Files
test/source/blender/blenkernel/BKE_writeffmpeg.hh
Aras Pranckevicius 4ef5d9f60f ffmpeg: optimize ffmpeg_postprocess
After doing regular movie frame decoding, there's a "postprocess" step for
each incoming frame, that does deinterlacing if needed, then YUV->RGB
conversion, then vertical image flip and additional interlace filtering if
needed. While this postprocess step is not the "heavy" part of movie
playback, it still takes 2-3ms per each 1080p resolution input frame that
is being played.

This PR does two things:
- Similar to #116008, uses multi-threaded `sws_scale` to do YUV->RGB
  conversion.
- Reintroduces "do vertical flip while converting to RGB", where possible.
  That was removed in 2ed73fc97e due to issues on arm64 platform, and
  theory that negative strides passed to sws_scale is not an officially
  supported usage.

My take on the last point: negative strides to sws_scale is a fine and
supported usage, just ffmpeg had a bug specifically on arm64 where they
were accidentally not respected. They fixed that for ffmpeg 6.0, and
backported it to all versions back to 3.4.13 -- you would not backport
something to 10 releases unless that was an actual bug fix!

I have tested the glitch_480p.mp4 that was originally attached to the
bug report #94237 back then, and it works fine both on x64 (Windows)
and arm64 (Mac).

Timings, ffmpeg_postprocess cost for a single 1920x1080 resolution movie
strip inside VSE:
- Windows/VS2022 Ryzen 5950X: 3.04ms -> 1.18ms
- Mac/clang15 M1 Max: 1.10ms -> 0.71ms

Pull Request: https://projects.blender.org/blender/blender/pulls/116309
2023-12-19 18:28:51 +01:00

83 lines
2.1 KiB
C++

/* SPDX-FileCopyrightText: 2001-2002 NaN Holding BV. All rights reserved.
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup bke
*/
#ifdef WITH_FFMPEG
enum {
FFMPEG_MPEG1 = 0,
FFMPEG_MPEG2 = 1,
FFMPEG_MPEG4 = 2,
FFMPEG_AVI = 3,
FFMPEG_MOV = 4,
FFMPEG_DV = 5,
FFMPEG_H264 = 6,
FFMPEG_XVID = 7,
FFMPEG_FLV = 8,
FFMPEG_MKV = 9,
FFMPEG_OGG = 10,
FFMPEG_INVALID = 11,
FFMPEG_WEBM = 12,
FFMPEG_AV1 = 13,
};
enum {
FFMPEG_PRESET_NONE = 0,
FFMPEG_PRESET_DVD = 1,
FFMPEG_PRESET_SVCD = 2,
FFMPEG_PRESET_VCD = 3,
FFMPEG_PRESET_DV = 4,
FFMPEG_PRESET_H264 = 5,
FFMPEG_PRESET_THEORA = 6,
FFMPEG_PRESET_XVID = 7,
FFMPEG_PRESET_AV1 = 8,
};
struct AVFrame;
struct RenderData;
struct ReportList;
struct Scene;
struct SwsContext;
int BKE_ffmpeg_start(void *context_v,
const Scene *scene,
RenderData *rd,
int rectx,
int recty,
ReportList *reports,
bool preview,
const char *suffix);
void BKE_ffmpeg_end(void *context_v);
int BKE_ffmpeg_append(void *context_v,
RenderData *rd,
int start_frame,
int frame,
int *pixels,
int rectx,
int recty,
const char *suffix,
ReportList *reports);
void BKE_ffmpeg_filepath_get(char filepath[/*FILE_MAX*/ 1024],
const RenderData *rd,
bool preview,
const char *suffix);
void BKE_ffmpeg_preset_set(RenderData *rd, int preset);
void BKE_ffmpeg_image_type_verify(RenderData *rd, const ImageFormatData *imf);
bool BKE_ffmpeg_alpha_channel_is_supported(const RenderData *rd);
void *BKE_ffmpeg_context_create(void);
void BKE_ffmpeg_context_free(void *context_v);
SwsContext *BKE_ffmpeg_sws_get_context(
int width, int height, int av_src_format, int av_dst_format, int sws_flags);
void BKE_ffmpeg_sws_scale_frame(SwsContext *ctx, AVFrame *dst, const AVFrame *src);
#endif