Files
test/source/blender/blenkernel/intern/volume_render.cc
Lukas Tönne 12f0bc7736 Fix #138388: Use grid voxel corners as value locations like OpenVDB
Blender grid rendering interprets voxel transforms in such a way that the voxel
values are located at the center of a voxel. This is inconsistent with OpenVDB
where the values are located at the lower corners for the purpose or sampling
and related algorithms.

While it is possible to offset grids when communicating with the OpenVDB
library, this is also error-prone and does not add any major advantage.
Every time a grid is passed to OpenVDB we currently have to take care to
transform by half a voxel to ensure correct sampling weights are used that match
the density displayed by the viewport rendering.

This patch changes volume grid generation, conversion, and rendering code so
that grid transforms match the corner-located values in OpenVDB.

- The volume primitive cube node aligns the grid transform with the location of
  the first value, which is now also the same as min/max bounds input of the
  node.
- Mesh<->Grid conversion does no longer require offsetting grid transform and
  mesh vertices respectively by 0.5 voxels.
- Texture space for viewport rendering is offset by half a voxel, so that it
  covers the same area as before and voxel centers remain at the same texture
  space locations.

Co-authored-by: Brecht Van Lommel <brecht@blender.org>
Pull Request: https://projects.blender.org/blender/blender/pulls/138449
2025-08-26 12:27:20 +02:00

476 lines
15 KiB
C++

/* SPDX-FileCopyrightText: 2023 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
/** \file
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "BLI_array.hh"
#include "BLI_math_matrix.h"
#include "BLI_math_vector.h"
#include "BLI_math_vector_types.hh"
#include "BLI_task.hh"
#include "BLI_vector.hh"
#include "DNA_volume_types.h"
#include "BKE_volume_grid.hh"
#include "BKE_volume_openvdb.hh"
#include "BKE_volume_render.hh"
#ifdef WITH_OPENVDB
# include <openvdb/openvdb.h>
# include <openvdb/tools/Dense.h>
#endif
/* Dense Voxels */
#ifdef WITH_OPENVDB
template<typename GridType, typename VoxelType>
static void extract_dense_voxels(const openvdb::GridBase &grid,
const openvdb::CoordBBox bbox,
VoxelType *r_voxels)
{
BLI_assert(grid.isType<GridType>());
blender::threading::memory_bandwidth_bound_task(bbox.volume() * sizeof(VoxelType), [&]() {
openvdb::tools::Dense<VoxelType, openvdb::tools::LayoutXYZ> dense(bbox, r_voxels);
openvdb::tools::copyToDense(static_cast<const GridType &>(grid), dense);
});
}
static void extract_dense_float_voxels(const VolumeGridType grid_type,
const openvdb::GridBase &grid,
const openvdb::CoordBBox &bbox,
float *r_voxels)
{
switch (grid_type) {
case VOLUME_GRID_BOOLEAN: {
extract_dense_voxels<openvdb::BoolGrid, float>(grid, bbox, r_voxels);
return;
}
case VOLUME_GRID_FLOAT: {
extract_dense_voxels<openvdb::FloatGrid, float>(grid, bbox, r_voxels);
return;
}
case VOLUME_GRID_DOUBLE: {
extract_dense_voxels<openvdb::DoubleGrid, float>(grid, bbox, r_voxels);
return;
}
case VOLUME_GRID_INT: {
extract_dense_voxels<openvdb::Int32Grid, float>(grid, bbox, r_voxels);
return;
}
case VOLUME_GRID_INT64: {
extract_dense_voxels<openvdb::Int64Grid, float>(grid, bbox, r_voxels);
return;
}
case VOLUME_GRID_MASK: {
extract_dense_voxels<openvdb::MaskGrid, float>(grid, bbox, r_voxels);
return;
}
case VOLUME_GRID_VECTOR_FLOAT: {
extract_dense_voxels<openvdb::Vec3fGrid, openvdb::Vec3f>(
grid, bbox, reinterpret_cast<openvdb::Vec3f *>(r_voxels));
return;
}
case VOLUME_GRID_VECTOR_DOUBLE: {
