Avoid including DNA_customdata_types.h everywhere we include the attributes header. Over time the older attribute header should be used less and less. Part of #122398 Pull Request: https://projects.blender.org/blender/blender/pulls/147980
604 lines
25 KiB
C++
604 lines
25 KiB
C++
/* SPDX-FileCopyrightText: 2025 Blender Authors
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#include "BKE_customdata.hh"
|
|
#include "BLT_translation.hh"
|
|
#include "FN_multi_function.hh"
|
|
|
|
#include "BKE_anonymous_attribute_make.hh"
|
|
#include "BKE_attribute_legacy_convert.hh"
|
|
#include "BKE_node.hh"
|
|
#include "BKE_node_socket_value.hh"
|
|
#include "BKE_volume_grid.hh"
|
|
#include "BKE_volume_grid_fields.hh"
|
|
#include "BKE_volume_grid_process.hh"
|
|
#include "BKE_volume_openvdb.hh"
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#ifdef WITH_OPENVDB
|
|
|
|
# include <openvdb/Grid.h>
|
|
# include <openvdb/math/Transform.h>
|
|
# include <openvdb/tools/Merge.h>
|
|
|
|
#endif
|
|
|
|
#include "volume_grid_function_eval.hh"
|
|
|
|
namespace blender::nodes {
|
|
|
|
namespace grid = bke::volume_grid;
|
|
|
|
#ifdef WITH_OPENVDB
|
|
|
|
static std::optional<VolumeGridType> cpp_type_to_grid_type(const CPPType &cpp_type)
|
|
{
|
|
const std::optional<eCustomDataType> cd_type = bke::cpp_type_to_custom_data_type(cpp_type);
|
|
if (!cd_type) {
|
|
return std::nullopt;
|
|
}
|
|
return bke::custom_data_type_to_volume_grid_type(*cd_type);
|
|
}
|
|
|
|
/**
|
|
* Call the multi-function in a batch on all active voxels in a leaf node.
|
|
*
|
|
* \param fn: The multi-function to call.
|
|
* \param input_values: All input values which may be grids, fields or single values.
|
|
* \param input_grids: The input grids already extracted from #input_values.
|
|
* \param output_grids: The output grids to be filled with the results of the multi-function. The
|
|
* topology of these grids is initialized already. May be null if the output is not needed.
|
|
* \param transform: The transform of all input and output grids.
|
|
* \param leaf_node_mask: Indicates which voxels in the leaf should be computed.
|
|
* \param leaf_bbox: The bounding box of the leaf node.
|
|
* \param get_voxels_fn: A function that extracts the active voxels from the leaf node. This
|
|
* function knows the order of voxels in the leaf.
|
|
*/
|
|
BLI_NOINLINE static void process_leaf_node(const mf::MultiFunction &fn,
|
|
const Span<bke::SocketValueVariant *> input_values,
|
|
const Span<const openvdb::GridBase *> input_grids,
|
|
MutableSpan<openvdb::GridBase::Ptr> output_grids,
|
|
const openvdb::math::Transform &transform,
|
|
const grid::LeafNodeMask &leaf_node_mask,
|
|
const openvdb::CoordBBox &leaf_bbox,
|
|
const grid::GetVoxelsFn get_voxels_fn)
|
|
{
|
|
/* Create an index mask for all the active voxels in the leaf. */
|
|
IndexMaskMemory memory;
|
|
const IndexMask index_mask = IndexMask::from_predicate(
|
|
IndexRange(grid::LeafNodeMask::SIZE),
|
|
GrainSize(grid::LeafNodeMask::SIZE),
|
|
memory,
|
|
[&](const int64_t i) { return leaf_node_mask.isOn(i); });
|
|
|
|
AlignedBuffer<8192, 8> allocation_buffer;
|
|
ResourceScope scope;
|
|
scope.allocator().provide_buffer(allocation_buffer);
|
|
mf::ParamsBuilder params{fn, &index_mask};
|
|
mf::ContextBuilder context;
|
|
|
|
