Files
test/tests/python/bl_usd_export_test.py
Jesse Yurkovich 704d34fe0f Fix: properly save in-memory and packed textures during USD export
While adding test coverage for in-memory and packed texture scenarios, I
found that UDIMs were not being handled correctly in both cases. For
in-memory scenarios the per-tile generated/dirty status was not taken
into account. For packed scenarios the wrong filename substitutions were
being used.

This fixes both of these cases and adds test coverage for these
scenarios now. Both relative and absolute path options are validated.

Note: Both in-memory and packed images behave incorrectly when using the
'KEEP' and 'PRESERVE' texture export modes, so those remain untested
currently. A design on exactly what should happen in these modes is TBD.

Pull Request: https://projects.blender.org/blender/blender/pulls/130391
2024-11-17 21:53:35 +01:00

1070 lines
54 KiB
Python

# SPDX-FileCopyrightText: 2023 Blender Authors
#
# SPDX-License-Identifier: GPL-2.0-or-later
import math
import pathlib
import pprint
import sys
import tempfile
import unittest
from pxr import Gf, Sdf, Usd, UsdGeom, UsdShade, UsdSkel, UsdUtils, UsdVol
import bpy
args = None
class AbstractUSDTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._tempdir = tempfile.TemporaryDirectory()
cls.testdir = args.testdir
cls.tempdir = pathlib.Path(cls._tempdir.name)
return cls
def setUp(self):
self.assertTrue(
self.testdir.exists(), "Test dir {0} should exist".format(self.testdir)
)
def tearDown(self):
self._tempdir.cleanup()
def export_and_validate(self, **kwargs):
"""Export and validate the resulting USD file."""
export_path = kwargs["filepath"]
# Do the actual export
res = bpy.ops.wm.usd_export(**kwargs)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
# Validate resulting file
checker = UsdUtils.ComplianceChecker(
arkit=False,
skipARKitRootLayerCheck=False,
rootPackageOnly=False,
skipVariants=False,
verbose=False,
)
checker.CheckCompliance(export_path)
failed_checks = {}
# The ComplianceChecker does not know how to resolve <UDIM> tags, so
# it will flag "textures/test_grid_<UDIM>.png" as a missing reference.
# That reference is in fact OK, so we skip the rule for this test.
to_skip = ("MissingReferenceChecker",)
for rule in checker._rules:
name = rule.__class__.__name__
if name in to_skip:
continue
issues = rule.GetFailedChecks() + rule.GetWarnings() + rule.GetErrors()
if not issues:
continue
failed_checks[name] = issues
self.assertFalse(failed_checks, pprint.pformat(failed_checks))
class USDExportTest(AbstractUSDTest):
# Utility function to round each component of a vector to a few digits. The "+ 0" is to
# ensure that any negative zeros (-0.0) are converted to positive zeros (0.0).
@staticmethod
def round_vector(vector):
return [round(c, 4) + 0 for c in vector]
# Utility function to compare two Gf.Vec3d's
def compareVec3d(self, first, second):
places = 5
self.assertAlmostEqual(first[0], second[0], places)
self.assertAlmostEqual(first[1], second[1], places)
self.assertAlmostEqual(first[2], second[2], places)
def test_export_extents(self):
"""Test that exported scenes contain have a properly authored extent attribute on each boundable prim"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_extent_test.blend"))
export_path = self.tempdir / "usd_extent_test.usda"
self.export_and_validate(
filepath=str(export_path),
export_materials=True,
evaluation_mode="RENDER",
convert_world_material=False,
)
# if prims are missing, the exporter must have skipped some objects
stats = UsdUtils.ComputeUsdStageStats(str(export_path))
self.assertEqual(stats["totalPrimCount"], 16, "Unexpected number of prims")
# validate the overall world bounds of the scene
stage = Usd.Stage.Open(str(export_path))
scenePrim = stage.GetPrimAtPath("/root/scene")
bboxcache = UsdGeom.BBoxCache(Usd.TimeCode.Default(), [UsdGeom.Tokens.default_])
bounds = bboxcache.ComputeWorldBound(scenePrim)
bound_min = bounds.GetRange().GetMin()
bound_max = bounds.GetRange().GetMax()
self.compareVec3d(bound_min, Gf.Vec3d(-5.752975881, -1, -2.798513651))
self.compareVec3d(bound_max, Gf.Vec3d(1, 2.9515805244, 2.7985136508))
# validate the locally authored extents
prim = stage.GetPrimAtPath("/root/scene/BigCube/BigCubeMesh")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(Gf.Vec3d(extent[0]), Gf.Vec3d(-1, -1, -2.7985137))
self.compareVec3d(Gf.Vec3d(extent[1]), Gf.Vec3d(1, 1, 2.7985137))
prim = stage.GetPrimAtPath("/root/scene/LittleCube/LittleCubeMesh")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(Gf.Vec3d(extent[0]), Gf.Vec3d(-1, -1, -1))
self.compareVec3d(Gf.Vec3d(extent[1]), Gf.Vec3d(1, 1, 1))
prim = stage.GetPrimAtPath("/root/scene/Volume/Volume")
extent = UsdGeom.Boundable(prim).GetExtentAttr().Get()
self.compareVec3d(
Gf.Vec3d(extent[0]), Gf.Vec3d(-0.7313742, -0.68043584, -0.5801515)
)
self.compareVec3d(
Gf.Vec3d(extent[1]), Gf.Vec3d(0.7515701, 0.5500924, 0.9027928)
)
def test_material_transforms(self):
"""Validate correct export of image mapping parameters to the UsdTransform2d shader def"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_transforms.usda"
self.export_and_validate(filepath=str(export_path), export_materials=True)
# Inspect the UsdTransform2d prim on the "Transforms" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/Transforms/Mapping")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdTransform2d")
input_trans = shader.GetInput('translation')
input_rot = shader.GetInput('rotation')
input_scale = shader.GetInput('scale')
self.assertEqual(input_trans.Get(), [0.75, 0.75])
self.assertEqual(input_rot.Get(), 180)
self.assertEqual(input_scale.Get(), [0.5, 0.5])
def test_material_normal_maps(self):
"""Validate correct export of typical normal map setups to the UsdUVTexture shader def.
