Files
test/intern/cycles/device/multi/device.cpp
Sahar A. Kashi 557a245dd5 Cycles: add HIP RT device, for AMD hardware ray tracing on Windows
HIP RT enables AMD hardware ray tracing on RDNA2 and above, and falls back to a
to shader implementation for older graphics cards. It offers an average 25%
sample rendering rate improvement in Cycles benchmarks, on a W6800 card.

The ray tracing feature functions are accessed through HIP RT SDK, available on
GPUOpen. HIP RT traversal functionality is pre-compiled in bitcode format and
shipped with the SDK.

This is not yet enabled as there are issues to be resolved, but landing the
code now makes testing and further changes easier.

Known limitations:
* Not working yet with current public AMD drivers.
* Visual artifact in motion blur.
* One of the buffers allocated for traversal has a static size. Allocating it
  dynamically would reduce memory usage.
* This is for Windows only currently, no Linux support.

Co-authored-by: Brecht Van Lommel <brecht@blender.org>

Ref #105538
2023-04-25 20:19:43 +02:00

441 lines
14 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#include "device/multi/device.h"
#include <sstream>
#include <stdlib.h>
#include "bvh/multi.h"
#include "device/device.h"
#include "device/queue.h"
#include "scene/geometry.h"
#include "util/foreach.h"
#include "util/list.h"
#include "util/log.h"
#include "util/map.h"
#include "util/time.h"
CCL_NAMESPACE_BEGIN
class MultiDevice : public Device {
public:
struct SubDevice {
Stats stats;
Device *device;
map<device_ptr, device_ptr> ptr_map;
int peer_island_index = -1;
};
list<SubDevice> devices;
device_ptr unique_key;
vector<vector<SubDevice *>> peer_islands;
MultiDevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
: Device(info, stats, profiler), unique_key(1)
{
foreach (const DeviceInfo &subinfo, info.multi_devices) {
/* Always add CPU devices at the back since GPU devices can change
* host memory pointers, which CPU uses as device pointer. */
SubDevice *sub;
if (subinfo.type == DEVICE_CPU) {
devices.emplace_back();
sub = &devices.back();
}
else {
devices.emplace_front();
sub = &devices.front();
}
/* The pointer to 'sub->stats' will stay valid even after new devices
* are added, since 'devices' is a linked list. */
sub->device = Device::create(subinfo, sub->stats, profiler);
}
/* Build a list of peer islands for the available render devices */
foreach (SubDevice &sub, devices) {
/* First ensure that every device is in at least once peer island */
if (sub.peer_island_index < 0) {
peer_islands.emplace_back();
sub.peer_island_index = (int)peer_islands.size() - 1;
peer_islands[sub.peer_island_index].push_back(&sub);
}
if (!info.has_peer_memory) {
continue;
}
/* Second check peer access between devices and fill up the islands accordingly */
foreach (SubDevice &peer_sub, devices) {
if (peer_sub.peer_island_index < 0 &&
peer_sub.device->info.type == sub.device->info.type &&
peer_sub.device->check_peer_access(sub.device)) {
peer_sub.peer_island_index = sub.peer_island_index;
peer_islands[sub.peer_island_index].push_back(&peer_sub);
}
}
}
}
~MultiDevice()
{
foreach (SubDevice &sub, devices)
delete sub.device;
}
const string &error_message() override
{
error_msg.clear();
foreach (SubDevice &sub, devices)
error_msg += sub.device->error_message();
return error_msg;
}
virtual BVHLayoutMask get_bvh_layout_mask(uint kernel_features) const override
{
BVHLayoutMask bvh_layout_mask = BVH_LAYOUT_ALL;
BVHLayoutMask bvh_layout_mask_all = BVH_LAYOUT_NONE;
foreach (const SubDevice &sub_device, devices) {
BVHLayoutMask device_bvh_layout_mask = sub_device.device->get_bvh_layout_mask(
kernel_features);
bvh_layout_mask &= device_bvh_layout_mask;
bvh_layout_mask_all |= device_bvh_layout_mask;
}
/* With multiple OptiX devices, every device needs its own acceleration structure */
if (bvh_layout_mask == BVH_LAYOUT_OPTIX) {
return BVH_LAYOUT_MULTI_OPTIX;
}
/* With multiple Metal devices, every device needs its own acceleration structure */
if (bvh_layout_mask == BVH_LAYOUT_METAL) {
return BVH_LAYOUT_MULTI_METAL;
}
if (bvh_layout_mask == BVH_LAYOUT_HIPRT) {
return BVH_LAYOUT_MULTI_HIPRT;
}
/* When devices do not share a common BVH layout, fall back to creating one for each */
const BVHLayoutMask BVH_LAYOUT_OPTIX_EMBREE = (BVH_LAYOUT_OPTIX | BVH_LAYOUT_EMBREE);
if ((bvh_layout_mask_all & BVH_LAYOUT_OPTIX_EMBREE) == BVH_LAYOUT_OPTIX_EMBREE) {
return BVH_LAYOUT_MULTI_OPTIX_EMBREE;
}
