For transparency, volume and light intersection rays, adjust these distances rather than the ray start position. This way we increment the start distance by the smallest possible float increment to avoid self intersections, and be sure it works as the distance compared to be will be exactly the same as before, due to the ray start position and direction remaining the same. Fix T98764, T96537, hair ray tracing precision issues. Differential Revision: https://developer.blender.org/D15455
515 lines
17 KiB
C
515 lines
17 KiB
C
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2011-2022 Blender Foundation */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/camera/projection.h"
|
|
#include "kernel/sample/mapping.h"
|
|
#include "kernel/util/differential.h"
|
|
#include "kernel/util/lookup_table.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Perspective Camera */
|
|
|
|
ccl_device float2 camera_sample_aperture(ccl_constant KernelCamera *cam, float u, float v)
|
|
{
|
|
float blades = cam->blades;
|
|
float2 bokeh;
|
|
|
|
if (blades == 0.0f) {
|
|
/* sample disk */
|
|
bokeh = concentric_sample_disk(u, v);
|
|
}
|
|
else {
|
|
/* sample polygon */
|
|
float rotation = cam->bladesrotation;
|
|
bokeh = regular_polygon_sample(blades, rotation, u, v);
|
|
}
|
|
|
|
/* anamorphic lens bokeh */
|
|
bokeh.x *= cam->inv_aperture_ratio;
|
|
|
|
return bokeh;
|
|
}
|
|
|
|
ccl_device void camera_sample_perspective(KernelGlobals kg,
|
|
float raster_x,
|
|
float raster_y,
|
|
float lens_u,
|
|
float lens_v,
|
|
ccl_private Ray *ray)
|
|
{
|
|
/* create ray form raster position */
|
|
ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
|
|
float3 raster = make_float3(raster_x, raster_y, 0.0f);
|
|
float3 Pcamera = transform_perspective(&rastertocamera, raster);
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (kernel_data.cam.have_perspective_motion) {
|
|
/* TODO(sergey): Currently we interpolate projected coordinate which
|
|
* gives nice looking result and which is simple, but is in fact a bit
|
|
* different comparing to constructing projective matrix from an
|
|
* interpolated field of view.
|
|
*/
|
|
if (ray->time < 0.5f) {
|
|
ProjectionTransform rastertocamera_pre = kernel_data.cam.perspective_pre;
|
|
float3 Pcamera_pre = transform_perspective(&rastertocamera_pre, raster);
|
|
Pcamera = interp(Pcamera_pre, Pcamera, ray->time * 2.0f);
|
|
}
|
|
else {
|
|
ProjectionTransform rastertocamera_post = kernel_data.cam.perspective_post;
|
|
float3 Pcamera_post = transform_perspective(&rastertocamera_post, raster);
|
|
Pcamera = interp(Pcamera, Pcamera_post, (ray->time - 0.5f) * 2.0f);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
float3 P = zero_float3();
|
|
float3 D = Pcamera;
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = kernel_data.cam.aperturesize;
|
|
|
|
if (aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float ft = kernel_data.cam.focaldistance / D.z;
|
|
float3 Pfocus = D * ft;
|
|
|
|
/* update ray for effect of lens */
|
|
P = make_float3(lensuv.x, lensuv.y, 0.0f);
|
|
D = normalize(Pfocus - P);
|
|
}
|
|
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (kernel_data.cam.num_motion_steps) {
|
|
transform_motion_array_interpolate(&cameratoworld,
|
|
kernel_data_array(camera_motion),
|
|
kernel_data.cam.num_motion_steps,
|
|
ray->time);
|
|
}
|
|
#endif
|
|
|
|
P = transform_point(&cameratoworld, P);
|
|
D = normalize(transform_direction(&cameratoworld, D));
|
|
|
|
bool use_stereo = kernel_data.cam.interocular_offset != 0.0f;
|
|
if (!use_stereo) {
|
|
/* No stereo */
|
|
ray->P = P;
|
|
ray->D = D;
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
float3 Dcenter = transform_direction(&cameratoworld, Pcamera);
|
|
float3 Dcenter_normalized = normalize(Dcenter);
|
|
|
|
/* TODO: can this be optimized to give compact differentials directly? */
|
|
ray->dP = differential_zero_compact();
|
|
differential3 dD;
|
|
dD.dx = normalize(Dcenter + float4_to_float3(kernel_data.cam.dx)) - Dcenter_normalized;
|
|