Namely validate that scale, bias, and ColorSpace settings are correct"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_normalmaps.usda"
self.export_and_validate(filepath=str(export_path), export_materials=True)
# Inspect the UsdUVTexture prim on the "typical" "NormalMap" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/NormalMap/Image_Texture")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdUVTexture")
input_scale = shader.GetInput('scale')
input_bias = shader.GetInput('bias')
input_colorspace = shader.GetInput('sourceColorSpace')
self.assertEqual(input_scale.Get(), [2, 2, 2, 2])
self.assertEqual(input_bias.Get(), [-1, -1, -1, -1])
self.assertEqual(input_colorspace.Get(), 'raw')
# Inspect the UsdUVTexture prim on the "inverted" "NormalMap_Scale_Bias" material
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/NormalMap_Scale_Bias/Image_Texture")
shader = UsdShade.Shader(shader_prim)
self.assertEqual(shader.GetIdAttr().Get(), "UsdUVTexture")
input_scale = shader.GetInput('scale')
input_bias = shader.GetInput('bias')
input_colorspace = shader.GetInput('sourceColorSpace')
self.assertEqual(input_scale.Get(), [2, -2, 2, 1])
self.assertEqual(input_bias.Get(), [-1, 1, -1, 0])
self.assertEqual(input_colorspace.Get(), 'raw')
def test_material_opacity_threshold(self):
"""Validate correct export of opacity and opacity_threshold parameters to the UsdPreviewSurface shader def"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "material_opacities.usda"
self.export_and_validate(filepath=str(export_path), export_materials=True)
# Inspect and validate the exported USD for the opaque blend case.
stage = Usd.Stage.Open(str(export_path))
shader_prim = stage.GetPrimAtPath("/root/_materials/Material/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
self.assertEqual(opacity_input.HasConnectedSource(), False,
"Opacity input should not be connected for opaque material")
self.assertAlmostEqual(opacity_input.Get(), 1.0, 2, "Opacity input should be set to 1")
# Inspect and validate the exported USD for the alpha clip w/Round node case.
shader_prim = stage.GetPrimAtPath("/root/_materials/Clip_With_Round/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
opacity_thresh_input = shader.GetInput('opacityThreshold')
self.assertEqual(opacity_input.HasConnectedSource(), True, "Alpha input should be connected")
self.assertAlmostEqual(opacity_thresh_input.Get(), 0.5, 2, "Opacity threshold input should be 0.5")
# Inspect and validate the exported USD for the alpha clip w/LessThan+Invert node case.
shader_prim = stage.GetPrimAtPath("/root/_materials/Clip_With_LessThanInvert/Principled_BSDF")
shader = UsdShade.Shader(shader_prim)
opacity_input = shader.GetInput('opacity')
opacity_thresh_input = shader.GetInput('opacityThreshold')
self.assertEqual(opacity_input.HasConnectedSource(), True, "Alpha input should be connected")
self.assertAlmostEqual(opacity_thresh_input.Get(), 0.2, 2, "Opacity threshold input should be 0.2")
def test_export_material_subsets(self):
"""Validate multiple materials assigned to the same mesh work correctly."""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_multi.blend"))
# Ensure the simulation zone data is baked for all relevant frames...
for frame in range(1, 5):
bpy.context.scene.frame_set(frame)
bpy.context.scene.frame_set(1)
export_path = self.tempdir / "usd_materials_multi.usda"
self.export_and_validate(filepath=str(export_path), export_animation=True, evaluation_mode="RENDER")
stage = Usd.Stage.Open(str(export_path))
# The static mesh should have 4 materials each assigned to 4 faces (16 faces total)
static_mesh_prim = UsdGeom.Mesh(stage.GetPrimAtPath("/root/static_mesh/static_mesh"))
geom_subsets = UsdGeom.Subset.GetGeomSubsets(static_mesh_prim)
self.assertEqual(len(geom_subsets), 4)
unique_face_indices = set()
for subset in geom_subsets:
face_indices = subset.GetIndicesAttr().Get()
self.assertEqual(len(face_indices), 4)
unique_face_indices.update(face_indices)
self.assertEqual(len(unique_face_indices), 16)
# The dynamic mesh varies over time (currently blocked, see #124554 and #118754)
# - Frame 1: 1 face and 1 material [mat2]
# - Frame 2: 2 faces and 2 materials [mat2, mat3]
# - Frame 3: 4 faces and 3 materials [mat2, mat3, mat2, mat1]
# - Frame 4: 4 faces and 2 materials [mat2, mat3, mat2, mat3]
dynamic_mesh_prim = UsdGeom.Mesh(stage.GetPrimAtPath("/root/dynamic_mesh/dynamic_mesh"))
geom_subsets = UsdGeom.Subset.GetGeomSubsets(dynamic_mesh_prim)
self.assertEqual(len(geom_subsets), 0)
def test_export_material_inmem(self):
"""Validate correct export of in memory and packed images"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_inmem_pack.blend"))
export_path1 = self.tempdir / "usd_materials_inmem_pack_relative.usda"
self.export_and_validate(filepath=str(export_path1), export_textures_mode='NEW', relative_paths=True)
export_path2 = self.tempdir / "usd_materials_inmem_pack_absolute.usda"
self.export_and_validate(filepath=str(export_path2), export_textures_mode='NEW', relative_paths=False)
# Validate that we actually see the correct set of files being saved to the filesystem
# Relative path variations
stage = Usd.Stage.Open(str(export_path1))
stage_path = pathlib.Path(stage.GetRootLayer().realPath)
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_inmem_single/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
self.assertFalse(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(asset_path).is_file())
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_inmem_udim/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
image_path1 = pathlib.Path(str(asset_path).replace("<UDIM>", "1001"))
image_path2 = pathlib.Path(str(asset_path).replace("<UDIM>", "1002"))