const BVHLayoutMask BVH_LAYOUT_METAL_EMBREE = (BVH_LAYOUT_METAL | BVH_LAYOUT_EMBREE);
if ((bvh_layout_mask_all & BVH_LAYOUT_METAL_EMBREE) == BVH_LAYOUT_METAL_EMBREE) {
return BVH_LAYOUT_MULTI_METAL_EMBREE;
}
return bvh_layout_mask;
}
bool load_kernels(const uint kernel_features) override
{
foreach (SubDevice &sub, devices)
if (!sub.device->load_kernels(kernel_features))
return false;
return true;
}
bool load_osl_kernels() override
{
foreach (SubDevice &sub, devices)
if (!sub.device->load_osl_kernels())
return false;
return true;
}
void build_bvh(BVH *bvh, Progress &progress, bool refit) override
{
/* Try to build and share a single acceleration structure, if possible */
if (bvh->params.bvh_layout == BVH_LAYOUT_BVH2 || bvh->params.bvh_layout == BVH_LAYOUT_EMBREE) {
devices.back().device->build_bvh(bvh, progress, refit);
return;
}
assert(bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_HIPRT ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL_EMBREE ||
bvh->params.bvh_layout == BVH_LAYOUT_MULTI_HIPRT_EMBREE);
BVHMulti *const bvh_multi = static_cast<BVHMulti *>(bvh);
bvh_multi->sub_bvhs.resize(devices.size());
vector<BVHMulti *> geom_bvhs;
geom_bvhs.reserve(bvh->geometry.size());
foreach (Geometry *geom, bvh->geometry) {
geom_bvhs.push_back(static_cast<BVHMulti *>(geom->bvh));
}
/* Broadcast acceleration structure build to all render devices */
size_t i = 0;
foreach (SubDevice &sub, devices) {
/* Change geometry BVH pointers to the sub BVH */
for (size_t k = 0; k < bvh->geometry.size(); ++k) {
bvh->geometry[k]->bvh = geom_bvhs[k]->sub_bvhs[i];
}
if (!bvh_multi->sub_bvhs[i]) {
BVHParams params = bvh->params;
if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX)
params.bvh_layout = BVH_LAYOUT_OPTIX;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL)
params.bvh_layout = BVH_LAYOUT_METAL;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_HIPRT)
params.bvh_layout = BVH_LAYOUT_HIPRT;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_OPTIX_EMBREE)
params.bvh_layout = sub.device->info.type == DEVICE_OPTIX ? BVH_LAYOUT_OPTIX :
BVH_LAYOUT_EMBREE;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_METAL_EMBREE)
params.bvh_layout = sub.device->info.type == DEVICE_METAL ? BVH_LAYOUT_METAL :
BVH_LAYOUT_EMBREE;
else if (bvh->params.bvh_layout == BVH_LAYOUT_MULTI_HIPRT_EMBREE)
params.bvh_layout = sub.device->info.type == DEVICE_HIPRT ? BVH_LAYOUT_HIPRT :
BVH_LAYOUT_EMBREE;
/* Skip building a bottom level acceleration structure for non-instanced geometry on Embree
* (since they are put into the top level directly, see bvh_embree.cpp) */
if (!params.top_level && params.bvh_layout == BVH_LAYOUT_EMBREE &&
!bvh->geometry[0]->is_instanced()) {
i++;
continue;
}
bvh_multi->sub_bvhs[i] = BVH::create(params, bvh->geometry, bvh->objects, sub.device);
}
sub.device->build_bvh(bvh_multi->sub_bvhs[i], progress, refit);
i++;
}
/* Change geometry BVH pointers back to the multi BVH. */
for (size_t k = 0; k < bvh->geometry.size(); ++k) {
bvh->geometry[k]->bvh = geom_bvhs[k];
}
}
virtual void *get_cpu_osl_memory() override
{
/* Always return the OSL memory of the CPU device (this works since the constructor above
* guarantees that CPU devices are always added to the back). */
if (devices.size() > 1 && devices.back().device->info.type != DEVICE_CPU) {
return NULL;
}
return devices.back().device->get_cpu_osl_memory();
}
bool is_resident(device_ptr key, Device *sub_device) override
{
foreach (SubDevice &sub, devices) {
if (sub.device == sub_device) {
return find_matching_mem_device(key, sub)->device == sub_device;
}
}
return false;
}
SubDevice *find_matching_mem_device(device_ptr key, SubDevice &sub)
{
assert(key != 0 && (sub.peer_island_index >= 0 || sub.ptr_map.find(key) != sub.ptr_map.end()));
/* Get the memory owner of this key (first try current device, then peer devices) */
SubDevice *owner_sub = &sub;
if (owner_sub->ptr_map.find(key) == owner_sub->ptr_map.end()) {
foreach (SubDevice *island_sub, peer_islands[sub.peer_island_index]) {
if (island_sub != owner_sub &&
island_sub->ptr_map.find(key) != island_sub->ptr_map.end()) {
owner_sub = island_sub;
}
}
}
return owner_sub;
}
SubDevice *find_suitable_mem_device(device_ptr key, const vector<SubDevice *> &island)
{
assert(!island.empty());
/* Get the memory owner of this key or the device with the lowest memory usage when new */
SubDevice *owner_sub = island.front();
foreach (SubDevice *island_sub, island) {