extract_dense_voxels<openvdb::Vec3dGrid, openvdb::Vec3f>(
grid, bbox, reinterpret_cast<openvdb::Vec3f *>(r_voxels));
return;
}
case VOLUME_GRID_VECTOR_INT: {
extract_dense_voxels<openvdb::Vec3IGrid, openvdb::Vec3f>(
grid, bbox, reinterpret_cast<openvdb::Vec3f *>(r_voxels));
return;
}
case VOLUME_GRID_POINTS:
case VOLUME_GRID_UNKNOWN:
/* Zero channels to copy. */
break;
}
}
static void create_texture_to_object_matrix(const openvdb::Mat4d &grid_transform,
const openvdb::CoordBBox &bbox,
float r_texture_to_object[4][4])
{
float index_to_object[4][4];
memcpy(index_to_object, openvdb::Mat4s(grid_transform).asPointer(), sizeof(index_to_object));
float texture_to_index[4][4];
const openvdb::Vec3f loc = bbox.min().asVec3s() - openvdb::Vec3s(0.5f);
const openvdb::Vec3f size = bbox.dim().asVec3s();
size_to_mat4(texture_to_index, size.asV());
copy_v3_v3(texture_to_index[3], loc.asV());
mul_m4_m4m4(r_texture_to_object, index_to_object, texture_to_index);
}
#endif
bool BKE_volume_grid_dense_floats(const Volume *volume,
const blender::bke::VolumeGridData *volume_grid,
DenseFloatVolumeGrid *r_dense_grid)
{
#ifdef WITH_OPENVDB
const VolumeGridType grid_type = volume_grid->grid_type();
blender::bke::VolumeTreeAccessToken tree_token;
const openvdb::GridBase &grid = volume_grid->grid(tree_token);
const openvdb::CoordBBox bbox = grid.evalActiveVoxelBoundingBox();
if (bbox.empty()) {
return false;
}
const std::array<int64_t, 6> bbox_indices = {UNPACK3(openvdb::math::Abs(bbox.min())),
UNPACK3(openvdb::math::Abs(bbox.max()))};
const int64_t max_bbox_index = *std::max_element(bbox_indices.begin(), bbox_indices.end());
if (max_bbox_index > (1 << 30)) {
/* There is an integer overflow when trying to extract dense voxels when the indices are very
* large. */
return false;
}
const openvdb::Vec3i resolution = bbox.dim().asVec3i();
const int64_t num_voxels = int64_t(resolution[0]) * int64_t(resolution[1]) *
int64_t(resolution[2]);
const int channels = blender::bke::volume_grid::get_channels_num(grid_type);
float *voxels = MEM_malloc_arrayN<float>(size_t(channels) * size_t(num_voxels), __func__);
if (voxels == nullptr) {
return false;
}
extract_dense_float_voxels(grid_type, grid, bbox, voxels);
create_texture_to_object_matrix(grid.transform().baseMap()->getAffineMap()->getMat4(),
bbox,
r_dense_grid->texture_to_object);
r_dense_grid->voxels = voxels;
r_dense_grid->channels = channels;
copy_v3_v3_int(r_dense_grid->resolution, resolution.asV());
return true;
#endif
UNUSED_VARS(volume, volume_grid, r_dense_grid);
return false;
}
void BKE_volume_dense_float_grid_clear(DenseFloatVolumeGrid *dense_grid)
{
if (dense_grid->voxels != nullptr) {
MEM_freeN(dense_grid->voxels);
}
}
/* Wireframe */
#ifdef WITH_OPENVDB
/** Returns bounding boxes that approximate the shape of the volume stored in the grid. */
template<typename GridType>
static blender::Vector<openvdb::CoordBBox> get_bounding_boxes(const GridType &grid,
const bool coarse)
{
using TreeType = typename GridType::TreeType;
using Depth2Type = typename TreeType::RootNodeType::ChildNodeType::ChildNodeType;
using NodeCIter = typename TreeType::NodeCIter;
blender::Vector<openvdb::CoordBBox> boxes;
const int depth = coarse ? 2 : 3;
NodeCIter iter = grid.tree().cbeginNode();
iter.setMaxDepth(depth);
for (; iter; ++iter) {
if (iter.getDepth() != depth) {
continue;
}
openvdb::CoordBBox box;
if (depth == 2) {
/* Internal node at depth 2. */
const Depth2Type *node = nullptr;
iter.getNode(node);
if (node) {
node->evalActiveBoundingBox(box, false);
}
else {
continue;
}
}
else {
/* Leaf node. */