self.assertFalse(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(image_path1).is_file())
self.assertTrue(stage_path.parent.joinpath(image_path2).is_file())
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_pack_single/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
self.assertFalse(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(asset_path).is_file())
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_pack_udim/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
image_path1 = pathlib.Path(str(asset_path).replace("<UDIM>", "1001"))
image_path2 = pathlib.Path(str(asset_path).replace("<UDIM>", "1002"))
self.assertFalse(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(image_path1).is_file())
self.assertTrue(stage_path.parent.joinpath(image_path2).is_file())
# Absolute path variations
stage = Usd.Stage.Open(str(export_path2))
stage_path = pathlib.Path(stage.GetRootLayer().realPath)
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_inmem_single/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
self.assertTrue(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(asset_path).is_file())
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_inmem_udim/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
image_path1 = pathlib.Path(str(asset_path).replace("<UDIM>", "1001"))
image_path2 = pathlib.Path(str(asset_path).replace("<UDIM>", "1002"))
self.assertTrue(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(image_path1).is_file())
self.assertTrue(stage_path.parent.joinpath(image_path2).is_file())
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_pack_single/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
self.assertTrue(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(asset_path).is_file())
shader_prim = stage.GetPrimAtPath("/root/_materials/MAT_pack_udim/Image_Texture")
shader = UsdShade.Shader(shader_prim)
asset_path = pathlib.Path(shader.GetInput("file").GetAttr().Get().path)
image_path1 = pathlib.Path(str(asset_path).replace("<UDIM>", "1001"))
image_path2 = pathlib.Path(str(asset_path).replace("<UDIM>", "1002"))
self.assertTrue(asset_path.is_absolute())
self.assertTrue(stage_path.parent.joinpath(image_path1).is_file())
self.assertTrue(stage_path.parent.joinpath(image_path2).is_file())
def test_export_material_displacement(self):
"""Validate correct export of Displacement information for the UsdPreviewSurface"""
# Use the common materials .blend file
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_displace.blend"))
export_path = self.tempdir / "material_displace.usda"
self.export_and_validate(filepath=str(export_path), export_materials=True)
stage = Usd.Stage.Open(str(export_path))
# Verify "constant" displacement
shader_surface = UsdShade.Shader(stage.GetPrimAtPath("/root/_materials/constant/Principled_BSDF"))
self.assertEqual(shader_surface.GetIdAttr().Get(), "UsdPreviewSurface")
input_displacement = shader_surface.GetInput('displacement')
self.assertEqual(input_displacement.HasConnectedSource(), False, "Displacement input should not be connected")
self.assertAlmostEqual(input_displacement.Get(), 0.45, 5)
# Validate various Midlevel and Scale scenarios
def validate_displacement(mat_name, expected_scale, expected_bias):
shader_surface = UsdShade.Shader(stage.GetPrimAtPath(f"/root/_materials/{mat_name}/Principled_BSDF"))
shader_image = UsdShade.Shader(stage.GetPrimAtPath(f"/root/_materials/{mat_name}/Image_Texture"))
self.assertEqual(shader_surface.GetIdAttr().Get(), "UsdPreviewSurface")
self.assertEqual(shader_image.GetIdAttr().Get(), "UsdUVTexture")
input_displacement = shader_surface.GetInput('displacement')
input_colorspace = shader_image.GetInput('sourceColorSpace')
input_scale = shader_image.GetInput('scale')
input_bias = shader_image.GetInput('bias')
self.assertEqual(input_displacement.HasConnectedSource(), True, "Displacement input should be connected")
self.assertEqual(input_colorspace.Get(), 'raw')
self.assertEqual(self.round_vector(input_scale.Get()), expected_scale)
self.assertEqual(self.round_vector(input_bias.Get()), expected_bias)
validate_displacement("mid_0_0", [1.0, 1.0, 1.0, 1.0], [0, 0, 0, 0])
validate_displacement("mid_0_5", [1.0, 1.0, 1.0, 1.0], [-0.5, -0.5, -0.5, 0])
validate_displacement("mid_1_0", [1.0, 1.0, 1.0, 1.0], [-1, -1, -1, 0])
validate_displacement("mid_0_0_scale_0_3", [0.3, 0.3, 0.3, 1.0], [0, 0, 0, 0])
validate_displacement("mid_0_5_scale_0_3", [0.3, 0.3, 0.3, 1.0], [-0.15, -0.15, -0.15, 0])
validate_displacement("mid_1_0_scale_0_3", [0.3, 0.3, 0.3, 1.0], [-0.3, -0.3, -0.3, 0])
# Validate that no displacement occurs for scenarios USD doesn't support
shader_surface = UsdShade.Shader(stage.GetPrimAtPath(f"/root/_materials/bad_wrong_space/Principled_BSDF"))
input_displacement = shader_surface.GetInput('displacement')
self.assertTrue(input_displacement.Get() is None)
shader_surface = UsdShade.Shader(stage.GetPrimAtPath(f"/root/_materials/bad_non_const/Principled_BSDF"))
input_displacement = shader_surface.GetInput('displacement')
self.assertTrue(input_displacement.Get() is None)
def check_primvar(self, prim, pv_name, pv_typeName, pv_interp, elements_len):
pv = UsdGeom.PrimvarsAPI(prim).GetPrimvar(pv_name)
self.assertTrue(pv.HasValue())
self.assertEqual(pv.GetTypeName().type.typeName, pv_typeName)
self.assertEqual(pv.GetInterpolation(), pv_interp)
self.assertEqual(len(pv.Get()), elements_len)
def check_primvar_missing(self, prim, pv_name):
pv = UsdGeom.PrimvarsAPI(prim).GetPrimvar(pv_name)
self.assertFalse(pv.HasValue())
def test_export_attributes(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_attribute_test.blend"))
export_path = self.tempdir / "usd_attribute_test.usda"
self.export_and_validate(filepath=str(export_path), evaluation_mode="RENDER")
stage = Usd.Stage.Open(str(export_path))