/* We need to find the corresponding leaf nodes in all the input and output grids. That's done by
|
|
* finding the leaf that contains this voxel. */
|
|
const openvdb::Coord any_voxel_in_leaf = leaf_bbox.min();
|
|
|
|
std::optional<MutableSpan<openvdb::Coord>> voxel_coords_opt;
|
|
auto ensure_voxel_coords = [&]() {
|
|
if (!voxel_coords_opt.has_value()) {
|
|
voxel_coords_opt = scope.allocator().allocate_array<openvdb::Coord>(
|
|
index_mask.min_array_size());
|
|
get_voxels_fn(voxel_coords_opt.value());
|
|
}
|
|
return *voxel_coords_opt;
|
|
};
|
|
|
|
for (const int input_i : input_values.index_range()) {
|
|
const bke::SocketValueVariant &value_variant = *input_values[input_i];
|
|
const mf::ParamType param_type = fn.param_type(params.next_param_index());
|
|
const CPPType ¶m_cpp_type = param_type.data_type().single_type();
|
|
|
|
if (const openvdb::GridBase *grid_base = input_grids[input_i]) {
|
|
/* The input is a grid, so we can attempt to reference the grid values directly. */
|
|
grid::to_typed_grid(*grid_base, [&](const auto &grid) {
|
|
using GridT = typename std::decay_t<decltype(grid)>;
|
|
using ValueT = typename GridT::ValueType;
|
|
BLI_assert(param_cpp_type.size == sizeof(ValueT));
|
|
const auto &tree = grid.tree();
|
|
|
|
if (const auto *leaf_node = tree.probeLeaf(any_voxel_in_leaf)) {
|
|
/* Boolean grids are special because they encode the values as bitmask. So create a
|
|
* temporary buffer for the inputs. */
|
|
if constexpr (std::is_same_v<ValueT, bool>) {
|
|
const Span<openvdb::Coord> voxels = ensure_voxel_coords();
|
|
MutableSpan<bool> values = scope.allocator().allocate_array<bool>(
|
|
index_mask.min_array_size());
|
|
index_mask.foreach_index([&](const int64_t i) {
|
|
const openvdb::Coord &coord = voxels[i];
|
|
values[i] = tree.getValue(coord);
|
|
});
|
|
params.add_readonly_single_input(values);
|
|
}
|
|
else {
|
|
const Span<ValueT> values(leaf_node->buffer().data(), grid::LeafNodeMask::SIZE);
|
|
const grid::LeafNodeMask &input_leaf_mask = leaf_node->valueMask();
|
|
const grid::LeafNodeMask missing_mask = leaf_node_mask & !input_leaf_mask;
|
|
if (missing_mask.isOff()) {
|
|
/* All values available, so reference the data directly. */
|
|
params.add_readonly_single_input(
|
|
GSpan(param_cpp_type, values.data(), values.size()));
|
|
}
|
|
else {
|
|
/* Fill in the missing values with the background value. */
|
|
MutableSpan copied_values = scope.allocator().construct_array_copy(values);
|
|
const auto &background = tree.background();
|
|
for (auto missing_it = missing_mask.beginOn(); missing_it.test(); ++missing_it) {
|
|
const int index = missing_it.pos();
|
|
copied_values[index] = background;
|
|
}
|
|
params.add_readonly_single_input(
|
|
GSpan(param_cpp_type, copied_values.data(), copied_values.size()));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* The input does not have this leaf node, so just get the value that's used for the
|
|
* entire leaf. The leaf may be in a tile or is inactive in which case the background
|
|
* value is used. */
|
|
const auto &single_value = tree.getValue(any_voxel_in_leaf);
|
|
params.add_readonly_single_input(GPointer(param_cpp_type, &single_value));
|
|
}
|
|
});
|
|
}
|
|
else if (value_variant.is_context_dependent_field()) {
|
|