if (!iter.getBoundingBox(box)) {
continue;
}
}
/* +1 to convert from exclusive to inclusive bounds. */
box.max() = box.max().offsetBy(1);
boxes.append(box);
}
return boxes;
}
struct GetBoundingBoxesOp {
const openvdb::GridBase &grid;
const bool coarse;
template<typename GridType> blender::Vector<openvdb::CoordBBox> operator()()
{
return get_bounding_boxes(static_cast<const GridType &>(grid), coarse);
}
};
static blender::Vector<openvdb::CoordBBox> get_bounding_boxes(VolumeGridType grid_type,
const openvdb::GridBase &grid,
const bool coarse)
{
GetBoundingBoxesOp op{grid, coarse};
return BKE_volume_grid_type_operation(grid_type, op);
}
static void boxes_to_center_points(blender::Span<openvdb::CoordBBox> boxes,
const openvdb::math::Transform &transform,
blender::MutableSpan<blender::float3> r_verts)
{
BLI_assert(boxes.size() == r_verts.size());
for (const int i : boxes.index_range()) {
openvdb::Vec3d center = transform.indexToWorld(boxes[i].getCenter());
r_verts[i] = blender::float3(center[0], center[1], center[2]);
}
}
static void boxes_to_corner_points(blender::Span<openvdb::CoordBBox> boxes,
const openvdb::math::Transform &transform,
blender::MutableSpan<blender::float3> r_verts)
{
BLI_assert(boxes.size() * 8 == r_verts.size());
for (const int i : boxes.index_range()) {
const openvdb::CoordBBox &box = boxes[i];
/* The ordering of the corner points is lexicographic. */
std::array<openvdb::Coord, 8> corners;
box.getCornerPoints(corners.data());
for (int j = 0; j < 8; j++) {
openvdb::Coord corner_i = corners[j];
openvdb::Vec3d corner_d = transform.indexToWorld(corner_i);
r_verts[8 * i + j] = blender::float3(corner_d[0], corner_d[1], corner_d[2]);
}
}
}
static void boxes_to_edge_mesh(blender::Span<openvdb::CoordBBox> boxes,
const openvdb::math::Transform &transform,
blender::Vector<blender::float3> &r_verts,
blender::Vector<std::array<int, 2>> &r_edges)
{
/* TODO: Deduplicate edges, hide flat edges? */
const int box_edges[12][2] = {
{0, 1},
{0, 2},
{0, 4},
{1, 3},
{1, 5},
{2, 3},
{2, 6},
{3, 7},
{4, 5},
{4, 6},
{5, 7},
{6, 7},
};
int vert_offset = r_verts.size();
int edge_offset = r_edges.size();
const int vert_amount = 8 * boxes.size();
const int edge_amount = 12 * boxes.size();
r_verts.resize(r_verts.size() + vert_amount);
r_edges.resize(r_edges.size() + edge_amount);
boxes_to_corner_points(boxes, transform, r_verts.as_mutable_span().take_back(vert_amount));
for (int i = 0; i < boxes.size(); i++) {
for (int j = 0; j < 12; j++) {
r_edges[edge_offset + j] = {vert_offset + box_edges[j][0], vert_offset + box_edges[j][1]};
}
vert_offset += 8;
edge_offset += 12;
}
}
static void boxes_to_cube_mesh(blender::Span<openvdb::CoordBBox> boxes,
const openvdb::math::Transform &transform,
blender::Vector<blender::float3> &r_verts,
blender::Vector<std::array<int, 3>> &r_tris)
{
const int box_tris[12][3] = {
{0, 1, 4},
{4, 1, 5},
{0, 2, 1},
{1, 2, 3},
{1, 3, 5},
{5, 3, 7},
{6, 4, 5},
{7, 5, 6},
{2, 0, 4},
{2, 4, 6},
{3, 7, 2},
{6, 2, 7},
};
int vert_offset = r_verts.size();
int tri_offset = r_tris.size();
const int vert_amount = 8 * boxes.size();
const int tri_amount = 12 * boxes.size();
r_verts.resize(r_verts.size() + vert_amount);
r_tris.resize(r_tris.size() + tri_amount);
boxes_to_corner_points(boxes, transform, r_verts.as_mutable_span().take_back(vert_amount));
for (int i = 0; i < boxes.size(); i++) {
for (int j = 0; j < 12; j++) {
r_tris[tri_offset + j] = {vert_offset + box_tris[j][0],
vert_offset + box_tris[j][1],
vert_offset + box_tris[j][2]};
}
vert_offset += 8;
tri_offset += 12;
}
}
#endif
