Height = mem.data_height;
|
|
|
|
cuda_assert(cuMemcpy2DUnaligned(¶m));
|
|
}
|
|
else {
|
|
/* 1D texture, using linear memory. */
|
|
cmem = generic_alloc(mem);
|
|
if (!cmem) {
|
|
return;
|
|
}
|
|
|
|
cuda_assert(cuMemcpyHtoD(mem.device_pointer, mem.host_pointer, size));
|
|
}
|
|
|
|
/* Resize once */
|
|
const uint slot = mem.slot;
|
|
if (slot >= texture_info.size()) {
|
|
/* Allocate some slots in advance, to reduce amount
|
|
* of re-allocations. */
|
|
texture_info.resize(slot + 128);
|
|
}
|
|
|
|
/* Set Mapping and tag that we need to (re-)upload to device */
|
|
texture_info[slot] = mem.info;
|
|
need_texture_info = true;
|
|
|
|
if (mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT &&
|
|
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT3 &&
|
|
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FPN &&
|
|
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FP16)
|
|
{
|
|
CUDA_RESOURCE_DESC resDesc;
|
|
memset(&resDesc, 0, sizeof(resDesc));
|
|
|
|
if (array_3d) {
|
|
resDesc.resType = CU_RESOURCE_TYPE_ARRAY;
|
|
resDesc.res.array.hArray = array_3d;
|
|
resDesc.flags = 0;
|
|
}
|
|
else if (mem.data_height > 0) {
|
|
resDesc.resType = CU_RESOURCE_TYPE_PITCH2D;
|
|
resDesc.res.pitch2D.devPtr = mem.device_pointer;
|
|
resDesc.res.pitch2D.format = format;
|
|
resDesc.res.pitch2D.numChannels = mem.data_elements;
|
|
resDesc.res.pitch2D.height = mem.data_height;
|
|
resDesc.res.pitch2D.width = mem.data_width;
|
|
resDesc.res.pitch2D.pitchInBytes = dst_pitch;
|
|
}
|
|
else {
|
|
resDesc.resType = CU_RESOURCE_TYPE_LINEAR;
|
|
resDesc.res.linear.devPtr = mem.device_pointer;
|
|
resDesc.res.linear.format = format;
|
|
resDesc.res.linear.numChannels = mem.data_elements;
|
|
resDesc.res.linear.sizeInBytes = mem.device_size;
|
|
}
|
|
|
|
CUDA_TEXTURE_DESC texDesc;
|
|
memset(&texDesc, 0, sizeof(texDesc));
|
|
texDesc.addressMode[0] = address_mode;
|
|
texDesc.addressMode[1] = address_mode;
|
|
texDesc.addressMode[2] = address_mode;
|
|
texDesc.filterMode = filter_mode;
|
|
/* CUDA's flag CU_TRSF_READ_AS_INTEGER is intentionally not used and it is
|
|
* significant, see above an explanation about how Blender treat textures. */
|
|
texDesc.flags = CU_TRSF_NORMALIZED_COORDINATES;
|
|
|
|
thread_scoped_lock lock(device_mem_map_mutex);
|
|
cmem = &device_mem_map[&mem];
|
|
|
|
cuda_assert(cuTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, NULL));
|
|
|
|
texture_info[slot].data = (uint64_t)cmem->texobject;
|
|
}
|
|
else {
|
|
texture_info[slot].data = (uint64_t)mem.device_pointer;
|
|
}
|
|
}
|
|
|
|
void CUDADevice::tex_free(device_texture &mem)
|
|
{
|
|
if (mem.device_pointer) {
|
|
CUDAContextScope scope(this);
|
|
thread_scoped_lock lock(device_mem_map_mutex);
|
|
DCHECK(device_mem_map.find(&mem) != device_mem_map.end());
|
|
const Mem &cmem = device_mem_map[&mem];
|
|
|
|
if (cmem.texobject) {
|
|
/* Free bindless texture. */
|
|
cuTexObjectDestroy(cmem.texobject);
|
|
}
|
|
|
|
if (!mem.is_resident(this)) {
|
|
/* Do not free memory here, since it was allocated on a different device. */
|
|
device_mem_map.erase(device_mem_map.find(&mem));
|
|
}
|
|
else if (cmem.array) {
|
|
/* Free array. */
|
|
cuArrayDestroy(reinterpret_cast<CUarray>(cmem.array));
|
|
stats.mem_free(mem.device_size);
|
|
mem.device_pointer = 0;
|
|
mem.device_size = 0;
|
|
|
|
device_mem_map.erase(device_mem_map.find(&mem));
|
|
}
|
|
else {
|
|
lock.unlock();
|
|
generic_free(mem);
|
|
}
|
|
}
|
|
}
|
|
|
|
unique_ptr<DeviceQueue> CUDADevice::gpu_queue_create()
|
|
{
|
|
return make_unique<CUDADeviceQueue>(this);
|
|
}
|
|
|
|
bool CUDADevice::should_use_graphics_interop()
|
|
{
|
|
/* Check whether this device is part of OpenGL context.
|
|
*
|
|
* Using CUDA device for graphics interoperability which is not part of the OpenGL context is
|
|
* possible, but from the empiric measurements it can be considerably slower than using naive
|
|
* pixels copy. */
|
|
|
|
if (headless) {
|
|
/* Avoid any call which might involve interaction with a graphics backend when we know that
|
|
* we don't have active graphics context. This avoid crash on certain platforms when calling
|
|
* cuGLGetDevices(). */
|
|
return false;
|
|
}
|
|
|
|
CUDAContextScope scope(this);
|
|
|
|
int num_all_devices = 0;
|
|
cuda_assert(cuDeviceGetCount(&num_all_devices));
|
|
|
|
if (num_all_devices == 0) {
|
|
return false;
|
|
}
|
|
|
|
vector<CUdevice> gl_devices(num_all_devices);
|
|
uint num_gl_devices = 0;
|
|
cuGLGetDevices(&num_gl_devices, gl_devices.data(), num_all_devices, CU_GL_DEVICE_LIST_ALL);
|
|
|
|
for (uint i = 0; i < num_gl_devices; ++i) {
|
|
if (gl_devices[i] == cuDevice) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int CUDADevice::get_num_multiprocessors()
|
|
{
|
|
return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, 0);
|
|
}
|
|
|
|
int CUDADevice::get_max_num_threads_per_multiprocessor()
|
|
{
|
|
return get_device_default_attribute(CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, 0);
|
|
}
|
|
|
|
bool CUDADevice::get_device_attribute(CUdevice_attribute attribute, int *value)
|
|
{
|
|
CUDAContextScope scope(this);
|
|
|
|
return cuDeviceGetAttribute(value, attribute, cuDevice) == CUDA_SUCCESS;
|
|
}
|
|
|
|
int CUDADevice::get_device_default_attribute(CUdevice_attribute attribute, int default_value)
|
|
{
|
|
int value = 0;
|
|
if (!get_device_attribute(attribute, &value)) {
|
|
return default_value;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif
|