# Validate all expected Mesh attributes. Notice that nothing on
# the Edge domain is supported by USD.
prim = stage.GetPrimAtPath("/root/Mesh/Mesh")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "vertex", 4)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "vertex", 4)
self.check_primvar(prim, "p_int32", "VtArray<int>", "vertex", 4)
self.check_primvar(prim, "p_float", "VtArray<float>", "vertex", 4)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "vertex", 4)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "vertex", 4)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "vertex", 4)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "vertex", 4)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "vertex", 4)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar_missing(prim, "e_bool")
self.check_primvar_missing(prim, "e_int8")
self.check_primvar_missing(prim, "e_int32")
self.check_primvar_missing(prim, "e_float")
self.check_primvar_missing(prim, "e_color")
self.check_primvar_missing(prim, "e_byte_color")
self.check_primvar_missing(prim, "e_vec2")
self.check_primvar_missing(prim, "e_vec3")
self.check_primvar_missing(prim, "e_quat")
self.check_primvar_missing(prim, "e_mat4x4")
self.check_primvar(prim, "f_bool", "VtArray<bool>", "uniform", 1)
self.check_primvar(prim, "f_int8", "VtArray<unsigned char>", "uniform", 1)
self.check_primvar(prim, "f_int32", "VtArray<int>", "uniform", 1)
self.check_primvar(prim, "f_float", "VtArray<float>", "uniform", 1)
self.check_primvar(prim, "f_color", "VtArray<GfVec4f>", "uniform", 1)
self.check_primvar(prim, "f_byte_color", "VtArray<GfVec4f>", "uniform", 1)
self.check_primvar(prim, "displayColor", "VtArray<GfVec3f>", "uniform", 1)
self.check_primvar(prim, "f_vec2", "VtArray<GfVec2f>", "uniform", 1)
self.check_primvar(prim, "f_vec3", "VtArray<GfVec3f>", "uniform", 1)
self.check_primvar(prim, "f_quat", "VtArray<GfQuatf>", "uniform", 1)
self.check_primvar_missing(prim, "f_mat4x4")
self.check_primvar(prim, "fc_bool", "VtArray<bool>", "faceVarying", 4)
self.check_primvar(prim, "fc_int8", "VtArray<unsigned char>", "faceVarying", 4)
self.check_primvar(prim, "fc_int32", "VtArray<int>", "faceVarying", 4)
self.check_primvar(prim, "fc_float", "VtArray<float>", "faceVarying", 4)
self.check_primvar(prim, "fc_color", "VtArray<GfVec4f>", "faceVarying", 4)
self.check_primvar(prim, "fc_byte_color", "VtArray<GfVec4f>", "faceVarying", 4)
self.check_primvar(prim, "fc_vec2", "VtArray<GfVec2f>", "faceVarying", 4)
self.check_primvar(prim, "fc_vec3", "VtArray<GfVec3f>", "faceVarying", 4)
self.check_primvar(prim, "fc_quat", "VtArray<GfQuatf>", "faceVarying", 4)
self.check_primvar_missing(prim, "fc_mat4x4")
prim = stage.GetPrimAtPath("/root/Curve_base/Curves/Curves")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "vertex", 24)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "vertex", 24)
self.check_primvar(prim, "p_int32", "VtArray<int>", "vertex", 24)
self.check_primvar(prim, "p_float", "VtArray<float>", "vertex", 24)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "vertex", 24)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "vertex", 24)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "vertex", 24)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "vertex", 24)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "vertex", 24)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar(prim, "sp_bool", "VtArray<bool>", "uniform", 2)
self.check_primvar(prim, "sp_int8", "VtArray<unsigned char>", "uniform", 2)
self.check_primvar(prim, "sp_int32", "VtArray<int>", "uniform", 2)
self.check_primvar(prim, "sp_float", "VtArray<float>", "uniform", 2)
self.check_primvar(prim, "sp_color", "VtArray<GfVec4f>", "uniform", 2)
self.check_primvar(prim, "sp_byte_color", "VtArray<GfVec4f>", "uniform", 2)
self.check_primvar(prim, "sp_vec2", "VtArray<GfVec2f>", "uniform", 2)
self.check_primvar(prim, "sp_vec3", "VtArray<GfVec3f>", "uniform", 2)
self.check_primvar(prim, "sp_quat", "VtArray<GfQuatf>", "uniform", 2)
self.check_primvar_missing(prim, "sp_mat4x4")
prim = stage.GetPrimAtPath("/root/Curve_bezier_base/Curves_bezier/Curves")
self.check_primvar(prim, "p_bool", "VtArray<bool>", "varying", 10)
self.check_primvar(prim, "p_int8", "VtArray<unsigned char>", "varying", 10)
self.check_primvar(prim, "p_int32", "VtArray<int>", "varying", 10)
self.check_primvar(prim, "p_float", "VtArray<float>", "varying", 10)
self.check_primvar(prim, "p_color", "VtArray<GfVec4f>", "varying", 10)
self.check_primvar(prim, "p_byte_color", "VtArray<GfVec4f>", "varying", 10)
self.check_primvar(prim, "p_vec2", "VtArray<GfVec2f>", "varying", 10)
self.check_primvar(prim, "p_vec3", "VtArray<GfVec3f>", "varying", 10)
self.check_primvar(prim, "p_quat", "VtArray<GfQuatf>", "varying", 10)
self.check_primvar_missing(prim, "p_mat4x4")
self.check_primvar(prim, "sp_bool", "VtArray<bool>", "uniform", 3)
self.check_primvar(prim, "sp_int8", "VtArray<unsigned char>", "uniform", 3)
self.check_primvar(prim, "sp_int32", "VtArray<int>", "uniform", 3)
self.check_primvar(prim, "sp_float", "VtArray<float>", "uniform", 3)
self.check_primvar(prim, "sp_color", "VtArray<GfVec4f>", "uniform", 3)
self.check_primvar(prim, "sp_byte_color", "VtArray<GfVec4f>", "uniform", 3)
self.check_primvar(prim, "sp_vec2", "VtArray<GfVec2f>", "uniform", 3)
self.check_primvar(prim, "sp_vec3", "VtArray<GfVec3f>", "uniform", 3)
self.check_primvar(prim, "sp_quat", "VtArray<GfQuatf>", "uniform", 3)
self.check_primvar_missing(prim, "sp_mat4x4")
def test_export_attributes_varying(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_attribute_varying_test.blend"))