/* Compute the field on all active voxels in the leaf and pass the result to the
|
|
* multi-function. */
|
|
const fn::GField field = value_variant.get<fn::GField>();
|
|
const CPPType &type = field.cpp_type();
|
|
const Span<openvdb::Coord> voxels = ensure_voxel_coords();
|
|
bke::VoxelFieldContext field_context{transform, voxels};
|
|
fn::FieldEvaluator evaluator{field_context, &index_mask};
|
|
GMutableSpan values{
|
|
type, scope.allocator().allocate_array(type, voxels.size()), voxels.size()};
|
|
evaluator.add_with_destination(field, values);
|
|
evaluator.evaluate();
|
|
params.add_readonly_single_input(values);
|
|
}
|
|
else {
|
|
/* Pass the single value directly to the multi-function. */
|
|
params.add_readonly_single_input(value_variant.get_single_ptr());
|
|
}
|
|
}
|
|
|
|
for (const int output_i : output_grids.index_range()) {
|
|
const mf::ParamType param_type = fn.param_type(params.next_param_index());
|
|
const CPPType ¶m_cpp_type = param_type.data_type().single_type();
|
|
if (!output_grids[output_i]) {
|
|
params.add_ignored_single_output();
|
|
continue;
|
|
}
|
|
|
|
openvdb::GridBase &grid_base = *output_grids[output_i];
|
|
grid::to_typed_grid(grid_base, [&](auto &grid) {
|
|
using GridT = typename std::decay_t<decltype(grid)>;
|
|
using ValueT = typename GridT::ValueType;
|
|
|
|
auto &tree = grid.tree();
|
|
auto *leaf_node = tree.probeLeaf(any_voxel_in_leaf);
|
|
/* Should have been added before. */
|
|
BLI_assert(leaf_node);
|
|
|
|
/* Boolean grids are special because they encode the values as bitmask. */
|
|
if constexpr (std::is_same_v<ValueT, bool>) {
|
|
MutableSpan<bool> values = scope.allocator().allocate_array<bool>(
|
|
index_mask.min_array_size());
|
|
params.add_uninitialized_single_output(values);
|
|
}
|
|
else {
|
|
/* Write directly into the buffer of the output leaf node. */
|
|
ValueT *values = leaf_node->buffer().data();
|
|
params.add_uninitialized_single_output(
|
|
GMutableSpan(param_cpp_type, values, grid::LeafNodeMask::SIZE));
|
|
}
|
|
});
|
|
}
|
|
|
|
/* Actually call the multi-function which will write the results into the output grids (except
|
|
* for boolean grids). */
|
|
fn.call_auto(index_mask, params, context);
|
|
|
|
for (const int output_i : output_grids.index_range()) {
|
|
const int param_index = input_values.size() + output_i;
|
|
const mf::ParamType param_type = fn.param_type(param_index);
|
|
const CPPType ¶m_cpp_type = param_type.data_type().single_type();
|
|
if (!param_cpp_type.is<bool>()) {
|
|
continue;
|
|
}
|
|
grid::set_mask_leaf_buffer_from_bools(
|
|
static_cast<openvdb::BoolGrid &>(*output_grids[output_i]),
|
|
params.computed_array(param_index).typed<bool>(),
|
|
index_mask,
|
|
ensure_voxel_coords());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Call the multi-function in a batch on all the given voxels.
|
|
*
|
|
* \param fn: The multi-function to call.
|
|
* \param input_values: All input values which may be grids, fields or single values.
|
|
* \param input_grids: The input grids already extracted from #input_values.
|
|
* \param output_grids: The output grids to be filled with the results of the multi-function. The
|
|
* topology of these grids is initialized already.
|
|
* \param transform: The transform of all input and output grids.
|
|
* \param voxels: The voxels to process.