dD.dy = normalize(Dcenter + float4_to_float3(kernel_data.cam.dy)) - Dcenter_normalized;
|
|
ray->dD = differential_make_compact(dD);
|
|
#endif
|
|
}
|
|
else {
|
|
/* Spherical stereo */
|
|
spherical_stereo_transform(&kernel_data.cam, &P, &D);
|
|
ray->P = P;
|
|
ray->D = D;
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* Ray differentials, computed from scratch using the raster coordinates
|
|
* because we don't want to be affected by depth of field. We compute
|
|
* ray origin and direction for the center and two neighboring pixels
|
|
* and simply take their differences. */
|
|
float3 Pnostereo = transform_point(&cameratoworld, zero_float3());
|
|
|
|
float3 Pcenter = Pnostereo;
|
|
float3 Dcenter = Pcamera;
|
|
Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
|
|
spherical_stereo_transform(&kernel_data.cam, &Pcenter, &Dcenter);
|
|
|
|
float3 Px = Pnostereo;
|
|
float3 Dx = transform_perspective(&rastertocamera,
|
|
make_float3(raster_x + 1.0f, raster_y, 0.0f));
|
|
Dx = normalize(transform_direction(&cameratoworld, Dx));
|
|
spherical_stereo_transform(&kernel_data.cam, &Px, &Dx);
|
|
|
|
differential3 dP, dD;
|
|
|
|
dP.dx = Px - Pcenter;
|
|
dD.dx = Dx - Dcenter;
|
|
|
|
float3 Py = Pnostereo;
|
|
float3 Dy = transform_perspective(&rastertocamera,
|
|
make_float3(raster_x, raster_y + 1.0f, 0.0f));
|
|
Dy = normalize(transform_direction(&cameratoworld, Dy));
|
|
spherical_stereo_transform(&kernel_data.cam, &Py, &Dy);
|
|
|
|
dP.dy = Py - Pcenter;
|
|
dD.dy = Dy - Dcenter;
|
|
ray->dD = differential_make_compact(dD);
|
|
ray->dP = differential_make_compact(dP);
|
|
#endif
|
|
}
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
float z_inv = 1.0f / normalize(Pcamera).z;
|
|
float nearclip = kernel_data.cam.nearclip * z_inv;
|
|
ray->P += nearclip * ray->D;
|
|
ray->dP += nearclip * ray->dD;
|
|
ray->tmin = 0.0f;
|
|
ray->tmax = kernel_data.cam.cliplength * z_inv;
|
|
#else
|
|
ray->tmin = 0.0f;
|
|
ray->tmax = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Orthographic Camera */
|
|
ccl_device void camera_sample_orthographic(KernelGlobals kg,
|
|
float raster_x,
|
|
float raster_y,
|
|
float lens_u,
|
|
float lens_v,
|
|
ccl_private Ray *ray)
|
|
{
|
|
/* create ray form raster position */
|
|
ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
|
|
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
|
|
|
|
float3 P;
|
|
float3 D = make_float3(0.0f, 0.0f, 1.0f);
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = kernel_data.cam.aperturesize;
|
|
|
|
if (aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float3 Pfocus = D * kernel_data.cam.focaldistance;
|
|
|
|
/* update ray for effect of lens */
|
|
float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
|
|
P = Pcamera + lensuvw;
|
|
D = normalize(Pfocus - lensuvw);
|
|
}
|
|
else {
|
|
P = Pcamera;
|
|
}
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (kernel_data.cam.num_motion_steps) {
|
|
transform_motion_array_interpolate(&cameratoworld,
|
|
kernel_data_array(camera_motion),
|
|
kernel_data.cam.num_motion_steps,
|
|
ray->time);
|
|
}
|
|
#endif
|
|
|
|
ray->P = transform_point(&cameratoworld, P);
|
|
ray->D = normalize(transform_direction(&cameratoworld, D));
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* ray differential */
|
|
differential3 dP;
|
|
dP.dx = float4_to_float3(kernel_data.cam.dx);
|
|
dP.dy = float4_to_float3(kernel_data.cam.dx);
|
|
|
|
ray->dP = differential_make_compact(dP);
|
|
ray->dD = differential_zero_compact();
|
|
#endif
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
ray->tmin = 0.0f;
|
|
ray->tmax = kernel_data.cam.cliplength;
|
|
#else
|
|
ray->tmin = 0.0f;
|
|
ray->tmax = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Panorama Camera */
|
|
|
|
ccl_device_inline void camera_sample_panorama(ccl_constant KernelCamera *cam,
|
|
#ifdef __CAMERA_MOTION__
|
|
ccl_global const DecomposedTransform *cam_motion,
|
|
#endif
|
|
float raster_x,
|
|
float raster_y,
|
|
float lens_u,
|
|
float lens_v,
|
|
ccl_private Ray *ray)
|
|
{