# Ensure the simulation zone data is baked for all relevant frames...
for frame in range(1, 16):
bpy.context.scene.frame_set(frame)
bpy.context.scene.frame_set(1)
export_path = self.tempdir / "usd_attribute_varying_test.usda"
self.export_and_validate(filepath=str(export_path), export_animation=True, evaluation_mode="RENDER")
stage = Usd.Stage.Open(str(export_path))
sparse_frames = [4.0, 5.0, 8.0, 9.0, 12.0, 13.0]
#
# Validate Mesh data
#
mesh1 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh1/mesh1"))
mesh2 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh2/mesh2"))
mesh3 = UsdGeom.Mesh(stage.GetPrimAtPath("/root/mesh3/mesh3"))
# Positions (should be sparsely written)
self.assertEqual(mesh1.GetPointsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(mesh2.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(mesh3.GetPointsAttr().GetTimeSamples(), [])
# Velocity (should be sparsely written)
self.assertEqual(mesh1.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(mesh2.GetVelocitiesAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(mesh3.GetVelocitiesAttr().GetTimeSamples(), [])
# Regular primvar (should be sparsely written)
self.assertEqual(UsdGeom.PrimvarsAPI(mesh1).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(mesh2).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(mesh3).GetPrimvar("test").GetTimeSamples(), sparse_frames)
#
# Validate PointCloud data
#
points1 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud1/PointCloud"))
points2 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud2/PointCloud"))
points3 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud3/PointCloud"))
points4 = UsdGeom.Points(stage.GetPrimAtPath("/root/pointcloud4/PointCloud"))
# Positions (should be sparsely written)
self.assertEqual(points1.GetPointsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points2.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(points3.GetPointsAttr().GetTimeSamples(), [])
self.assertEqual(points4.GetPointsAttr().GetTimeSamples(), [])
# Velocity (should be sparsely written)
self.assertEqual(points1.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(points2.GetVelocitiesAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points3.GetVelocitiesAttr().GetTimeSamples(), [])
self.assertEqual(points4.GetVelocitiesAttr().GetTimeSamples(), [])
# Radius (should be sparsely written)
self.assertEqual(points1.GetWidthsAttr().GetTimeSamples(), [])
self.assertEqual(points2.GetWidthsAttr().GetTimeSamples(), [])
self.assertEqual(points3.GetWidthsAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(points4.GetWidthsAttr().GetTimeSamples(), [])
# Regular primvar (should be sparsely written)
self.assertEqual(UsdGeom.PrimvarsAPI(points1).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points2).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points3).GetPrimvar("test").GetTimeSamples(), [])
self.assertEqual(UsdGeom.PrimvarsAPI(points4).GetPrimvar("test").GetTimeSamples(), sparse_frames)
# Extents of the point cloud (should be sparsely written)
self.assertEqual(UsdGeom.Boundable(points1).GetExtentAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(UsdGeom.Boundable(points2).GetExtentAttr().GetTimeSamples(), [])
self.assertEqual(UsdGeom.Boundable(points3).GetExtentAttr().GetTimeSamples(), sparse_frames)
self.assertEqual(UsdGeom.Boundable(points4).GetExtentAttr().GetTimeSamples(), [])
def test_export_mesh_subd(self):
"""Test exporting Subdivision Surface attributes and values"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_mesh_subd.blend"))
export_path = self.tempdir / "usd_mesh_subd.usda"
self.export_and_validate(
filepath=str(export_path),
export_subdivision='BEST_MATCH',
evaluation_mode="RENDER",
)
stage = Usd.Stage.Open(str(export_path))
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_none_boundary_smooth_all/mesh1"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'all')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_boundary_smooth_all/mesh2"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersOnly')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_junctions_boundary_smooth_all/mesh3"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersPlus1')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_corners_junctions_concave_boundary_smooth_all/mesh4"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'cornersPlus2')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_boundaries_boundary_smooth_all/mesh5"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_all_boundary_smooth_all/mesh6"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'none')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/uv_smooth_boundaries_boundary_smooth_keep/mesh7"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeAndCorner')
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/crease_verts/crease_verts"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
self.assertEqual(len(mesh.GetCornerIndicesAttr().Get()), 7)
usd_vert_sharpness = mesh.GetCornerSharpnessesAttr().Get()
self.assertEqual(len(usd_vert_sharpness), 7)
# A 1.0 crease is INFINITE (10) in USD
self.assertAlmostEqual(min(usd_vert_sharpness), 0.1, 5)
self.assertEqual(len([sharp for sharp in usd_vert_sharpness if sharp < 1]), 6)
self.assertEqual(len([sharp for sharp in usd_vert_sharpness if sharp == 10]), 1)
mesh = UsdGeom.Mesh(stage.GetPrimAtPath("/root/crease_edge/crease_edge"))
self.assertEqual(mesh.GetSubdivisionSchemeAttr().Get(), 'catmullClark')
self.assertEqual(mesh.GetFaceVaryingLinearInterpolationAttr().Get(), 'boundaries')
self.assertEqual(mesh.GetInterpolateBoundaryAttr().Get(), 'edgeOnly')
self.assertEqual(len(mesh.GetCreaseIndicesAttr().Get()), 20)
usd_crease_lengths = mesh.GetCreaseLengthsAttr().Get()
self.assertEqual(len(usd_crease_lengths), 10)
self.assertTrue(all([length == 2 for length in usd_crease_lengths]))
usd_crease_sharpness = mesh.GetCreaseSharpnessesAttr().Get()
self.assertEqual(len(usd_crease_sharpness), 10)
# A 1.0 crease is INFINITE (10) in USD
self.assertAlmostEqual(min(usd_crease_sharpness), 0.1, 5)
self.assertEqual(len([sharp for sharp in usd_crease_sharpness if sharp < 1]), 9)
self.assertEqual(len([sharp for sharp in usd_crease_sharpness if sharp == 10]), 1)
def test_export_mesh_triangulate(self):
"""Test exporting with different triangulation options for meshes."""