if (key ? (island_sub->ptr_map.find(key) != island_sub->ptr_map.end()) :
(island_sub->device->stats.mem_used < owner_sub->device->stats.mem_used)) {
owner_sub = island_sub;
}
}
return owner_sub;
}
inline device_ptr find_matching_mem(device_ptr key, SubDevice &sub)
{
return find_matching_mem_device(key, sub)->ptr_map[key];
}
void mem_alloc(device_memory &mem) override
{
device_ptr key = unique_key++;
assert(mem.type == MEM_READ_ONLY || mem.type == MEM_READ_WRITE || mem.type == MEM_DEVICE_ONLY);
/* The remaining memory types can be distributed across devices */
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_suitable_mem_device(key, island);
mem.device = owner_sub->device;
mem.device_pointer = 0;
mem.device_size = 0;
owner_sub->device->mem_alloc(mem);
owner_sub->ptr_map[key] = mem.device_pointer;
}
mem.device = this;
mem.device_pointer = key;
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory &mem) override
{
device_ptr existing_key = mem.device_pointer;
device_ptr key = (existing_key) ? existing_key : unique_key++;
size_t existing_size = mem.device_size;
/* The tile buffers are allocated on each device (see below), so copy to all of them */
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_suitable_mem_device(existing_key, island);
mem.device = owner_sub->device;
mem.device_pointer = (existing_key) ? owner_sub->ptr_map[existing_key] : 0;
mem.device_size = existing_size;
owner_sub->device->mem_copy_to(mem);
owner_sub->ptr_map[key] = mem.device_pointer;
if (mem.type == MEM_GLOBAL || mem.type == MEM_TEXTURE) {
/* Need to create texture objects and update pointer in kernel globals on all devices */
foreach (SubDevice *island_sub, island) {
if (island_sub != owner_sub) {
island_sub->device->mem_copy_to(mem);
}
}
}
}
mem.device = this;
mem.device_pointer = key;
stats.mem_alloc(mem.device_size - existing_size);
}
void mem_copy_from(device_memory &mem, size_t y, size_t w, size_t h, size_t elem) override
{
device_ptr key = mem.device_pointer;
size_t i = 0, sub_h = h / devices.size();
foreach (SubDevice &sub, devices) {
size_t sy = y + i * sub_h;
size_t sh = (i == (size_t)devices.size() - 1) ? h - sub_h * i : sub_h;
SubDevice *owner_sub = find_matching_mem_device(key, sub);
mem.device = owner_sub->device;
mem.device_pointer = owner_sub->ptr_map[key];
owner_sub->device->mem_copy_from(mem, sy, w, sh, elem);
i++;
}
mem.device = this;
mem.device_pointer = key;
}
void mem_zero(device_memory &mem) override
{
device_ptr existing_key = mem.device_pointer;
device_ptr key = (existing_key) ? existing_key : unique_key++;
size_t existing_size = mem.device_size;
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_suitable_mem_device(existing_key, island);
mem.device = owner_sub->device;
mem.device_pointer = (existing_key) ? owner_sub->ptr_map[existing_key] : 0;
mem.device_size = existing_size;
owner_sub->device->mem_zero(mem);
owner_sub->ptr_map[key] = mem.device_pointer;
}
mem.device = this;
mem.device_pointer = key;
stats.mem_alloc(mem.device_size - existing_size);
}
void mem_free(device_memory &mem) override
{
device_ptr key = mem.device_pointer;
size_t existing_size = mem.device_size;
/* Free memory that was allocated for all devices (see above) on each device */
foreach (const vector<SubDevice *> &island, peer_islands) {
SubDevice *owner_sub = find_matching_mem_device(key, *island.front());
mem.device = owner_sub->device;
mem.device_pointer = owner_sub->ptr_map[key];
mem.device_size = existing_size;
owner_sub->device->mem_free(mem);
owner_sub->ptr_map.erase(owner_sub->ptr_map.find(key));
if (mem.type == MEM_TEXTURE) {
/* Free texture objects on all devices */
foreach (SubDevice *island_sub, island) {
if (island_sub != owner_sub) {
island_sub->device->mem_free(mem);
}
}
}
}
mem.device = this;
mem.device_pointer = 0;
mem.device_size = 0;
stats.mem_free(existing_size);
}
void const_copy_to(const char *name, void *host, size_t size) override
{
foreach (SubDevice &sub, devices)
sub.device->const_copy_to(name, host, size);
}
int device_number(Device *sub_device) override
{
int i = 0;
foreach (SubDevice &sub, devices) {
if (sub.device == sub_device)
return i;
i++;
}
return -1;
}
virtual void foreach_device(const function<void(Device *)> &callback) override
{
foreach (SubDevice &sub, devices) {
sub.device->foreach_device(callback);
}
}
};
Device *device_multi_create(const DeviceInfo &info, Stats &stats, Profiler &profiler)
{
return new MultiDevice(info, stats, profiler);
}
CCL_NAMESPACE_END