|
|
ProjectionTransform rastertocamera = cam->rastertocamera;
|
|
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
|
|
|
|
/* create ray form raster position */
|
|
float3 P = zero_float3();
|
|
float3 D = panorama_to_direction(cam, Pcamera.x, Pcamera.y);
|
|
|
|
/* indicates ray should not receive any light, outside of the lens */
|
|
if (is_zero(D)) {
|
|
ray->tmax = 0.0f;
|
|
return;
|
|
}
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = cam->aperturesize;
|
|
|
|
if (aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(cam, lens_u, lens_v) * aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float3 Dfocus = normalize(D);
|
|
float3 Pfocus = Dfocus * cam->focaldistance;
|
|
|
|
/* calculate orthonormal coordinates perpendicular to Dfocus */
|
|
float3 U, V;
|
|
U = normalize(make_float3(1.0f, 0.0f, 0.0f) - Dfocus.x * Dfocus);
|
|
V = normalize(cross(Dfocus, U));
|
|
|
|
/* update ray for effect of lens */
|
|
P = U * lensuv.x + V * lensuv.y;
|
|
D = normalize(Pfocus - P);
|
|
}
|
|
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = cam->cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (cam->num_motion_steps) {
|
|
transform_motion_array_interpolate(
|
|
&cameratoworld, cam_motion, cam->num_motion_steps, ray->time);
|
|
}
|
|
#endif
|
|
|
|
/* Stereo transform */
|
|
bool use_stereo = cam->interocular_offset != 0.0f;
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &P, &D);
|
|
}
|
|
|
|
P = transform_point(&cameratoworld, P);
|
|
D = normalize(transform_direction(&cameratoworld, D));
|
|
|
|
ray->P = P;
|
|
ray->D = D;
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* Ray differentials, computed from scratch using the raster coordinates
|
|
* because we don't want to be affected by depth of field. We compute
|
|
* ray origin and direction for the center and two neighboring pixels
|
|
* and simply take their differences. */
|
|
float3 Pcenter = Pcamera;
|
|
float3 Dcenter = panorama_to_direction(cam, Pcenter.x, Pcenter.y);
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &Pcenter, &Dcenter);
|
|
}
|
|
Pcenter = transform_point(&cameratoworld, Pcenter);
|
|
Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
|
|
|
|
float3 Px = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
|
|
float3 Dx = panorama_to_direction(cam, Px.x, Px.y);
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &Px, &Dx);
|
|
}
|
|
Px = transform_point(&cameratoworld, Px);
|
|
Dx = normalize(transform_direction(&cameratoworld, Dx));
|
|
|
|
differential3 dP, dD;
|
|
dP.dx = Px - Pcenter;
|
|
dD.dx = Dx - Dcenter;
|
|
|
|
float3 Py = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
|
|
float3 Dy = panorama_to_direction(cam, Py.x, Py.y);
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &Py, &Dy);
|
|
}
|
|
Py = transform_point(&cameratoworld, Py);
|
|
Dy = normalize(transform_direction(&cameratoworld, Dy));
|
|
|
|
dP.dy = Py - Pcenter;
|
|
dD.dy = Dy - Dcenter;
|
|
ray->dD = differential_make_compact(dD);
|
|
ray->dP = differential_make_compact(dP);
|
|
#endif
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
float nearclip = cam->nearclip;
|
|
ray->P += nearclip * ray->D;
|
|
ray->dP += nearclip * ray->dD;
|
|
ray->tmin = 0.0f;
|
|
ray->tmax = cam->cliplength;
|
|
#else
|
|
ray->tmin = 0.0f;
|
|
ray->tmax = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Common */
|
|
|
|
ccl_device_inline void camera_sample(KernelGlobals kg,
|
|
int x,
|
|
int y,
|
|
float filter_u,
|
|
float filter_v,
|
|
float lens_u,
|
|
float lens_v,
|
|
float time,
|
|
ccl_private Ray *ray)
|
|
{
|
|
/* pixel filter */
|
|
int filter_table_offset = kernel_data.tables.filter_table_offset;
|
|
float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
|
|
float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
/* motion blur */
|
|
if (kernel_data.cam.shuttertime == -1.0f) {
|
|
ray->time = 0.5f;
|
|
}
|
|
else {
|
|
/* TODO(sergey): Such lookup is unneeded when there's rolling shutter
|
|
* effect in use but rolling shutter duration is set to 0.0.