# Use the current scene to create simple geometry to triangulate
bpy.ops.mesh.primitive_plane_add(size=1)
bpy.ops.mesh.primitive_circle_add(fill_type='NGON', radius=1, vertices=7)
# We assume that triangulation is thoroughly tested elsewhere. Here we are only interested
# in checking that USD passes its operator properties through correctly. We use a minimal
# combination of quad and ngon methods to test.
tri_export_path1 = self.tempdir / "usd_mesh_tri_setup1.usda"
self.export_and_validate(
filepath=str(tri_export_path1),
triangulate_meshes=True,
quad_method='FIXED',
ngon_method='BEAUTY',
evaluation_mode="RENDER",
)
tri_export_path2 = self.tempdir / "usd_mesh_tri_setup2.usda"
self.export_and_validate(
filepath=str(tri_export_path2),
triangulate_meshes=True,
quad_method='FIXED_ALTERNATE',
ngon_method='CLIP',
evaluation_mode="RENDER",
)
stage1 = Usd.Stage.Open(str(tri_export_path1))
stage2 = Usd.Stage.Open(str(tri_export_path2))
# The Plane should have different vertex ordering because of the quad methods chosen
plane1 = UsdGeom.Mesh(stage1.GetPrimAtPath("/root/Plane/Plane"))
plane2 = UsdGeom.Mesh(stage2.GetPrimAtPath("/root/Plane/Plane"))
indices1 = plane1.GetFaceVertexIndicesAttr().Get()
indices2 = plane2.GetFaceVertexIndicesAttr().Get()
self.assertEqual(len(indices1), 6)
self.assertEqual(len(indices2), 6)
self.assertNotEqual(indices1, indices2)
# The Circle should have different vertex ordering because of the ngon methods chosen
circle1 = UsdGeom.Mesh(stage1.GetPrimAtPath("/root/Circle/Circle"))
circle2 = UsdGeom.Mesh(stage2.GetPrimAtPath("/root/Circle/Circle"))
indices1 = circle1.GetFaceVertexIndicesAttr().Get()
indices2 = circle2.GetFaceVertexIndicesAttr().Get()
self.assertEqual(len(indices1), 15)
self.assertEqual(len(indices2), 15)
self.assertNotEqual(indices1, indices2)
def test_export_animation(self):
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_anim_test.blend"))
export_path = self.tempdir / "usd_anim_test.usda"
self.export_and_validate(
filepath=str(export_path),
export_animation=True,
evaluation_mode="RENDER",
)
stage = Usd.Stage.Open(str(export_path))
# Validate the simple object animation
prim = stage.GetPrimAtPath("/root/cube_anim_xform")
self.assertEqual(prim.GetTypeName(), "Xform")
loc_samples = UsdGeom.Xformable(prim).GetTranslateOp().GetTimeSamples()
rot_samples = UsdGeom.Xformable(prim).GetRotateXYZOp().GetTimeSamples()
scale_samples = UsdGeom.Xformable(prim).GetScaleOp().GetTimeSamples()
self.assertEqual(loc_samples, [1.0, 2.0, 3.0, 4.0])
self.assertEqual(rot_samples, [1.0])
self.assertEqual(scale_samples, [1.0])
# Validate the armature animation
prim = stage.GetPrimAtPath("/root/Armature/Armature")
self.assertEqual(prim.GetTypeName(), "Skeleton")
prim_skel = UsdSkel.BindingAPI(prim)
anim = UsdSkel.Animation(prim_skel.GetAnimationSource())
self.assertEqual(anim.GetJointsAttr().Get(),
['Bone',
'Bone/Bone_001',
'Bone/Bone_001/Bone_002',
'Bone/Bone_001/Bone_002/Bone_003',
'Bone/Bone_001/Bone_002/Bone_003/Bone_004'])
loc_samples = anim.GetTranslationsAttr().GetTimeSamples()
rot_samples = anim.GetRotationsAttr().GetTimeSamples()
scale_samples = anim.GetScalesAttr().GetTimeSamples()
self.assertEqual(loc_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
self.assertEqual(rot_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
self.assertEqual(scale_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
# Validate the shape key animation
prim = stage.GetPrimAtPath("/root/cube_anim_keys")
self.assertEqual(prim.GetTypeName(), "SkelRoot")
prim_skel = UsdSkel.BindingAPI(prim.GetPrimAtPath("cube_anim_keys"))
self.assertEqual(prim_skel.GetBlendShapesAttr().Get(), ['Key_1'])
prim_skel = UsdSkel.BindingAPI(prim.GetPrimAtPath("Skel"))
anim = UsdSkel.Animation(prim_skel.GetAnimationSource())
weight_samples = anim.GetBlendShapeWeightsAttr().GetTimeSamples()
self.assertEqual(weight_samples, [1.0, 2.0, 3.0, 4.0, 5.0])
def test_export_volumes(self):
"""Test various combinations of volume export including with all supported volume modifiers."""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_volumes.blend"))
# Ensure the simulation zone data is baked for all relevant frames...
for frame in range(4, 15):
bpy.context.scene.frame_set(frame)
bpy.context.scene.frame_set(4)
export_path = self.tempdir / "usd_volumes.usda"
self.export_and_validate(filepath=str(export_path), export_animation=True, evaluation_mode="RENDER")
stage = Usd.Stage.Open(str(export_path))