|
|
*/
|
|
BLI_NOINLINE static void process_voxels(const mf::MultiFunction &fn,
|
|
const Span<bke::SocketValueVariant *> input_values,
|
|
const Span<const openvdb::GridBase *> input_grids,
|
|
MutableSpan<openvdb::GridBase::Ptr> output_grids,
|
|
const openvdb::math::Transform &transform,
|
|
const Span<openvdb::Coord> voxels)
|
|
{
|
|
const int64_t voxels_num = voxels.size();
|
|
const IndexMask index_mask{voxels_num};
|
|
AlignedBuffer<8192, 8> allocation_buffer;
|
|
ResourceScope scope;
|
|
scope.allocator().provide_buffer(allocation_buffer);
|
|
mf::ParamsBuilder params{fn, &index_mask};
|
|
mf::ContextBuilder context;
|
|
|
|
for (const int input_i : input_values.index_range()) {
|
|
const bke::SocketValueVariant &value_variant = *input_values[input_i];
|
|
const mf::ParamType param_type = fn.param_type(params.next_param_index());
|
|
const CPPType ¶m_cpp_type = param_type.data_type().single_type();
|
|
|
|
if (const openvdb::GridBase *grid_base = input_grids[input_i]) {
|
|
/* Retrieve all voxel values from the input grid. */
|
|
grid::to_typed_grid(*grid_base, [&](const auto &grid) {
|
|
using ValueType = typename std::decay_t<decltype(grid)>::ValueType;
|
|
const auto &tree = grid.tree();
|
|
/* Could try to cache the accessor across batches, but it's not straight forward since its
|
|
* type depends on the grid type and thread-safety has to be maintained. It's likely not
|
|
* worth it because the cost is already negligible since we are processing a full batch. */
|
|
auto accessor = grid.getConstUnsafeAccessor();
|
|
|
|
MutableSpan<ValueType> values = scope.allocator().allocate_array<ValueType>(voxels_num);
|
|
for (const int64_t i : IndexRange(voxels_num)) {
|
|
const openvdb::Coord &coord = voxels[i];
|
|
values[i] = tree.getValue(coord, accessor);
|
|
}
|
|
BLI_assert(param_cpp_type.size == sizeof(ValueType));
|
|
params.add_readonly_single_input(GSpan(param_cpp_type, values.data(), voxels_num));
|
|
});
|
|
}
|
|
else if (value_variant.is_context_dependent_field()) {
|
|
/* Evaluate the field on all voxels.
|
|
* TODO: Collect fields from all inputs to evaluate together. */
|
|
const fn::GField field = value_variant.get<fn::GField>();
|
|
const CPPType &type = field.cpp_type();
|
|
bke::VoxelFieldContext field_context{transform, voxels};
|
|
fn::FieldEvaluator evaluator{field_context, voxels_num};
|
|
GMutableSpan values{type, scope.allocator().allocate_array(type, voxels_num), voxels_num};
|
|
evaluator.add_with_destination(field, values);
|
|
evaluator.evaluate();
|
|
params.add_readonly_single_input(values);
|
|
}
|
|
else {
|
|
/* Pass the single value directly to the multi-function. */
|
|
params.add_readonly_single_input(value_variant.get_single_ptr());
|
|
}
|
|
}
|
|
|
|
/* Prepare temporary output buffers for the field evaluation. Those will later be copied into the
|
|
* output grids. */
|
|
for ([[maybe_unused]] const int output_i : output_grids.index_range()) {
|
|
const int param_index = input_values.size() + output_i;
|
|
const mf::ParamType param_type = fn.param_type(param_index);
|
|
const CPPType &type = param_type.data_type().single_type();
|
|
void *buffer = scope.allocator().allocate_array(type, voxels_num);
|
|
params.add_uninitialized_single_output(GMutableSpan{type, buffer, voxels_num});
|
|
}
|
|
|
|
/* Actually call the multi-function which will fill the temporary output buffers. */
|
|
fn.call_auto(index_mask, params, context);
|
|
|
|
/* Copy the values from the temporary buffers into the output grids. */
|
|
for (const int output_i : output_grids.index_range()) {
|
|
if (!output_grids[output_i]) {
|
|
continue;
|
|
}
|
|
const int param_index = input_values.size() + output_i;
|
|
grid::set_grid_values(*output_grids[output_i], params.computed_array(param_index), voxels);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Call the multi-function in a batch on all the given tiles. It is assumed that all input grids
|
|
* are constant within the given tiles.
|
|
*
|
|
* \param fn: The multi-function to call.
|
|
* \param input_values: All input values which may be grids, fields or single values.
|
|
* \param input_grids: The input grids already extracted from #input_values.
|
|
* \param output_grids: The output grids to be filled with the results of the multi-function. The
|
|
* topology of these grids is initialized already.
|
|
* \param transform: The transform of all input and output grids.
|
|
* \param tiles: The tiles to process.
