194 lines
7.6 KiB
C
194 lines
7.6 KiB
C
/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0 */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/globals.h"
|
|
|
|
#include "kernel/sample/sobol_burley.h"
|
|
#include "kernel/sample/tabulated_sobol.h"
|
|
|
|
#include "util/hash.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
|
|
* this single threaded on a CPU for repeatable results. */
|
|
// #define __DEBUG_CORRELATION__
|
|
|
|
/*
|
|
* The `path_rng_*()` functions below use a shuffled scrambled Sobol
|
|
* sequence to generate their samples. Sobol samplers have a property
|
|
* that is worth being aware of when choosing how to use the sample
|
|
* dimensions:
|
|
*
|
|
* 1. In general, earlier sets of dimensions are better stratified. So
|
|
* prefer e.g. x,y over y,z over z,w for the things that are most
|
|
* important to sample well.
|
|
* 2. As a rule of thumb, dimensions that are closer to each other are
|
|
* better stratified than dimensions that are far. So prefer e.g.
|
|
* x,y over x,z.
|
|
*/
|
|
|
|
ccl_device_forceinline uint3 blue_noise_indexing(KernelGlobals kg,
|
|
uint pixel_index,
|
|
const uint sample)
|
|
{
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_SOBOL_BURLEY) {
|
|
/* One sequence per pixel, using the length mask optimization. */
|
|
return make_uint3(sample, pixel_index, kernel_data.integrator.sobol_index_mask);
|
|
}
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_BLUE_NOISE_PURE) {
|
|
/* For blue-noise samples, we use a single sequence (seed 0) with each pixel receiving
|
|
* a section of it.
|
|
* The total length is expected to get very large (effectively pixel count times sample count),
|
|
* so we don't use the length mask optimization here. */
|
|
pixel_index *= kernel_data.integrator.blue_noise_sequence_length;
|
|
return make_uint3(sample + pixel_index, 0, 0xffffffff);
|
|
}
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_BLUE_NOISE_FIRST) {
|
|
/* The "first" pattern uses a 1SPP blue-noise sequence for the first sample, and a separate
|
|
* N-1 SPP sequence for the remaining pixels. The purpose of this is to get blue-noise
|
|
* properties during viewport navigation, which will generally use 1 SPP.
|
|
* Unfortunately using just the first sample of a full blue-noise sequence doesn't give
|
|
* its benefits, so we combine the two as a tradeoff between quality at 1 SPP and full SPP. */
|
|
if (sample == 0) {
|
|
return make_uint3(pixel_index, 0x0cd0519f, 0xffffffff);
|
|
}
|
|
pixel_index *= kernel_data.integrator.blue_noise_sequence_length;
|
|
return make_uint3((sample - 1) + pixel_index, 0, 0xffffffff);
|
|
}
|
|
kernel_assert(false);
|
|
return make_uint3(0, 0, 0);
|
|
}
|
|
|
|
ccl_device_forceinline float path_rng_1D(KernelGlobals kg,
|
|
const uint rng_pixel,
|
|
const uint sample,
|
|
const int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return (float)drand48();
|
|
#endif
|
|
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_TABULATED_SOBOL) {
|
|
return tabulated_sobol_sample_1D(kg, sample, rng_pixel, dimension);
|
|
}
|
|
|
|
const uint3 index = blue_noise_indexing(kg, rng_pixel, sample);
|
|
return sobol_burley_sample_1D(index.x, dimension, index.y, index.z);
|
|
}
|
|
|
|
ccl_device_forceinline float2 path_rng_2D(KernelGlobals kg,
|
|
const uint rng_pixel,
|
|
const int sample,
|
|
const int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return make_float2((float)drand48(), (float)drand48());
|
|
#endif
|
|
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_TABULATED_SOBOL) {
|
|
return tabulated_sobol_sample_2D(kg, sample, rng_pixel, dimension);
|
|
}
|
|
|
|
const uint3 index = blue_noise_indexing(kg, rng_pixel, sample);