# Validate that we see some form of time varyability across the Volume prim's extents and
# file paths. The data should be sparse so it should only be written on the frames which
# change.
# File sequence
vol_fileseq = UsdVol.Volume(stage.GetPrimAtPath("/root/vol_filesequence/vol_filesequence"))
density = UsdVol.OpenVDBAsset(stage.GetPrimAtPath("/root/vol_filesequence/vol_filesequence/density_noise"))
flame = UsdVol.OpenVDBAsset(stage.GetPrimAtPath("/root/vol_filesequence/vol_filesequence/flame_noise"))
self.assertEqual(vol_fileseq.GetExtentAttr().GetTimeSamples(), [10.0, 11.0])
self.assertEqual(density.GetFieldNameAttr().GetTimeSamples(), [])
self.assertEqual(density.GetFilePathAttr().GetTimeSamples(), [8.0, 9.0, 10.0, 11.0, 12.0, 13.0])
self.assertEqual(flame.GetFieldNameAttr().GetTimeSamples(), [])
self.assertEqual(flame.GetFilePathAttr().GetTimeSamples(), [8.0, 9.0, 10.0, 11.0, 12.0, 13.0])
# Mesh To Volume
vol_mesh2vol = UsdVol.Volume(stage.GetPrimAtPath("/root/vol_mesh2vol/vol_mesh2vol"))
density = UsdVol.OpenVDBAsset(stage.GetPrimAtPath("/root/vol_mesh2vol/vol_mesh2vol/density"))
self.assertEqual(vol_mesh2vol.GetExtentAttr().GetTimeSamples(),
[6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
self.assertEqual(density.GetFieldNameAttr().GetTimeSamples(), [])
self.assertEqual(density.GetFilePathAttr().GetTimeSamples(),
[4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
# Volume Displace
vol_displace = UsdVol.Volume(stage.GetPrimAtPath("/root/vol_displace/vol_displace"))
unnamed = UsdVol.OpenVDBAsset(stage.GetPrimAtPath("/root/vol_displace/vol_displace/_"))
self.assertEqual(vol_displace.GetExtentAttr().GetTimeSamples(),
[5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0])
self.assertEqual(unnamed.GetFieldNameAttr().GetTimeSamples(), [])
self.assertEqual(unnamed.GetFilePathAttr().GetTimeSamples(),
[4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
# Geometry Node simulation
vol_sim = UsdVol.Volume(stage.GetPrimAtPath("/root/vol_sim/Volume"))
density = UsdVol.OpenVDBAsset(stage.GetPrimAtPath("/root/vol_sim/Volume/density"))
self.assertEqual(vol_sim.GetExtentAttr().GetTimeSamples(),
[4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
self.assertEqual(density.GetFieldNameAttr().GetTimeSamples(), [])
self.assertEqual(density.GetFilePathAttr().GetTimeSamples(),
[4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0])
def test_export_xform_ops(self):
"""Test exporting different xform operation modes."""
# Create a simple scene and export using each of our xform op modes
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
loc = [1, 2, 3]
rot = [math.pi / 4, 0, math.pi / 8]
scale = [1, 2, 3]
bpy.ops.mesh.primitive_plane_add(location=loc, rotation=rot)
bpy.data.objects[0].scale = scale
test_path1 = self.tempdir / "temp_xform_trs_test.usda"
self.export_and_validate(filepath=str(test_path1), xform_op_mode='TRS')
test_path2 = self.tempdir / "temp_xform_tos_test.usda"
self.export_and_validate(filepath=str(test_path2), xform_op_mode='TOS')
test_path3 = self.tempdir / "temp_xform_mat_test.usda"
self.export_and_validate(filepath=str(test_path3), xform_op_mode='MAT')
# Validate relevant details for each case
stage = Usd.Stage.Open(str(test_path1))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
rot_degs = [math.degrees(rot[0]), math.degrees(rot[1]), math.degrees(rot[2])]
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:translate', 'xformOp:rotateXYZ', 'xformOp:scale'])
self.assertEqual(self.round_vector(xf.GetTranslateOp().Get()), loc)
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), rot_degs)
self.assertEqual(self.round_vector(xf.GetScaleOp().Get()), scale)
stage = Usd.Stage.Open(str(test_path2))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
orient_quat = xf.GetOrientOp().Get()
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:translate', 'xformOp:orient', 'xformOp:scale'])
self.assertEqual(self.round_vector(xf.GetTranslateOp().Get()), loc)
self.assertEqual(round(orient_quat.GetReal(), 4), 0.9061)
self.assertEqual(self.round_vector(orient_quat.GetImaginary()), [0.3753, 0.0747, 0.1802])
self.assertEqual(self.round_vector(xf.GetScaleOp().Get()), scale)
stage = Usd.Stage.Open(str(test_path3))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root/Plane"))
mat = xf.GetTransformOp().Get()
mat = [
self.round_vector(mat[0]), self.round_vector(mat[1]), self.round_vector(mat[2]), self.round_vector(mat[3])
]
expected = [
[0.9239, 0.3827, 0.0, 0.0],
[-0.5412, 1.3066, 1.4142, 0.0],
[0.8118, -1.9598, 2.1213, 0.0],
[1.0, 2.0, 3.0, 1.0]
]
self.assertEqual(xf.GetXformOpOrderAttr().Get(), ['xformOp:transform'])
self.assertEqual(mat, expected)
def test_export_orientation(self):
"""Test exporting different orientation configurations."""
# Using the empty scene is fine for this
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
test_path1 = self.tempdir / "temp_orientation_yup.usda"
self.export_and_validate(
filepath=str(test_path1),
convert_orientation=True,
export_global_forward_selection='NEGATIVE_Z',
export_global_up_selection='Y')
test_path2 = self.tempdir / "temp_orientation_zup_rev.usda"
self.export_and_validate(
filepath=str(test_path2),
convert_orientation=True,
export_global_forward_selection='NEGATIVE_Y',
export_global_up_selection='Z')
stage = Usd.Stage.Open(str(test_path1))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root"))
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), [-90, 0, 0])
stage = Usd.Stage.Open(str(test_path2))
xf = UsdGeom.Xformable(stage.GetPrimAtPath("/root"))
self.assertEqual(self.round_vector(xf.GetRotateXYZOp().Get()), [0, 0, 180])
def test_materialx_network(self):
"""Test exporting that a MaterialX export makes it out alright"""
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "usd_materials_export.blend"))
export_path = self.tempdir / "materialx.usda"