|
|
*/
|
|
BLI_NOINLINE static void process_tiles(const mf::MultiFunction &fn,
|
|
const Span<bke::SocketValueVariant *> input_values,
|
|
const Span<const openvdb::GridBase *> input_grids,
|
|
MutableSpan<openvdb::GridBase::Ptr> output_grids,
|
|
const openvdb::math::Transform &transform,
|
|
const Span<openvdb::CoordBBox> tiles)
|
|
{
|
|
const int64_t tiles_num = tiles.size();
|
|
const IndexMask index_mask{tiles_num};
|
|
|
|
AlignedBuffer<8192, 8> allocation_buffer;
|
|
ResourceScope scope;
|
|
scope.allocator().provide_buffer(allocation_buffer);
|
|
mf::ParamsBuilder params{fn, &index_mask};
|
|
mf::ContextBuilder context;
|
|
|
|
for (const int input_i : input_values.index_range()) {
|
|
const bke::SocketValueVariant &value_variant = *input_values[input_i];
|
|
const mf::ParamType param_type = fn.param_type(params.next_param_index());
|
|
const CPPType ¶m_cpp_type = param_type.data_type().single_type();
|
|
|
|
if (const openvdb::GridBase *grid_base = input_grids[input_i]) {
|
|
/* Sample the tile values from the input grid. */
|
|
grid::to_typed_grid(*grid_base, [&](const auto &grid) {
|
|
using GridT = std::decay_t<decltype(grid)>;
|
|
using ValueType = typename GridT::ValueType;
|
|
const auto &tree = grid.tree();
|
|
auto accessor = grid.getConstUnsafeAccessor();
|
|
|
|
MutableSpan<ValueType> values = scope.allocator().allocate_array<ValueType>(tiles_num);
|
|
for (const int64_t i : IndexRange(tiles_num)) {
|
|
const openvdb::CoordBBox &tile = tiles[i];
|
|
/* The tile is assumed to have a single constant value. Therefore, we can get the value
|
|
* from any voxel in that tile as representative. */
|
|
const openvdb::Coord any_coord_in_tile = tile.min();
|
|
values[i] = tree.getValue(any_coord_in_tile, accessor);
|
|
}
|
|
BLI_assert(param_cpp_type.size == sizeof(ValueType));
|
|
params.add_readonly_single_input(GSpan(param_cpp_type, values.data(), tiles_num));
|
|
});
|
|
}
|
|
else if (value_variant.is_context_dependent_field()) {
|
|
/* Evaluate the field on all tiles.
|
|
* TODO: Gather fields from all inputs to evaluate together. */
|
|
const fn::GField field = value_variant.get<fn::GField>();
|
|
const CPPType &type = field.cpp_type();
|
|
bke::TilesFieldContext field_context{transform, tiles};
|
|
fn::FieldEvaluator evaluator{field_context, tiles_num};
|
|
GMutableSpan values{type, scope.allocator().allocate_array(type, tiles_num), tiles_num};
|
|
evaluator.add_with_destination(field, values);
|
|
evaluator.evaluate();
|
|
params.add_readonly_single_input(values);
|
|
}
|
|
else {
|
|
/* Pass the single value directly to the multi-function. */
|
|
params.add_readonly_single_input(value_variant.get_single_ptr());
|
|
}
|
|
}
|
|
|
|
/* Prepare temporary output buffers for the field evaluation. Those will later be copied into the
|
|
* output grids. */
|
|
for ([[maybe_unused]] const int output_i : output_grids.index_range()) {
|
|
if (!output_grids[output_i]) {
|
|
params.add_ignored_single_output();
|
|
continue;
|
|
}
|
|
const int param_index = input_values.size() + output_i;
|
|
const mf::ParamType param_type = fn.param_type(param_index);
|
|
const CPPType &type = param_type.data_type().single_type();
|
|
void *buffer = scope.allocator().allocate_array(type, tiles_num);
|
|
params.add_uninitialized_single_output(GMutableSpan{type, buffer, tiles_num});
|
|
}
|
|
|
|
/* Actually call the multi-function which will fill the temporary output buffers. */
|
|
fn.call_auto(index_mask, params, context);
|
|
|
|