|
|
return sobol_burley_sample_2D(index.x, dimension, index.y, index.z);
|
|
}
|
|
|
|
ccl_device_forceinline float3 path_rng_3D(KernelGlobals kg,
|
|
const uint rng_pixel,
|
|
const int sample,
|
|
const int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return make_float3((float)drand48(), (float)drand48(), (float)drand48());
|
|
#endif
|
|
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_TABULATED_SOBOL) {
|
|
return tabulated_sobol_sample_3D(kg, sample, rng_pixel, dimension);
|
|
}
|
|
|
|
const uint3 index = blue_noise_indexing(kg, rng_pixel, sample);
|
|
return sobol_burley_sample_3D(index.x, dimension, index.y, index.z);
|
|
}
|
|
|
|
ccl_device_forceinline float4 path_rng_4D(KernelGlobals kg,
|
|
const uint rng_pixel,
|
|
const int sample,
|
|
const int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return make_float4((float)drand48(), (float)drand48(), (float)drand48(), (float)drand48());
|
|
#endif
|
|
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_TABULATED_SOBOL) {
|
|
return tabulated_sobol_sample_4D(kg, sample, rng_pixel, dimension);
|
|
}
|
|
|
|
const uint3 index = blue_noise_indexing(kg, rng_pixel, sample);
|
|
return sobol_burley_sample_4D(index.x, dimension, index.y, index.z);
|
|
}
|
|
|
|
ccl_device_inline uint path_rng_pixel_init(KernelGlobals kg,
|
|
const int sample,
|
|
const int x,
|
|
const int y)
|
|
{
|
|
const uint pattern = kernel_data.integrator.sampling_pattern;
|
|
if (pattern == SAMPLING_PATTERN_TABULATED_SOBOL || pattern == SAMPLING_PATTERN_SOBOL_BURLEY) {
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return srand48(rng_pixel + sample);
|
|
#else
|
|
(void)sample;
|
|
#endif
|
|
|
|
/* The white-noise samplers use a random per-pixel hash to generate independent sequences. */
|
|
return hash_iqnt2d(x, y) ^ kernel_data.integrator.seed;
|
|
}
|
|
|
|
/* The blue-noise samplers use a single sequence for all pixels, but offset the index within
|
|
* the sequence for each pixel. We use a hierarchically shuffled 2D morton curve to determine
|
|
* each pixel's offset along the sequence.
|
|
*
|
|
* Based on:
|
|
* https://psychopath.io/post/2022_07_24_owen_scrambling_based_dithered_blue_noise_sampling.
|
|
*
|
|
* TODO(lukas): Use a precomputed Hilbert curve to avoid directionality bias in the noise
|
|
* distribution. We can just precompute a small-ish tile and repeat it in morton code order.
|
|
*/
|
|
return nested_uniform_scramble_base4(morton2d(x, y), kernel_data.integrator.seed);
|
|
}
|
|
|
|
/**
|
|
* Splits samples into two different classes, A and B, which can be
|
|
* compared for variance estimation.
|
|
*/
|
|
ccl_device_inline bool sample_is_class_A(const int pattern, const int sample)
|
|
{
|
|
#if 0
|
|
if (!(pattern == SAMPLING_PATTERN_TABULATED_SOBOL || pattern == SAMPLING_PATTERN_SOBOL_BURLEY)) {
|
|
/* Fallback: assign samples randomly.
|
|
* This is guaranteed to work "okay" for any sampler, but isn't good.
|
|
* (NOTE: the seed constant is just a random number to guard against
|
|
* possible interactions with other uses of the hash. There's nothing
|
|
* special about it.)
|
|
*/
|
|
return hash_hp_seeded_uint(sample, 0xa771f873) & 1;
|
|
}
|
|
#else
|
|
(void)pattern;
|
|
#endif
|
|
|
|
/* This follows the approach from section 10.2.1 of "Progressive
|
|
* Multi-Jittered Sample Sequences" by Christensen et al., but
|
|
* implemented with efficient bit-fiddling.
|
|
*
|
|
* This approach also turns out to work equally well with Owen
|
|
* scrambled and shuffled Sobol (see https://developer.blender.org/D15746#429471).
|
|
*/
|
|
return popcount(uint(sample) & 0xaaaaaaaa) & 1;
|
|
}
|
|
CCL_NAMESPACE_END
|