# USD currently has an issue where embedded MaterialX graphs cause validation to fail.
# Skip validation and just run a regular export until this is fixed.
# See: https://github.com/PixarAnimationStudios/OpenUSD/pull/3243
res = bpy.ops.wm.usd_export(
filepath=str(export_path),
export_materials=True,
generate_materialx_network=True,
evaluation_mode="RENDER",
)
self.assertEqual({'FINISHED'}, res, f"Unable to export to {export_path}")
stage = Usd.Stage.Open(str(export_path))
material_prim = stage.GetPrimAtPath("/root/_materials/Material")
self.assertTrue(material_prim, "Could not find Material prim")
material = UsdShade.Material(material_prim)
mtlx_output = material.GetOutput("mtlx:surface")
self.assertTrue(mtlx_output, "Could not find mtlx output")
connection, source_name, _ = UsdShade.ConnectableAPI.GetConnectedSource(
mtlx_output
) or [None, None, None]
self.assertTrue((connection and source_name), "Could not find mtlx output source")
shader = UsdShade.Shader(connection.GetPrim())
self.assertTrue(shader, "Connected prim is not a shader")
shader_id = shader.GetIdAttr().Get()
self.assertEqual(shader_id, "ND_standard_surface_surfaceshader", "Shader is not a Standard Surface")
def test_hooks(self):
"""Validate USD Hook integration for both import and export"""
# Create a simple scene with 1 object and 1 material
bpy.ops.wm.open_mainfile(filepath=str(self.testdir / "empty.blend"))
material = bpy.data.materials.new(name="test_material")
material.use_nodes = True
bpy.ops.mesh.primitive_plane_add()
bpy.data.objects[0].data.materials.append(material)
# Register both USD hooks
bpy.utils.register_class(USDHook1)
bpy.utils.register_class(USDHook2)
# Instruct them to do various actions inside their implementation
USDHookBase.instructions = {
"on_material_export": ["return False", "return True"],
"on_export": ["throw", "return True"],
"on_import": ["throw", "return True"],
}
USDHookBase.responses = {
"on_material_export": [],
"on_export": [],
"on_import": [],
}
test_path = self.tempdir / "hook.usda"
try:
self.export_and_validate(filepath=str(test_path))
except:
pass
try:
bpy.ops.wm.usd_import(filepath=str(test_path))
except:
pass
# Unregister the hooks. We do this here in case the following asserts fail.
bpy.utils.unregister_class(USDHook1)
bpy.utils.unregister_class(USDHook2)
# Validate that the Hooks executed and responded accordingly...
self.assertEqual(USDHookBase.responses["on_material_export"], ["returned False", "returned True"])
self.assertEqual(USDHookBase.responses["on_export"], ["threw exception", "returned True"])
self.assertEqual(USDHookBase.responses["on_import"], ["threw exception", "returned True"])
# Now that the hooks are unregistered they should not be executed for import and export.
USDHookBase.responses = {
"on_material_export": [],
"on_export": [],
"on_import": [],
}
self.export_and_validate(filepath=str(test_path))
self.export_and_validate(filepath=str(test_path))
self.assertEqual(USDHookBase.responses["on_material_export"], [])
self.assertEqual(USDHookBase.responses["on_export"], [])
self.assertEqual(USDHookBase.responses["on_import"], [])
class USDHookBase():
instructions = {}
responses = {}
@staticmethod
def follow_instructions(name, operation):
instruction = USDHookBase.instructions[operation].pop(0)
if instruction == "throw":
USDHookBase.responses[operation].append("threw exception")
raise RuntimeError(f"** {name} failing {operation} **")
elif instruction == "return False":
USDHookBase.responses[operation].append("returned False")
return False
USDHookBase.responses[operation].append("returned True")
return True
@staticmethod
def do_on_export(name, export_context):
stage = export_context.get_stage()
depsgraph = export_context.get_depsgraph()
if not stage.GetDefaultPrim().IsValid():
raise RuntimeError("Unexpected failure: bad stage")
if len(depsgraph.ids) == 0:
raise RuntimeError("Unexpected failure: bad depsgraph")
return USDHookBase.follow_instructions(name, "on_export")
@staticmethod
def do_on_material_export(name, export_context, bl_material, usd_material):
stage = export_context.get_stage()
if stage.expired:
raise RuntimeError("Unexpected failure: bad stage")
if not usd_material.GetPrim().IsValid():
raise RuntimeError("Unexpected failure: bad usd_material")
if bl_material is None:
raise RuntimeError("Unexpected failure: bad bl_material")
return USDHookBase.follow_instructions(name, "on_material_export")
@staticmethod
def do_on_import(name, import_context):
stage = import_context.get_stage()
if not stage.GetDefaultPrim().IsValid():
raise RuntimeError("Unexpected failure: bad stage")
return USDHookBase.follow_instructions(name, "on_import")
class USDHook1(USDHookBase, bpy.types.USDHook):
bl_idname = "usd_hook_1"
bl_label = "Hook 1"
@staticmethod
def on_export(export_context):
return USDHookBase.do_on_export(USDHook1.bl_label, export_context)
@staticmethod
def on_material_export(export_context, bl_material, usd_material):
return USDHookBase.do_on_material_export(USDHook1.bl_label, export_context, bl_material, usd_material)
@staticmethod
def on_import(import_context):
return USDHookBase.do_on_import(USDHook1.bl_label, import_context)
class USDHook2(USDHookBase, bpy.types.USDHook):
bl_idname = "usd_hook_2"
bl_label = "Hook 2"
@staticmethod
def on_export(export_context):
return USDHookBase.do_on_export(USDHook2.bl_label, export_context)
@staticmethod
def on_material_export(export_context, bl_material, usd_material):
return USDHookBase.do_on_material_export(USDHook2.bl_label, export_context, bl_material, usd_material)
@staticmethod
def on_import(import_context):
return USDHookBase.do_on_import(USDHook2.bl_label, import_context)
def main():
global args
import argparse
if "--" in sys.argv:
argv = [sys.argv[0]] + sys.argv[sys.argv.index("--") + 1:]
else:
argv = sys.argv
parser = argparse.ArgumentParser()
parser.add_argument("--testdir", required=True, type=pathlib.Path)
args, remaining = parser.parse_known_args(argv)
unittest.main(argv=remaining)
if __name__ == "__main__":
main()