/* Copy the values from the temporary buffers into the output grids. */
|
|
for (const int output_i : output_grids.index_range()) {
|
|
if (!output_grids[output_i]) {
|
|
continue;
|
|
}
|
|
const int param_index = input_values.size() + output_i;
|
|
grid::set_tile_values(*output_grids[output_i], params.computed_array(param_index), tiles);
|
|
}
|
|
}
|
|
|
|
BLI_NOINLINE static void process_background(const mf::MultiFunction &fn,
|
|
const Span<bke::SocketValueVariant *> input_values,
|
|
const Span<const openvdb::GridBase *> input_grids,
|
|
const openvdb::math::Transform &transform,
|
|
MutableSpan<openvdb::GridBase::Ptr> output_grids)
|
|
{
|
|
AlignedBuffer<160, 8> allocation_buffer;
|
|
ResourceScope scope;
|
|
scope.allocator().provide_buffer(allocation_buffer);
|
|
|
|
const IndexMask mask(1);
|
|
mf::ParamsBuilder params(fn, &mask);
|
|
mf::ContextBuilder context;
|
|
|
|
for (const int input_i : input_values.index_range()) {
|
|
const bke::SocketValueVariant &value_variant = *input_values[input_i];
|
|
const mf::ParamType param_type = fn.param_type(params.next_param_index());
|
|
const CPPType ¶m_cpp_type = param_type.data_type().single_type();
|
|
|
|
if (const openvdb::GridBase *grid_base = input_grids[input_i]) {
|
|
grid::to_typed_grid(*grid_base, [&](const auto &grid) {
|
|
# ifndef NDEBUG
|
|
using GridT = std::decay_t<decltype(grid)>;
|
|
using ValueType = typename GridT::ValueType;
|
|
BLI_assert(param_cpp_type.size == sizeof(ValueType));
|
|
# endif
|
|
const auto &tree = grid.tree();
|
|
params.add_readonly_single_input(GPointer(param_cpp_type, &tree.background()));
|
|
});
|
|
continue;
|
|
}
|
|
|
|
if (value_variant.is_context_dependent_field()) {
|
|
const fn::GField field = value_variant.get<fn::GField>();
|
|
const CPPType &type = field.cpp_type();
|
|
static const openvdb::CoordBBox background_space = openvdb::CoordBBox::inf();
|
|
bke::TilesFieldContext field_context(transform,
|
|
Span<openvdb::CoordBBox>(&background_space, 1));
|
|
fn::FieldEvaluator evaluator(field_context, 1);
|
|
GMutableSpan value(type, scope.allocator().allocate(type), 1);
|
|
evaluator.add_with_destination(field, value);
|
|
evaluator.evaluate();
|
|
params.add_readonly_single_input(GPointer(type, value.data()));
|
|
continue;
|
|
}
|
|
|
|
params.add_readonly_single_input(value_variant.get_single_ptr());
|
|
}
|
|
|
|
for ([[maybe_unused]] const int output_i : output_grids.index_range()) {
|
|
if (!output_grids[output_i]) {
|
|
params.add_ignored_single_output();
|
|
continue;
|
|
}
|
|
const int param_index = input_values.size() + output_i;
|
|
const mf::ParamType param_type = fn.param_type(param_index);
|
|
const CPPType &type = param_type.data_type().single_type();
|
|
|
|
GMutableSpan value_buffer(type, scope.allocator().allocate(type), 1);
|
|
params.add_uninitialized_single_output(value_buffer);
|
|
}
|
|
|
|
fn.call_auto(mask, params, context);
|
|
|
|
for ([[maybe_unused]] const int output_i : output_grids.index_range()) {
|
|
if (!output_grids[output_i]) {
|
|
continue;
|
|
}
|
|
const int param_index = input_values.size() + output_i;
|
|
const GSpan value = params.computed_array(param_index);
|
|
grid::set_grid_background(*output_grids[output_i], GPointer(value.type(), value.data()));
|
|
}
|
|
}
|
|
|
|
bool execute_multi_function_on_value_variant__volume_grid(
|
|
const mf::MultiFunction &fn,
|
|
const Span<bke::SocketValueVariant *> input_values,
|
|
const Span<bke::SocketValueVariant *> output_values,
|
|
std::string &r_error_message)
|
|
{
|
|
const int inputs_num = input_values.size();