void BKE_volume_grid_wireframe(const Volume *volume,
const blender::bke::VolumeGridData *volume_grid,
BKE_volume_wireframe_cb cb,
void *cb_userdata)
{
if (volume->display.wireframe_type == VOLUME_WIREFRAME_NONE) {
cb(cb_userdata, nullptr, nullptr, 0, 0);
return;
}
#ifdef WITH_OPENVDB
blender::bke::VolumeTreeAccessToken tree_token;
const openvdb::GridBase &grid = volume_grid->grid(tree_token);
if (volume->display.wireframe_type == VOLUME_WIREFRAME_BOUNDS) {
/* Bounding box. */
openvdb::CoordBBox box;
blender::Vector<blender::float3> verts;
blender::Vector<std::array<int, 2>> edges;
if (grid.baseTree().evalLeafBoundingBox(box)) {
boxes_to_edge_mesh({box}, grid.transform(), verts, edges);
}
cb(cb_userdata,
(float(*)[3])verts.data(),
(int(*)[2])edges.data(),
verts.size(),
edges.size());
}
else {
blender::Vector<openvdb::CoordBBox> boxes = get_bounding_boxes(
volume_grid->grid_type(),
grid,
volume->display.wireframe_detail == VOLUME_WIREFRAME_COARSE);
blender::Vector<blender::float3> verts;
blender::Vector<std::array<int, 2>> edges;
if (volume->display.wireframe_type == VOLUME_WIREFRAME_POINTS) {
verts.resize(boxes.size());
boxes_to_center_points(boxes, grid.transform(), verts);
}
else {
boxes_to_edge_mesh(boxes, grid.transform(), verts, edges);
}
cb(cb_userdata,
(float(*)[3])verts.data(),
(int(*)[2])edges.data(),
verts.size(),
edges.size());
}
#else
UNUSED_VARS(volume, volume_grid);
cb(cb_userdata, nullptr, nullptr, 0, 0);
#endif
}
#ifdef WITH_OPENVDB
static void grow_triangles(blender::MutableSpan<blender::float3> verts,
blender::Span<std::array<int, 3>> tris,
const float factor)
{
/* Compute the offset for every vertex based on the connected edges.
* This formula simply tries increases the length of all edges. */
blender::Array<blender::float3> offsets(verts.size(), {0, 0, 0});
blender::Array<float> weights(verts.size(), 0.0f);
for (const std::array<int, 3> &tri : tris) {
offsets[tri[0]] += factor * (2 * verts[tri[0]] - verts[tri[1]] - verts[tri[2]]);
offsets[tri[1]] += factor * (2 * verts[tri[1]] - verts[tri[0]] - verts[tri[2]]);
offsets[tri[2]] += factor * (2 * verts[tri[2]] - verts[tri[0]] - verts[tri[1]]);
weights[tri[0]] += 1.0;
weights[tri[1]] += 1.0;
weights[tri[2]] += 1.0;
}
/* Apply the computed offsets. */
for (const int i : verts.index_range()) {
if (weights[i] > 0.0f) {
verts[i] += offsets[i] / weights[i];
}
}
}
#endif /* WITH_OPENVDB */
void BKE_volume_grid_selection_surface(const Volume * /*volume*/,
const blender::bke::VolumeGridData *volume_grid,
BKE_volume_selection_surface_cb cb,
void *cb_userdata)
{
#ifdef WITH_OPENVDB
blender::bke::VolumeTreeAccessToken tree_token;
const openvdb::GridBase &grid = volume_grid->grid(tree_token);
blender::Vector<openvdb::CoordBBox> boxes = get_bounding_boxes(
volume_grid->grid_type(), grid, true);
blender::Vector<blender::float3> verts;
blender::Vector<std::array<int, 3>> tris;
boxes_to_cube_mesh(boxes, grid.transform(), verts, tris);
/* By slightly scaling the individual boxes up, we can avoid some artifacts when drawing the
* selection outline. */
const float offset_factor = 0.01f;
grow_triangles(verts, tris, offset_factor);
cb(cb_userdata, (float(*)[3])verts.data(), (int(*)[3])tris.data(), verts.size(), tris.size());
#else
UNUSED_VARS(volume_grid);
cb(cb_userdata, nullptr, nullptr, 0, 0);
#endif
}
/* Render */
float BKE_volume_density_scale(const Volume *volume, const float matrix[4][4])
{
if (volume->render.space == VOLUME_SPACE_OBJECT) {
float unit[3] = {1.0f, 1.0f, 1.0f};
normalize_v3(unit);
mul_mat3_m4_v3(matrix, unit);
return 1.0f / len_v3(unit);
}
return 1.0f;
}