Files
test/intern/cycles/kernel/closure/bsdf.h
Brecht Van Lommel 0df9b2c715 Cycles: random walk subsurface scattering.
It is basically brute force volume scattering within the mesh, but part
of the SSS code for faster performance. The main difference with actual
volume scattering is that we assume the boundaries are diffuse and that
all lighting is coming through this boundary from outside the volume.

This gives much more accurate results for thin features and low density.
Some challenges remain however:

* Significantly more noisy than BSSRDF. Adding Dwivedi sampling may help
  here, but it's unclear still how much it helps in real world cases.
* Due to this being a volumetric method, geometry like eyes or mouth can
  darken the skin on the outside. We may be able to reduce this effect,
  or users can compensate for it by reducing the scattering radius in
  such areas.
* Sharp corners are quite bright. This matches actual volume rendering
  and results in some other renderers, but maybe not so much real world
  objects.

Differential Revision: https://developer.blender.org/D3054
2018-02-09 19:58:33 +01:00

468 lines
17 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/closure/bsdf_ashikhmin_velvet.h"
#include "kernel/closure/bsdf_diffuse.h"
#include "kernel/closure/bsdf_oren_nayar.h"
#include "kernel/closure/bsdf_phong_ramp.h"
#include "kernel/closure/bsdf_diffuse_ramp.h"
#include "kernel/closure/bsdf_microfacet.h"
#include "kernel/closure/bsdf_microfacet_multi.h"
#include "kernel/closure/bsdf_reflection.h"
#include "kernel/closure/bsdf_refraction.h"
#include "kernel/closure/bsdf_transparent.h"
#include "kernel/closure/bsdf_ashikhmin_shirley.h"
#include "kernel/closure/bsdf_toon.h"
#include "kernel/closure/bsdf_hair.h"
#include "kernel/closure/bsdf_principled_diffuse.h"
#include "kernel/closure/bsdf_principled_sheen.h"
#include "kernel/closure/bssrdf.h"
#include "kernel/closure/volume.h"
CCL_NAMESPACE_BEGIN
/* Returns the square of the roughness of the closure if it has roughness,
* 0 for singular closures and 1 otherwise. */
ccl_device_inline float bsdf_get_roughness_squared(const ShaderClosure *sc)
{
if(CLOSURE_IS_BSDF_SINGULAR(sc->type)) {
return 0.0f;
}
if(CLOSURE_IS_BSDF_MICROFACET(sc->type)) {
MicrofacetBsdf *bsdf = (MicrofacetBsdf*) sc;
return bsdf->alpha_x*bsdf->alpha_y;
}
return 1.0f;
}
ccl_device_forceinline int bsdf_sample(KernelGlobals *kg,
ShaderData *sd,
const ShaderClosure *sc,
float randu,
float randv,
float3 *eval,
float3 *omega_in,
differential3 *domega_in,
float *pdf)
{
int label;
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
label = bsdf_diffuse_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
label = bsdf_oren_nayar_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __OSL__
case CLOSURE_BSDF_PHONG_RAMP_ID:
label = bsdf_phong_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
label = bsdf_diffuse_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
label = bsdf_translucent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
label = bsdf_reflection_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
label = bsdf_refraction_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
label = bsdf_transparent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
label = bsdf_microfacet_ggx_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
label = bsdf_microfacet_multi_ggx_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
label = bsdf_microfacet_multi_ggx_glass_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
label = bsdf_microfacet_beckmann_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
label = bsdf_ashikhmin_shirley_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
label = bsdf_ashikhmin_velvet_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
label = bsdf_diffuse_toon_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
label = bsdf_glossy_toon_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
label = bsdf_hair_reflection_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
label = bsdf_hair_transmission_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
label = bsdf_principled_diffuse_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
label = bsdf_principled_sheen_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
label = volume_henyey_greenstein_sample(sc, sd->I, sd->dI.dx, sd->dI.dy, randu, randv, eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
default:
label = LABEL_NONE;
break;
}
/* Test if BSDF sample should be treated as transparent for background. */
if(label & LABEL_TRANSMIT) {
float threshold_squared = kernel_data.background.transparent_roughness_squared_threshold;
if(threshold_squared >= 0.0f) {
if(bsdf_get_roughness_squared(sc) <= threshold_squared) {
label |= LABEL_TRANSMIT_TRANSPARENT;
}
}
}
return label;
}
#ifndef __KERNEL_CUDA__
ccl_device
#else
ccl_device_forceinline
#endif
float3 bsdf_eval(KernelGlobals *kg,
ShaderData *sd,
const ShaderClosure *sc,
const float3 omega_in,
float *pdf)
{
float3 eval;
if(dot(sd->Ng, omega_in) >= 0.0f) {
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
eval = bsdf_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __OSL__
case CLOSURE_BSDF_PHONG_RAMP_ID:
eval = bsdf_phong_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
eval = bsdf_diffuse_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_eval_reflect(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_glass_eval_reflect(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
eval = bsdf_ashikhmin_shirley_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
eval = bsdf_diffuse_toon_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
eval = bsdf_glossy_toon_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
eval = bsdf_hair_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
eval = bsdf_hair_transmission_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
eval = bsdf_principled_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
eval = bsdf_principled_sheen_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
eval = volume_henyey_greenstein_eval_phase(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
}
else {
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
eval = bsdf_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_eval_transmit(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_glass_eval_transmit(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
eval = bsdf_ashikhmin_shirley_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
eval = bsdf_diffuse_toon_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
eval = bsdf_glossy_toon_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
eval = bsdf_hair_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
eval = bsdf_hair_transmission_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
eval = bsdf_principled_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
eval = bsdf_principled_sheen_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
eval = volume_henyey_greenstein_eval_phase(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
}
return eval;
}
ccl_device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
{
/* ToDo: do we want to blur volume closures? */
#ifdef __SVM__
switch(sc->type) {
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
bsdf_microfacet_multi_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
bsdf_microfacet_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
bsdf_microfacet_beckmann_blur(sc, roughness);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
bsdf_ashikhmin_shirley_blur(sc, roughness);
break;
default:
break;
}
#endif
}
ccl_device bool bsdf_merge(ShaderClosure *a, ShaderClosure *b)
{
#ifdef __SVM__
switch(a->type) {
case CLOSURE_BSDF_TRANSPARENT_ID:
return true;
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
case CLOSURE_BSDF_TRANSLUCENT_ID:
return bsdf_diffuse_merge(a, b);
case CLOSURE_BSDF_OREN_NAYAR_ID:
return bsdf_oren_nayar_merge(a, b);
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
return bsdf_microfacet_merge(a, b);
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
return bsdf_ashikhmin_velvet_merge(a, b);
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
case CLOSURE_BSDF_GLOSSY_TOON_ID:
return bsdf_toon_merge(a, b);
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
return bsdf_hair_merge(a, b);
#ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
return bsdf_principled_diffuse_merge(a, b);
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
return volume_henyey_greenstein_merge(a, b);
#endif
default:
return false;
}
#else
return false;
#endif
}
CCL_NAMESPACE_END