|
|
Array<bke::VolumeTreeAccessToken> input_volume_tokens(inputs_num);
|
|
Array<const openvdb::GridBase *> input_grids(inputs_num, nullptr);
|
|
|
|
for (const int input_i : IndexRange(inputs_num)) {
|
|
bke::SocketValueVariant &value_variant = *input_values[input_i];
|
|
if (value_variant.is_volume_grid()) {
|
|
const bke::GVolumeGrid g_volume_grid = value_variant.get<bke::GVolumeGrid>();
|
|
input_grids[input_i] = &g_volume_grid->grid(input_volume_tokens[input_i]);
|
|
}
|
|
else if (value_variant.is_context_dependent_field()) {
|
|
/* Nothing to do here. The field is evaluated later. */
|
|
}
|
|
else {
|
|
value_variant.convert_to_single();
|
|
}
|
|
}
|
|
|
|
const openvdb::math::Transform *transform = nullptr;
|
|
for (const openvdb::GridBase *grid : input_grids) {
|
|
if (!grid) {
|
|
continue;
|
|
}
|
|
const openvdb::math::Transform &other_transform = grid->transform();
|
|
if (!transform) {
|
|
transform = &other_transform;
|
|
continue;
|
|
}
|
|
if (*transform != other_transform) {
|
|
r_error_message = TIP_("Input grids have incompatible transforms");
|
|
return false;
|
|
}
|
|
}
|
|
if (transform == nullptr) {
|
|
r_error_message = TIP_("No input grid found that can determine the topology");
|
|
return false;
|
|
}
|
|
|
|
openvdb::MaskTree mask_tree;
|
|
for (const openvdb::GridBase *grid : input_grids) {
|
|
if (!grid) {
|
|
continue;
|
|
}
|
|
grid::to_typed_grid(*grid, [&](const auto &grid) { mask_tree.topologyUnion(grid.tree()); });
|
|
}
|
|
|
|
Array<openvdb::GridBase::Ptr> output_grids(output_values.size());
|
|
for (const int i : output_values.index_range()) {
|
|
if (!output_values[i]) {
|
|
continue;
|
|
}
|
|
const int param_index = input_values.size() + i;
|
|
const mf::ParamType param_type = fn.param_type(param_index);
|
|
const CPPType &cpp_type = param_type.data_type().single_type();
|
|
const std::optional<VolumeGridType> grid_type = cpp_type_to_grid_type(cpp_type);
|
|
if (!grid_type) {
|
|
r_error_message = TIP_("Grid type not supported");
|
|
return false;
|
|
}
|
|
|
|
output_grids[i] = grid::create_grid_with_topology(mask_tree, *transform, *grid_type);
|
|
}
|
|
|
|
grid::parallel_grid_topology_tasks(
|
|
mask_tree,
|
|
[&](const grid::LeafNodeMask &leaf_node_mask,
|
|
const openvdb::CoordBBox &leaf_bbox,
|
|
const grid::GetVoxelsFn get_voxels_fn) {
|
|
process_leaf_node(fn,
|
|
input_values,
|
|
input_grids,
|
|
output_grids,
|
|
*transform,
|
|
leaf_node_mask,
|
|
leaf_bbox,
|
|
get_voxels_fn);
|
|
},
|
|
[&](const Span<openvdb::Coord> voxels) {
|
|
process_voxels(fn, input_values, input_grids, output_grids, *transform, voxels);
|
|
},
|
|
[&](const Span<openvdb::CoordBBox> tiles) {
|
|
process_tiles(fn, input_values, input_grids, output_grids, *transform, tiles);
|
|
});
|
|
|
|
process_background(fn, input_values, input_grids, *transform, output_grids);
|
|
|
|
for (const int i : output_values.index_range()) {
|
|
if (bke::SocketValueVariant *output_value = output_values[i]) {
|
|
output_value->set(bke::GVolumeGrid(std::move(output_grids[i])));
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#else
|
|
|
|
bool execute_multi_function_on_value_variant__volume_grid(
|
|
const mf::MultiFunction & /*fn*/,
|
|
const Span<bke::SocketValueVariant *> /*input_values*/,
|
|
const Span<bke::SocketValueVariant *> /*output_values*/,
|
|
std::string &r_error_message)
|
|
{
|
|
r_error_message = TIP_("Compiled without OpenVDB");
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
} // namespace blender::nodes
|