|
|
*/
|
|
const int shutter_table_offset = kernel_data.cam.shutter_table_offset;
|
|
ray->time = lookup_table_read(kg, time, shutter_table_offset, SHUTTER_TABLE_SIZE);
|
|
/* TODO(sergey): Currently single rolling shutter effect type only
|
|
* where scan-lines are acquired from top to bottom and whole scan-line
|
|
* is acquired at once (no delay in acquisition happens between pixels
|
|
* of single scan-line).
|
|
*
|
|
* Might want to support more models in the future.
|
|
*/
|
|
if (kernel_data.cam.rolling_shutter_type) {
|
|
/* Time corresponding to a fully rolling shutter only effect:
|
|
* top of the frame is time 0.0, bottom of the frame is time 1.0.
|
|
*/
|
|
const float time = 1.0f - (float)y / kernel_data.cam.height;
|
|
const float duration = kernel_data.cam.rolling_shutter_duration;
|
|
if (duration != 0.0f) {
|
|
/* This isn't fully physical correct, but lets us to have simple
|
|
* controls in the interface. The idea here is basically sort of
|
|
* linear interpolation between how much rolling shutter effect
|
|
* exist on the frame and how much of it is a motion blur effect.
|
|
*/
|
|
ray->time = (ray->time - 0.5f) * duration;
|
|
ray->time += (time - 0.5f) * (1.0f - duration) + 0.5f;
|
|
}
|
|
else {
|
|
ray->time = time;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* sample */
|
|
if (kernel_data.cam.type == CAMERA_PERSPECTIVE) {
|
|
camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
|
|
}
|
|
else if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
|
|
}
|
|
else {
|
|
#ifdef __CAMERA_MOTION__
|
|
ccl_global const DecomposedTransform *cam_motion = kernel_data_array(camera_motion);
|
|
camera_sample_panorama(&kernel_data.cam, cam_motion, raster_x, raster_y, lens_u, lens_v, ray);
|
|
#else
|
|
camera_sample_panorama(&kernel_data.cam, raster_x, raster_y, lens_u, lens_v, ray);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Utilities */
|
|
|
|
ccl_device_inline float3 camera_position(KernelGlobals kg)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
}
|
|
|
|
ccl_device_inline float camera_distance(KernelGlobals kg, float3 P)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
|
|
if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
|
|
return fabsf(dot((P - camP), camD));
|
|
}
|
|
else {
|
|
return len(P - camP);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float camera_z_depth(KernelGlobals kg, float3 P)
|
|
{
|
|
if (kernel_data.cam.type != CAMERA_PANORAMA) {
|
|
Transform worldtocamera = kernel_data.cam.worldtocamera;
|
|
return transform_point(&worldtocamera, P).z;
|
|
}
|
|
else {
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
return len(P - camP);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float3 camera_direction_from_point(KernelGlobals kg, float3 P)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
|
|
return -camD;
|
|
}
|
|
else {
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
return normalize(camP - P);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float3 camera_world_to_ndc(KernelGlobals kg,
|
|
ccl_private ShaderData *sd,
|
|
float3 P)
|
|
{
|
|
if (kernel_data.cam.type != CAMERA_PANORAMA) {
|
|
/* perspective / ortho */
|
|
if (sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
|
|
P += camera_position(kg);
|
|
|
|
ProjectionTransform tfm = kernel_data.cam.worldtondc;
|
|
return transform_perspective(&tfm, P);
|
|
}
|
|
else {
|
|
/* panorama */
|
|
Transform tfm = kernel_data.cam.worldtocamera;
|
|
|
|
if (sd->object != OBJECT_NONE)
|
|
P = normalize(transform_point(&tfm, P));
|
|
else
|
|
P = normalize(transform_direction(&tfm, P));
|
|
|
|
float2 uv = direction_to_panorama(&kernel_data.cam, P);
|
|
|
|
return make_float3(uv.x, uv.y, 0.0f);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|